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Abstract

Background Undernutrition in pregnant women is an unfavorable environmental condition that can affect the intra-
uterine development via epigenetic mechanisms and thus have long-lasting detrimental consequences for the men-
tal health of the offspring later in life. One epigenetic mechanism that has been associated with mental disorders

and undernutrition is alterations in DNA methylation. The effect of prenatal undernutrition on the mental health

of adult offspring can be analyzed through quasi-experimental studies such as famine studies. The present system-
atic review and meta-analysis aims to analyze the association between prenatal famine exposure, DNA methylation,
and mental disorders in adult offspring. We further investigate whether altered DNA methylation as a result of prena-
tal famine exposure is prospectively linked to mental disorders.

Methods We conducted a systematic search of the databases PubMed and PsycINFO to identify relevant records
up to September 2022 on offspring whose mothers experienced famine directly before and/or during pregnancy,
examining the impact of prenatal famine exposure on the offspring’s DNA methylation and/or mental disorders
or symptoms.

Results The systematic review showed that adults who were prenatally exposed to famine had an increased

risk of schizophrenia and depression. Several studies reported an association between prenatal famine exposure

and hyper- or hypomethylation of specific genes. The largest number of studies reported differences in DNA meth-
ylation of the IGF2 gene. Altered DNA methylation of the DUSP22 gene mediated the association between prenatal
famine exposure and schizophrenia in adult offspring. Meta-analysis confirmed the increased risk of schizophrenia fol-
lowing prenatal famine exposure. For DNA methylation, meta-analysis was not suitable due to different microarrays/
data processing approaches and/or unavailable data.

Conclusion Prenatal famine exposure is associated with an increased risk of mental disorders and DNA methyla-
tion changes. The findings suggest that changes in DNA methylation of genes involved in neuronal, neuroendocrine,
and immune processes may be a mechanism that promotes the development of mental disorders such as schizo-
phrenia and depression in adult offspring. Such findings are crucial given that undernutrition has risen worldwide,
increasing the risk of famine and thus also of negative effects on mental health.
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[4—6]. One epigenetic mechanism that can be changed by
adverse intrauterine exposure and influences the develop-
ment of offspring health is deoxyribonucleic acid (DNA)
methylation [5, 7-10]. DNA methylation is the addition of
methyl groups to cytosine-guanine dinucleotides (CpG),
with the potential to regulate gene expression [11-15].
For instance, Palma-Gudiel et al. [16] reported increased
methylation of the glucocorticoid receptor gene (NR3C1),
a gene involved in the regulation of the hypothalamic—
pituitary—adrenal (HPA) axis in the offspring, following
exposure to prenatal stress. Increased NR3CI methyla-
tion has, in turn, been associated with mental disorders
[17-19] such as depression [20].

Undernutrition in pregnant women is an unfavorable
environmental condition that can affect the intrauterine
development and may thus have long-lasting detrimental
consequences for the mental health of the offspring later
in life [21]. The effect of prenatal undernutrition on men-
tal health can be analyzed through natural experiments
(quasi-experimental studies), in which undernutrition
(e.g. famine) occurs naturally in a specific population [22,
23]. Meta-analytic results have already demonstrated an
increased risk of suffering from psychotic, affective, and
personality disorders in adults who were exposed to fam-
ine during prenatal development [24].

One important mechanism to explain how unfavorable
maternal food consumption leads to an increased suscep-
tibility to mental disorders in the offspring in adulthood
may be altered DNA methylation patterns [25-27]. Rij-
laarsdam et al. [28] reported that an unhealthy high-fat
and high-sugar prenatal diet was positively associated
with changes in the insulin-like growth factor gene (IGF2)
in the offspring, which was in turn related to increased
attention deficit hyperactivity disorder (ADHD) symp-
toms in adolescence [28]. Moreover, hypomethylation
of this IGF2 gene has been found in adult offspring who
were prenatally exposed to famine [29]. Less is known,
however, about whether altered DNA methylation medi-
ates the effects of prenatal famine exposure on mental dis-
orders in the offspring.

In summary, undernutrition during pregnancy appears
to increase the susceptibility to mental disorders in the
offspring. However, the aforementioned meta-analysis
did not include a quality assessment [24]. To date, there-
fore, no quality assessment has been conducted on the
myriad of published studies examining the effects of pre-
natal famine exposure on offspring mental health. More-
over, it remains to be elucidated whether changes in DNA
methylation are the mechanism linking prenatal famine
exposure to the development of mental disorders in adult
offspring. The purpose of this study is thus to provide the
first systematic review of the existing literature on the
impact of prenatal famine exposure on offspring mental
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health and altered DNA methylation, and to integrate the
findings by means of a meta-analysis.

Methods

Search strategy

We conducted a literature search of the databases Pub-
Med and PsycINFO to identify relevant records up to
September 2022. The search strategies included the
words (a) “famine” and related terms, (b) “pregnancy”
and related terms, (c) “DNA methylation” and related
terms, or (d) “mental disorders” and related terms. The
search followed a systematic approach in accordance with
the Preferred Reporting Items for Systematic review and
Meta-Analysis Protocols (PRISMA-P) guidelines [30].
This systematic review and meta-analysis was registered
on the Open Science Framework (OSF): osf.io/3hn5p.

Screening and selection procedure

First, duplicates of the identified records were removed.
Titles and abstracts were screened, and records that
did not meet the eligibility criteria, such as non-human
studies and non-empirical research, were excluded. The
articles yielded by the literature search were screened
and selected using the following inclusion criteria: (1)
offspring whose mothers experienced famine during
pregnancy and including either (2) a measure of DNA
methylation or (3) a measure of psychopathology. A full-
text reading of all remaining articles was performed.
Studies were included in the meta-analyses if they (1)
used the same questionnaire to measure symptoms of
psychopathology, (2) included a categorical outcome
(mental disorders) irrespective of which clinical inter-
view was used to establish the diagnosis, and (3) provided
adequate data for statistical analysis.

Data extraction

Included articles were examined for information about
the first author, year of publication, cohort, sample
description, assessment of symptoms of psychopathol-
ogy, and main results. Articles on DNA methylation were
examined for information about chromosome number
and location, gene, number of CpGs, method for DNA
methylation analysis, and main results. Data extraction
was performed by one of the authors (HE) and a research
assistant. Risk of bias was assessed using a modified ver-
sion of the Newcastle-Ottawa scale [31, 32], containing
the following seven items: sampling representativeness,
sample size, exposure definition, famine severity assess-
ment, confounding adjustment, outcome assessment,
and statistical methods. Each item was scored as either
good, fair, or poor [31]. The items outcome assessment
and sample size were modified for studies on mental dis-
orders, epigenome-wide DNA methylation analyses, and
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targeted candidate gene analyses (see Additional file 1:
Tables S1-S3). Risk of bias assessment was performed by
one of the authors (HE) and a senior researcher from our
workgroup.

Data analysis

To assess the association between prenatal famine expo-
sure and symptoms of psychopathology or mental dis-
orders in adulthood, we calculated the effect size across
studies as the overall pooled logl0 odds ratio (logOR) of
the number of individuals with and without symptoms
or a mental disorder in the prenatal famine group and in
the control group. The logOR was used for the depres-
sion and schizophrenia studies. The control group con-
sisted of offspring who were exposed to famine during
childhood (non-prenatal famine exposure) and/or off-
spring who were not exposed to famine at all (non-expo-
sure). For two studies that used the Hospital Anxiety and
Depression Scale (HADS), we used means and standard
deviations to calculate Hedges’ g. One of these studies
did not report the specific standard deviations for each
of the two subscales of the HADS (anxiety and depres-
sion) and instead only provided overall standard devia-
tions, which were therefore used as a reference. Results
were considered statistically significant if the p value was
<0.05. Meta-analyses were conducted if at least two stud-
ies used the same outcome measurement. Studies with
insufficient data were only included in the systematic
review, and not in the meta-analyses. Random-effects
meta-analyses were conducted using the meta-analy-
sis function integrated in SPSS version 28.0.1.1, which
also allowed us to create forest plots. The Q and I? sta-
tistics were calculated to assess the heterogeneity of the
included studies. Subgroup analyses were performed to
detect whether a more homogenous effect size could be
calculated. Following the Cochrane Handbook for Sys-
tematic Reviews of Interventions [33], when 10 or more
studies were included in our meta-analyses, we used the
trim-and-fill procedure and visual inspection of funnel
plots to detect publication bias [34].

Results

Search results

The literature search yielded 2697 articles, of which
239 were duplicates and removed. Of the remaining
2458 articles, a further 2382 were excluded due to pub-
lication in a language other than English, non-empirical
research, or irrelevant title/abstract. Of the final 76 arti-
cles assessed for eligibility, 39 were excluded for as they
did not assess the outcome, only examined exposure
to nutrient deficiency, were exclusively polymorphism
analyses, or assessed different exposure periods. Thus,
in total, 37 studies were eligible for data extraction and
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were included in this systematic review. Of these stud-
ies, 22 reported effects of prenatal famine exposure on
symptoms of psychopathology or mental disorders, and
14 studies reported effects of famine during pregnancy
on DNA methylation. The remaining study analyzed the
mediating effect of DNA methylation on mental disor-
ders in adults prenatally exposed to famine. Eleven of the
37 studies reported sufficient data to be included in meta-
analyses. The study selection is summarized in Fig. 1.

Study characteristics

Characteristics of the included studies are shown in
Tables 1, 2, 3 and 4. Articles were published between
1992 and 2022. All participants were adults. The sample
size ranged from 13 to 494,684. All studies focused either
on the Dutch Famine (1944—1945) or the Chinese Famine
(1959-1961), with one exception, the Bangladesh Famine
(1974-1975). Individuals without prenatal famine expo-
sure were either born after the famine (non-exposure:
had not experienced famine in their life) or before the
famine (non-prenatal exposure: experienced famine dur-
ing infancy, childhood, adolescence, or adulthood). Most
DNA methylation studies (67%) used either sibling or
time controls. Sibling controls were siblings of prena-
tally exposed adults and were mostly younger than their
exposed siblings. Time controls were adults who were
born either before or after the famine. As the respective
authors did not specify how many control adults were
in each group, it was not possible to assign them to the
non-prenatal exposure or non-exposure group. Pericon-
ceptional exposure referred to exposure to famine during
conception and the 1st trimester.

Risk of bias assessment

The risk of bias assessment is presented in Additional file 2:
Table S4. Quality ratings ranged from poor to good, with
only two studies rated good on all study items [35, 36].

Of the studies examining symptoms of psychopathol-
ogy and mental disorders, most scored highest on the
statistical methods item. Most studies (86%) used proper
statistical analyses and conducted sensitivity analyses.
The sample size item was generally rated as good for the
mental disorders or symptoms studies (77%). Of the 22
studies, 14 studies (64%) defined famine exposure both
quantitatively and qualitatively. Half of the studies (50%)
used a good outcome assessment by a psychiatrist or clini-
cal psychologist according to International Classification
of Diseases (ICD) or Diagnostic and Statistical Manual of
Mental Disorders (DSM) criteria. Only 36% of the studies
adjusted for confounders and explained why they did so.
32% of the studies had good sampling representativeness.
Sampling representativeness was rated as fair if the sample
was drawn from only one hospital registry or survey. The
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Fig. 1 Screening and selection process of studies displayed by a PRISMA flowchart

lowest ratings were achieved for the item famine sever-
ity assessment, with 55% of the studies failing to include
excess death rates (EDR), cohort size shrinkage index
(CSSI) or global hunger index (GHI) to measure the sever-
ity of famine (for more information, see [37]).

Of the DNA methylation studies, most (73%) used
proper statistical analyses and conducted sensitivity analy-
ses. Adjustment for confounding factors was good in 53%

of these studies. Only 27% defined famine exposure both
quantitatively and qualitatively, and only 27% used a good
description of the DNA methylation assay. A small propor-
tion of the studies (13%) had good sampling representative-
ness and sample size. None of the DNA methylation studies
were rated as showing a good famine severity assessment
(0%).
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Effects of prenatal famine exposure on offspring
symptoms/mental disorders

Twenty-two studies investigated the effect of prenatal
famine exposure on offspring symptoms of psychopathol-
ogy and/or mental disorders.

As shown in Table 1, one study found higher psychopa-
thology, as measured with the Mental Health Inventory
(MHI-5) in individuals who experienced famine during
prenatal development compared to individuals who did
not [38]. Five studies reported increased depressive symp-
toms [39-43] in individuals with prenatal famine expo-
sure compared to individuals with non-prenatal exposure
and/or non-exposure. One study reported an associa-
tion between prenatal exposure to famine and increased
anxiety and depressive symptoms, as measured with the
HADS [44]. In contrast, another study found no signifi-
cant association between prenatal famine exposure and
anxiety and depressive symptoms (HADS) as compared to
non-prenatal exposure and non-exposure [45].

With regard to mental disorders, one study found a
generally increased risk of mental disorders [46] after
prenatal exposure compared to non-exposure. Six studies
consistently reported an increased risk of schizophrenia
after prenatal exposure compared to non-prenatal and/or
non-exposure to famine [35, 36, 47-50]. In contrast, one
study found a higher risk of developing schizophrenia in
adults with non-exposure to famine than in adults with
prenatal exposure [51]. An increased risk of major affec-
tive disorders was found to be linked to in utero exposure
to famine as compared to non-exposure in two studies
[52, 53]. One study reported an increased risk of antiso-
cial personality disorder [54] and another an increased
risk of schizoid personality disorder [55] in men after
prenatal exposure compared to non-exposure to famine.
Addictive disorders [56] and addictive behaviors [57] in
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adults were related to prenatal famine exposure but not
to non-prenatal famine exposure.

In terms of depressive symptoms, two studies [39,
42] provided sufficient data for meta-analysis based on
OR, with results varying by exposure period. On the
one hand, adults prenatally exposed to famine showed
a decreased risk of depressive symptoms compared
to adults with no exposure to famine and adults who
were exposed to famine after gestation (logOR=0.96,
95% CI [0.79, 1.14]; Z=10.75, p<0.001; Q=8.56,
1=88%). On the other hand, adults prenatally exposed
to famine showed an increased risk of depressive symp-
toms compared to adults with no exposure to famine
(logOR=1.14, 95% CI [0.94, 1.34]; Z=11.31, p<0.001;
Q=6.87, ’=86%). In terms of anxiety and depressive
symptoms as measured by the HADS, meta-analysis
confirmed the null-findings (HADS-A: g=0.08, 95% CI
[-0.05, 0.21]; Z=1.17, p=0.241; Q=0, I*=0%; HADS-
D: g=0.06, 95% CI [-0.08, 0.19]; Z=0.84, p=0.403;
Q=0.23, I’=0%). Meta-analysis confirmed the increased
risk of suffering from schizophrenia in adulthood after
prenatal famine exposure compared to non-prenatal
exposure and non-exposure together (logOR=1.13, 95%
CI [0.97, 1.29]; Z=13.97, p<0.001). Heterogeneity was
high (Q=9.02, I?=89%), see Fig. 2. The results remained
unchanged when subgroup analyses were conducted
for the Dutch and the Chinese famine (two Dutch fam-
ine studies: logOR=1.21, 95% CI [0.85, 1.57]; Z=6.57,
p<0.001; Q=1.13, I’=11% and five Chinese famine stud-
ies: logOR=1.12, 95% CI [0.92, 1.33]; Z=10.74, p <0.001;
Q=18.25, ?’=95%). Insufficient data were available for
meta-analyses on major affective disorders, antisocial
and schizoid personality disorder, as well as addictive
disorders.

Study LogOR  95%CI_low CI_high
He etal. (2018) [50] 1.84 132 236 *
Wang et al. (2017) [47] 1.07 098 117 —@—
Song et al. (2009) [51] 0.92 074 1.1 ——
Xu etal. (2009) [36] 1.23 116 1.30 @
St.Clairetal. (2005)[35]  0.95 089 1.01 @
Susser et al. (1996) [48] 1.70 071 269
Susser et al. (1992) [49] 1.14 0.86 143 —
Total 1.13 097 129 H——
Heterogeneity: Tau-Quadrat =0.03,
H-Quadrat = 9.02, I-Quadrat = 0.89
0,50 0,75 1,00 1,25 1,50 1,75 2,00 2,25 2,50 2,75 3,00 3,25

Fig. 2 Forest plot of studies comparing adults prenatally exposed to famine with adults non-prenatally and non-exposed to famine regarding risk
of developing schizophrenia. Conducting subgroup analyses for the Dutch and the Chinese famine did not alter the results
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Effects of prenatal famine exposure on offspring DNA
methylation (epigenome-wide analysis)

Nine studies, which are listed in Table 2, investigated
DNA methylation by conducting (epi)genome-wide anal-
ysis in adults prenatally exposed to famine [58—-66]. All of
these used whole blood as tissue.

Four studies determined DNA methylation using the
HumanMethylation450 BeadChip microarray, which
has a coverage of over 450,000 sites [67, 68]. The first of
these four studies did not find significantly differentially
methylated regions (DMRs) in adult offspring following
prenatal famine exposure as compared to non-prenatal
exposure and non-exposure [59]. The second study iden-
tified that prenatal exposure to famine during early ges-
tation was significantly associated with 613 DMRs as
compared to non-exposure [58]. The authors specifically
reported hypomethylated regions in four genes, namely
CCDC51, TMA7, ENO2 and ZNF226 [58]. The third
study found a variety of hyper- (FAM150B/TMEM]IS,
PPAP2C, SLC38A2) and hypomethylated (OSBPL5/MRG-
PRG) genes in adult offspring exposed to famine during
early gestation as compared to time and sibling controls.
In addition, exposure during conception was associated
with decreased methylation of TMEMI105/SLC38A10,
and exposure during any week of gestation was associ-
ated with increased methylation of the genes TACCI and
ZNF385A compared to time and sibling controls [60].

Lastly, an association was found between prenatal
famine exposure and hypo-methylation of the genes
CRELD2, LRRC8D, LOC100132354, OSBPL5/MRGPRG,
TXNIP, PFKFB3 as well as hypermethylation of the
genes ABCG1, CCDC155, FAM150B, METTLS, PNPO,
PPAP2C, SLC38A2, SYNGRI, TACCI and ZNF385A
compared to controls [64].

Two studies used methylation analyses, which cover
over 850,000 sites [69]. One study reported evidence of
601 hypermethylated and 360 hypomethylated sites after
prenatal famine exposure as compared to time controls
[63]. The other study reported no significant differentially
methylated sites after controlling for multiple testing
[65].

The two studies measuring global DNA methylation
via pyrosequencing did not find a link between prenatal
famine exposure and altered methylation patterns as com-
pared to sibling controls and time controls [62, 66]. One
of these studies also analyzed global DNA methylation
via MethyLight and LUminometric Methylation Assay
(LUMA), yielding no significant findings [62].

One study used reduced representation bisulfite
sequencing (RRBS) to assess DMRs and found hyper-
methylation in 60.8% out of 181 identified sites and
hypomethylation in 39.2% following periconceptional
exposure to famine compared to sibling controls [61].
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In the present analysis, we solely reported on genes
for which there was a significant association between
DNA methylation and prenatal famine exposure. Using
the data published in the included papers, we verified
whether genes that were significant in some studies were
also significant in others, and mostly found no concord-
ance. For instance, only six genes identified by Tobi et al.
[60] were replicated in another study by Tobi et al. [64],
even though methylation analysis was performed on the
same sample. Meta-analysis was not suitable due to dif-
ferent DNA methylation microarrays/data processing
approaches and partially unavailable data.

Effects of prenatal famine exposure on offspring DNA
methylation (candidate gene analysis)

As can be seen in Table 3, candidate gene DNA methyl-
ation analyses revealed significant associations between
prenatal famine exposure and a variety of hyper- and
hypomethylated genes as compared to the different
control groups.

Compared to sibling controls, periconceptional fam-
ine exposure was associated with hypomethylation of
KLF13 [61], IGF2 [29, 66], and INSIGF [66, 70]. Besides
periconceptional exposure, prenatal exposure during
late gestation was associated with hypomethylation of
the GNASAS gene [70]. Compared to sibling and time
controls, prenatal exposure to famine was related to
hypermethylation in several genes (CDH23, CPTIA,
INSR, SMAD?7 [61]; ABCAIL, IL-10, LEB, GNASAS and
MEG [70]). Compared to time controls only, prenatal
famine exposure was related to hypomethylation of the
AGTRI and PRKCA genes [63] and hypermethylation of
the IGF2 and INSR genes [72].

As compared to non-prenatal exposure and non-
exposure, adults prenatally exposed to famine showed
decreased methylation of the ZFP57 and PRDM?9 genes
and increased methylation of the PAX8 gene [59].
Moreover, prenatal exposure to famine was related to
hypomethylation of VTRNA2-1 and EXD3 compared
to non-prenatal exposure only [59]. One study reported
no association of GR 1-C, LPL, PI3kinase, and PPARy
with in utero exposure to famine compared to non-pre-
natal exposure and non-exposure [73].

In sum, the candidate genes most affected by prenatal
famine exposure are /GF2 and INSR. In addition, pre-
natal famine exposure was not associated with several
other candidate genes, which are reported in Table 3
[59, 61, 70, 73, 74].

Although a few significant candidate genes were rep-
licated in other studies, it is possible that methylation
analyses were performed on the same sample. Candi-
date-gene studies were not eligible for meta-analysis
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due to the heterogeneity of affected genes and partially
unavailable data.

DNA methylation as a mediator between famine exposure
during pregnancy and mental disorders

Table 4 presents a more recent study by Boks et al. [75],
who analyzed changes in DNA methylation in individuals
exposed to famine during the first 3 months of prenatal
development and their susceptibility to schizophrenia in
adulthood. The authors reported that prenatally exposed
adults with schizophrenia showed hypermethylation of
the DUSP22 gene compared to non-exposed patients and
healthy controls [75].

Discussion

In the present systematic review and meta-analysis,
we investigated the association between prenatal fam-
ine exposure, DNA methylation and mental disorders
in adult offspring. We report three main findings: First,
meta-analysis confirmed that exposure to famine dur-
ing prenatal development increases the offspring’s risk of
suffering from schizophrenia. With regard to depression,
meta-analyses yielded contradictory findings, showing
either increased or decreased risk of depressive symptoms
depending on exposure periods. Anxiety and depressive
symptoms, as measured with the HADS, were not asso-
ciated with prenatal famine exposure. Prenatal famine
exposure was further associated with addictive disorders
and behaviors as well as antisocial and schizoid personal-
ity disorder. Second, we found that prenatal famine expo-
sure is associated with hypo- and hypermethylation of a
variety of genes. The largest number of studies reported
differences in DNA methylation of the IGF2 gene. Third,
only one mediation study has been conducted to date,
which described altered DNA methylation of the DUSP22
gene as a potential mechanism underlying the association
between prenatal famine exposure and schizophrenia in
adult offspring.

With regard to the first finding, additional studies con-
firm the increased risk for the development of schizo-
phrenia in offspring prenatally exposed to a (natural)
disaster such as an earthquake [76, 77], a terrorist attack
[78], infections, and lead exposure [79]. There are sev-
eral potential reasons for this effect of unfavorable envi-
ronmental circumstances on an increased susceptibility
to schizophrenia. According to the neurodevelopmental
hypothesis proposed by Weinberger [80] and Murray
and Lewis [81], such conditions impair the neurodevel-
opment of the fetus by adversely altering gene expression
[81-87]. In particular, shortly after fertilization, a com-
plete demethylation of the genome occurs, which is then
re-established during embryogenesis [88]. Adverse envi-
ronmental circumstances during this periconceptional
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period can thus permanently alter the DNA methylation
of genes involved in neural pathways, impair brain devel-
opment, and predispose the offspring to an increased risk
of schizophrenia [84]. Moreover, researchers have found
that schizophrenia shares common features with other
mental disorders such as schizoaffective disorders and
depression [89, 90], suggesting that the same epigenetic
mechanisms are involved in its pathogenesis. However,
the inconclusive findings of the meta-analyses on depres-
sive symptoms may also be explained by the fact that
environmental conditions influence DNA methylation
at other life stages, in addition to early prenatal develop-
ment [91]. Indeed, offspring exposed to famine in infancy
or childhood exhibit more depressive symptoms than
offspring exposed to famine prenatally. Nevertheless,
prenatal exposure to famine increases the risk of depres-
sive symptoms in adult offspring compared to offspring
who have never been exposed to famine. Furthermore,
the inconclusive findings regarding depressive symptoms
and the null findings regarding anxiety may be attribut-
able to the fact that only two studies could be included in
the meta-analyses due to the heterogeneity of the exam-
ined exposure periods and different methods of statistical
analysis.

With respect to the finding that /IGF2 appears to be the
gene that is most affected by prenatal famine exposure,
the studies in this review revealed both hyper- and hypo-
methylation of the /GF2 gene in offspring. The reason
for this finding of both increased and decreased meth-
ylation, despite the fact that all offspring were prenatally
exposed to famine, might lie in a dose—response relation-
ship in terms of duration and severity of prenatal famine
exposure and /GF2 DNA methylation. Specifically, the
Chinese famine was more severe and lasted for longer
(3 years) compared to the Dutch famine, which was less
severe and lasted for only 6 months [92]. More severe and
longer exposure may have led to increased DNA meth-
ylation [72], whereas shorter and less severe exposure
may have resulted mainly in decreased methylation of
the IGF2 gene [29, 66]. This assumption is in line with the
study by Shen et al. [92], who reported increased meth-
ylation of the IGF2 gene in offspring exposed to severe
famine compared to offspring exposed to moderate fam-
ine. Moreover, different genomic positions annotated to
the IGF2 gene were examined [29, 66], which could be
another reason for differences in the direction of DNA
methylation.

As for the third finding, there is evidence that DUSP
family genes are involved in neural functions and play a
role in the pathophysiology of mental disorders such as
depression, bipolar disorder, and schizophrenia [93]. This
supports the involvement of the DUSP22 gene in the eti-
ology of schizophrenia in adults prenatally exposed to
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famine [75]. In addition, we suggest that altered DNA
methylation of the aforementioned /GF2 gene may con-
tribute to an increased risk of mental disorders, as this
gene is also involved in neuronal functions. Specifically,
it is an important contributor to fetal growth and devel-
opment of the central nervous system [94-96], with
increased methylation of the /GF2 gene in the placenta,
for example, showing an association with higher birth
weight [94]. However, another study found that increased
methylation of this gene (in maternal blood) was associ-
ated with lower birth weight [97], and others found no
significant association [98]. In terms of the central nerv-
ous system, dysregulations of this gene are associated
with various mental disorders such as depression and
schizophrenia [99].

The phenotype of adults prenatally exposed to famine
may additionally be caused by altered DNA methylation
of candidate genes in the neuroendocrine and immune
systems [17, 100, 101]. Specifically, the LEP gene affects
the HPA axis activity by inhibiting the release of corti-
cotropin-releasing hormone (CRH), thereby suppress-
ing its activity and reducing glucocorticoid production
[102-104]. Hypermethylation of the LEP gene can lead
to decreased gene expression [105] and possibly inhib-
its its role in suppressing HPA axis activity. In addition,
hypermethylation of this gene has been associated with
schizophrenia [106], and hyperactivity of the HPA axis is
an underlying biological mechanism of depression [107,
108]. The findings of our review demonstrate that prena-
tal famine exposure is associated with hypermethylation
of the LEP gene in adult offspring [70]. Furthermore, the
function of the neuroendocrine system is closely linked to
the function of the immune system, and the HPA axis acts
as a mediator between the two systems [109-112]. The
IL-10 gene, an anti-inflammatory cytokine of the immune
system, influences the HPA axis activity [112-114] by
increasing the production of CRH and adrenocortico-
tropic hormone (ACTH) in the pituitary [109, 110]. Dif-
ferences in its gene expression have been found in adults
suffering from a major affective disorder or schizophre-
nia [115-117]. Evidence indicates that prenatal exposure
to famine is related to increased methylation of the IL-10
gene in adult offspring [70].

The present review is the first to systematically and
quantitatively present the effects of prenatal famine
exposure on both mental disorders or symptoms of
psychopathology and DNA methylation. Its strengths
include the comprehensive literature search and rig-
orous quality assessment (risk of bias). However, the
results of the meta-analyses, particularly the omission
of a meta-analysis for the whole-genome DNA methyla-
tion results, should be interpreted with caution because
the authors did not to obtain all affected genes from all
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whole-genome DNA methylation analysis studies. In
addition, we are unable to rule out publication bias due to
the very small number of studies suitable for meta-analy-
ses. All methylation studies presented in this review used
whole blood as a tissue. One might consider whether
DNA methylation in peripheral specimens serves as a
marker for DNA methylation in brain tissue as there is
evidence that epigenetic differences in peripheral speci-
mens do not always correlate with differences in brain
tissue [118, 119]. For example, Walton et al. [120] found
that only 7.9% of CpGs were broadly correlated between
blood and living brain tissue from the same individuals.
However, they were able to identify CpG markers from
blood tissue that significantly correlated with brain tis-
sue and were involved in biological pathways affected
in individuals with schizophrenia [120]. As a further
limitation, the heterogeneity of genes affected by prena-
tal famine exposure might result from the lack of power
of small sample sizes and different DNA methylation
techniques across the included studies. However, it is
noteworthy that most of the associations found were sta-
tistically significant at the p<0.001 level (Tables 2, 3 and
4), even after Bonferroni correction [65, 70, 72, 74] and
Benjamin-Hochberg adjustment [60, 66] for multiple
testing. Candidate gene analyses have the distinct advan-
tage of enabling a more thorough investigation of specific
regions of interest by assessing the overall methylation of
a target region and allowing researchers to identify spe-
cific CpG sites involved in disease pathogenesis [121].
Epigenome-wide DNA methylation analyses enable the
analysis of the entire genome, as generally speaking,
more than one gene is involved in the pathogenesis of
diseases [122], but cover only small numbers of CpG sites
per gene [123, 124]. Moreover, as the examined famine
cohorts were geographically diverse, the different methyl-
ated genes may be attributable to ethnicity. For instance,
Elliott et al. [125] found large differences in DNA meth-
ylation between European and South Asian individuals
due to ethnically different cell composition. Additionally,
the cause of the famines also differed, with the Dutch
famine being the result of a food embargo during World
War II [23] and the Chinese famine being due to political
and economic mismanagement combined with drought
[126]. This may further have exposed the two cohorts to
distinct psychosocial stressors, which might have influ-
enced their DNA methylation differently.

Conclusion

Prenatal famine exposure has been associated with altered
DNA methylation of genes involved in neuronal, neu-
roendocrine, and immune processes, which may causally
promote the development of mental disorders, specifi-
cally schizophrenia and depression in adult offspring.
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Further genome-wide and hypothesis-driven candidate
gene mediation analyses, preferably with a longitudinal
design and large sample sizes, are warranted to obtain a
complete picture of the role of DNA methylation in the
association between prenatal exposure to famine and the
development of mental disorders. A better understanding
may improve the diagnosis and treatment of schizophre-
nia and depression, as DNA methylation can be reversed
by pharmacological drugs [127-129], and may inform
the development of nutritional intervention programs for
pregnant women affected by famine.
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health problems

IGF2R Insulin-like growth factor 2 receptor

IGF2 Insulin-like growth factor 2

INSIGF Insulin-induced gene

INSR Insulin receptor

KCNQ10T1 KCNQT1 opposite strand/antisense transcript 1

KLF13 Kruppel-like factor 13

LEP Leptin

LINE-1 Long interspersed nucleotide element-1

LOC10012354  LOC100132354

LPL Lipoprotein lipase

adults prenatally exposed to famine who suffered from symptoms of psy-
chopathology or a mental disorder; modified from Li and Lumey [31] and
Newcastle-Ottawa Scale by Wells et al. [32]. Table S2. Quality assessment
scale (risk of bias) of adults prenatally exposed to famine with alterations
in (epi)lgenome-wide DNA methylation; modified from Li and Lumey

[31] and Newcastle-Ottawa Scale by Wells et al. [32]. Table S3. Quality
assessment scale (risk of bias) of adults prenatally exposed to famine with
alterations in candidate gene DNA methylation; modified from Li and
Lumey [31] and Newcastle-Ottawa Scale by Wells et al. [32].

Additional file 2: Table S4. Risk of bias assessment for the effect of
famine on symptoms of psychopathology/mental disorders, and DNA
methylation.
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