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Abstract

Background Screening plays a key role in secondary prevention of cervical cancer. High-risk human papilloma-
virus (hrHPV) testing, a highly sensitive test but with limited specificity, has become the gold standard frontline

for screening programs. Thus, the importance of effective triage strategies, including DNA methylation markers,

has been emphasized. Despite the potential reported in individual studies, methylation markers still require validation
before being recommended for clinical practice. This systematic review and meta-analysis aimed to evaluate the per-
formance of DNA methylation-based biomarkers for detecting high-grade intraepithelial lesions (HSIL) in hrHPV-
positive women.

Methods Hence, PubMed, Scopus, and Cochrane databases were searched for studies that assessed methylation

in hrHPV-positive women in cervical scrapes. Histologically confirmed HSIL was used as endpoint and QUADAS-2 tool
enabled assessment of study quality. A bivariate random-effect model was employed to pool the estimated sensitivity
and specificity as well as positive (PPV) and negative (NPV) predictive values.

Results Twenty-three studies were included in this meta-analysis, from which cohort and referral population-

based studies corresponded to nearly 65%. Most of the women analyzed were Dutch, and CADM1, FAM19A4, MAL,

and miR124-2 were the most studied genes. Pooled sensitivity and specificity were 0.68 (Cl 95% 0.63-0.72) and 0.75 (Cl
95% 0.71-0.80) for cervical intraepithelial neoplasia (CIN) 2+ detection, respectively. For CIN3+detection, pooled sensi-
tivity and specificity were 0.78 (Cl 95% 0.74-0.82) and 0.74 (Cl 95% 0.69-0.78), respectively. For pooled prevalence, PPV
for CIN2+and CIN3+detection were 0.514 and 0.392, respectively. Furthermore, NPV for CIN2+and CIN3+detection
were 0.857 and 0.938, respectively.

Conclusions This meta-analysis confirmed the great potential of DNA methylation-based biomarkers as triage

tool for hrHPV-positive women in cervical cancer screening. Standardization and improved validation are, however,
required. Nevertheless, these markers might represent an excellent alternative to cytology and genotyping for colpos-
copy referral of hrHPV-positive women, allowing for more cost-effective screening programs.
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Background

Currently, cervical cancer remains a significant public
health concern at global level. Not only does it represent
the fourth most incident malignancy in women (with
an age-standardized incidence rate of 13.3 per 100,000
female individuals in 2020, worldwide), but also it is the
third most deadly cancer (with an age-standardized mor-
tality rate of 7.3 per 100,000 women in 2020 worldwide)
[1]. These figures, nonetheless, hide remarkable geo-
graphical differences, with cervical cancer-related deaths
being more impressive in countries with low human
development index [1]. Although this may be partially
explained by limited access to high-quality medical care,
lack of effective preventive strategies, including screen-
ing, constitutes the major cause. Because cervical cancer
is a preventable disease, screening strategies, based on
cervical cytology and/or high-risk HPV (hrHPV) test-
ing implemented at younger ages (below 30-35 years),
detect with noticeable sensitivity and specificity the pre-
cancerous lesions amenable for treatment before overtly
invasive cancer develops [2, 3]. The vast majority of cer-
vical cancers are hrHPV-related, and the implication of
this virus in cervical cancer pathobiology is well known,
namely its effect on the transformation of epithelial sur-
faces like the squamous—columnar junction of the cervix
or the lymph epithelium of the base of tongue and tonsils
[4]. In recent years, screening strategies have progres-
sively focused on hrHPV testing as first-line screening
test [5-7], owing to its higher sensitivity. However,
hrHPV infections detected may also correspond to tran-
sient infection, and thus, this test is unable to specifically
identify women which really need to be referred for a
specialized consultation and undergo colposcopy-guided
biopsy, a rather invasive procedure. Indeed, an accurate
test which might identify clinically relevant hrHPV infec-
tions is key to reduce the number of unneeded referrals
and interventions (with associated risks and costs) as
well as hrHPV test repetitions [8, 9]. DNA methylation,
the most studied epigenetic mechanism involved in gene
expression regulation, has been successfully explored
as a source of noninvasive disease biomarkers [10, 11].
Specifically, in cervical cancer, shifts in promoter meth-
ylation levels of several genes (both human and part of
the HPV genome) have been associated with HPV status,
lesion progression, and patient outcome [10, 11]. Despite
a very promising performance demonstrated in individ-
ual studies, the fact is that such methylation-based tests
have not moved from research to clinical practice, yet.
Importantly, reports in the literature are characterized

by heterogeneity of study settings, populations, meth-
odological strategies, technicalities, and cutoff values
used, among other variables, hampering a comprehensive
overview of these tests’ performance and their real clini-
cal usefulness, as well as the added value of comparing
with standard methods like cytology and hrHPV geno-
typing [3].

In this systematic review and meta-analysis, we
aimed to evaluate the performance of DNA meth-
ylation-based biomarkers for detecting high-grade
intraepithelial lesions (HSIL), i.e., cervical intraepithe-
lial neoplasia (CIN)2+and CIN3+in hrHPV-positive
women and assess their potential as triage biomarkers in
these women, to better ascertain their value in the con-
text of cervical cancer screening. Furthermore, we identi-
fied the gaps that still preclude their translation into the
clinics.

Results
Literature overview
Our search retrieved 536 records in PubMed, 498 in
Scopus, and 27 in Cochrane, achieving a total of 1061
records, 73 of which were duplicates (Fig. 1). From the
remaining 988 publications, 852 were excluded after
abstract and title review. Another 113 publications were
further excluded: 11 did not use cervical smears/scrapes;
71 did not perform methylation analysis in a hrHPV-pos-
itive women setting (i.e., as triage); 8 studies did not test
hrHPV in the samples used; 14 only presented hrHPV
methylation; 4 performed DNA methylation analysis in
only a subset of samples (e.g., CIN1 vs. CIN3); 4 did not
allow for data extraction; and 1 disclosed a high level of
overlap with another included study (B1) [12]. Hence, 23
articles were included in the final analysis, and these are
summarized in Table 1 and Additional file 1: Table S1.
Among these studies, one analyzed a population from
4 different countries and was thus considered as repre-
senting four independent studies [13], and two studies
reported two sets of different samples, which were also
considered independent [14, 15]. Although most of the
studies (12/23) were conducted in the Dutch population
[12-23], one also analyzed populations from Scotland,
Denmark, and Slovenia [13]. Four additional studies were
conducted in European women [24-27], while 5 studies
were conducted in the Chinese population [28-32], one
in the Canadian population [34], and another in the Ken-
yan population [33].
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Fig. 1 Flowchart of the systematic review and studies included in the meta-analysis

Eight articles evaluated DNA methylation of cell mal, T cell differentiation protein (MAL), and micro-
adhesion molecule 1 (CADM1I), TAFA chemokine-like ~RNA 124-2 (miR124-2) genes in different combina-
family member 4 (TAFA4, also known as FAMI19A4), tions [12-14, 20-23, 33], whereas four studies only
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evaluated FAMI19A4 methylation [17-19, 28]. Two
studies assessed the performance of the S5 classifier
[a methylation panel comprising erythrocyte mem-
brane protein band 4.1 like 3 (EPB41L3), HPVI6LI,
HPVI16L2, HPV18L2, HPV31L1, HPV33L2], one of
which also included the evaluation of S4 classifier
(EPB41L3, HPV16L1, HPV16L2, HPVI8L2, HPV3iL1I)
[25, 34]. EPBL41L3 methylation levels were assessed
in three more studies alone, and different combina-
tions with ankyrin repeat domain 18C, pseudogene
(ANKRDI8CP), rubicon-like autophagy enhancer
(RUBCNL also known as C130rfl18), junctional adhe-
sion molecule 3 (JAM3), SRY-box transcription factor 1
(SOX1), telomerase reverse transcriptase (TERT), zinc
finger and SCAN domain containing 1 (ZCANI) [16,
27, 29]. C130rf18, JAM3, SOX1, and TERT were evalu-
ated individually and in panels with different combi-
nations of two genes, including slit guidance ligand 2
(SLIT2) gene [32]. One study evaluated JAM3 meth-
ylation individually [31]. Two more studies focused on
methylation of distal-less homeobox 1 (DLX1), inte-
grin subunit alpha 4 (ITGA4), relaxin family peptide
receptor 3 (RXFP3), SRY-box transcription factor 17
(SOX17), and zinc finger protein 671 (ZNF671), and
other also evaluated the methylation of ANKRDI8SCP.
Both studies assessed the genes individually and as a
panel [24, 26]. Furthermore, one study reported meth-
ylation levels of zinc finger protein 582 (ZNF582)
individually and as part of a panel with paired box 1
(PAX1I) [30]. Lastly, one study assessed the methyla-
tion levels of achaete-scute family bHLH transcription
factor 1 (ASCL1), LIM homeobox 8 (LHXS8), and ST6
N-acetylgalactosaminide alpha-2,6-sialyltransferase 5
(ST6EGALNACS) in a panel [15].

Overall, 17 (74%) studies reported DNA methylation
markers performance for both outcomes considered in
this systematic review and meta-analysis (CIN2+and
CIN3+) [12-22, 24, 27, 29, 31, 32, 34]. Three (13%)
studies only reported DNA methylation-based mark-
ers performance for CIN2+ outcome [25, 28, 33], and
three (13%) more only reported DNA methylation-
based markers performance for CIN3+ outcome [23,
26, 30]. Of note, 5 (22%) studies were conducted in
self-collected samples [14, 15, 19, 21, 22]. Moreover,
eight studies (35%) were referral population-based
studies [14, 18-23, 27], eight studies (35%) were cohort
studies [17, 24, 26, 28-31, 33], three (13%) were case—
control studies [25, 32, 34], and four (17%) were con-
venience studies [12, 13, 15, 16].

Concerning methylation cutoffs, seventy-three per-
cent of the studies disclosed a predefined cutoff for
positivity [12-15, 17-23, 25-30, 34], mostly estab-
lished through receiver operating characteristics
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(ROC) curve analysis in a training set or previous
studies.

Quality assessment

The quality of individual studies was assessed using
QUADAS-2 and is summarized in Fig. 2 and Additional
file 1: Table S2. The primary source of bias was patient
selection. About 20% showed high patient selection bias,
which was mainly associated with the design of the pri-
mary study. Nonetheless, the triage setting reported by
some studies as a secondary outcome might also have led
to bias.

Moreover, studies with high patient selection bias
were associated with an enrichment of CIN2+and or
CIN3+lesions, thus not representing a real population-
based scenario. Most studies did not fully describe the
women lost for follow-up or the interval between the
methylation test and the reference test. Studies with high
selection bias were removed from some of the analyses
to evaluate the impact on biomarker performance (n=7).

Diagnostic accuracy in an hrHPV-positive women triage
setting

Diagnostic performance of the reported methyla-
tion markers was assessed, and the main performance
indicators are depicted in Table 2. For both outcomes,
CIN2+and CIN3+, sensitivity, specificity, and summary
receiver operating characteristic (SROC) curve (Fig. 3)
were pooled for: i) all the markers reported in all studies;
ii) the best markers reported in each study (avoiding con-
sidering the same sample more than once); iii) the most
frequently studied genes (CADMI1, FAM19A4, MAL and
miR124-2); and iv) studies which set the threshold to
achieve 70% specificity. For CIN2+ detection, the pooled
AUC was above 73% in all analysis models. Additionally,
to evaluate the impact of bias, for analysis ii), high-bias
studies were removed, and the outcomes were predicted
(Table 2).

Considering only one entrance for the study, sensitiv-
ity and specificity for CIN2+detection were 68% (CI
95% 63-72%) and 75% (CI 95% 71-80%), respectively.
Furthermore, for CIN3+detection, the pooled AUC
was higher than 77% in all groups. For the best markers
of each study, sensitivity reached 78% (CI 95% 74—82%),
and 74% (CI 95% 69-78%) specificity was achieved. The
pooled sensitivity and specificity of each study are further
represented as a forest plot in Additional file 2: Figs. S1
and S2. When studies were stratified by study type, sensi-
tivity and specificity were similar (Table 3).

The same was observed after excluding high-bias stud-
ies from the analysis (Table 2). Moreover, all analyzed
models, except for model iv for CIN3+ detection, were
associated with high and significant heterogeneity (Q
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Fig. 2 Quality assessment of the individual studies using QUADAS-2 tool. The left panel depicts the risk of bias of the studies and the right panel

the risk of concerns regarding applicability

with p-value<0.051 and I° above 89%). A univariable
meta-regression showed a significant correlation with
cohort overlapping among studies, the use of one meth-
ylation panel, and the existence of a predefined cutoff
(Additional file 2: Fig. S3) for both CIN2+and CIN3
detection. Concerning CIN3+detection, the type of
sample (self-collected or not) was also found significant.
When separately analyzed, studies with self-collected
samples disclosed slightly lower performance for CIN
2+ [sensitivity: 63% (CI 95% 54—72%) vs. 70% (CI 95%
65-74%); specificity: 73% (CI 95% 63—-81%) vs 76% (CI
95% 71-81%); AUC: 73% (CI 95% 69-77%) vs. 79% (CI
95% 75-82%)] and CIN3+detection [sensitivity: 72%
(CI 95% 63-80%) vs. 81% (CI 95% 76—85%); specificity:
70% (CI 95% 60-78%) vs. 75% (CI 95% 70-79%); AUC:
77% (CI 95% 74—81%) vs. 85% (CI 95% 82—88%)], com-
paratively to studies in which samples were collected by
health professionals (Table 4).

The PPV and NPV values were calculated for all con-
ditions reported above and are displayed in Table 5 and
Additional file 2: Fig. S4, according to different prevalence
ranges. For CIN2+ detection, the pooled prevalence var-
ied between 25 and 35%, with a PPV between 0.446 and
0.620, and NPV always above 0.80. For a 30% prevalence,
PPV ranged from 0.490 to 0.565, with an NPV remaining
above 0.80. For CIN3+ detection, the PPV for the pooled
prevalence ranged between 0.294 and 0.515, with an NPV
above 90% for all conditions. For 20% prevalence, PPV
was above 0.87 and NPV above 0.90.

Discussion

Primary prevention of cervical cancer with a vaccine
against hrHPV was an important step for hrHPV con-
trol and eradication. Nonetheless, secondary prevention

still plays a crucial role in the reduction of incidence and
mortality of cervical cancer, especially among unvacci-
nated women [35, 36]. First-line hrHPV testing for cervi-
cal cancer screening became the gold standard for many
European countries at regional or national levels, as pro-
posed by HPV Action Network from European Cancer
Organisation in Viral Protection: Achieving the Possible.
A Four-Step Plan for Eliminating HPV Cancers in Europe
[7]. However, this shift challenges the sustainability of
screening programs, as the number of women referred
to colposcopy significantly increased, mostly due to the
limited specificity of hrHPV testing, with the identifica-
tion of transient infection, and the failure to discriminate
lesions with risk of progression from those in regression
[37, 38].

In recent years, DNA methylation-based biomark-
ers have been investigated as potential tools for triage
of hrHPV-positive cases, in an attempt to reduce the
number of cases referred to colposcopy, avoiding over-
diagnosis and consequent overtreatment. However, the
evidence supporting the use of triage tests remains lim-
ited, as acknowledged by the latest Word Health Organi-
zation recommendations [39]. Therefore, we conducted a
systematic review with a meta-analysis to better under-
stand the actual value of these DNA methylation-based
biomarkers.

One of the major challenges (and limitations) of this
meta-analysis results from the fact that distinct markers
alone or combined in several panel have been reported
along with different methodologies (including genes
studied and methodological approach), with only a
very small number of studies having used exactly the
same protocols. Additionally, in some studies a histo-
logical biopsy was not performed when the co-test was
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N datasets N samples Pooled
prevalence

Pooled
Sensitivity,
(95% Cl)

Pooled
Specificity,
(95% CI)

Q
(p-value)

12
(95% CI)

Pooled AUC,
(95% Cl)

CIN2 + detection

All studies with all
markers #°[12-22, 24,
25,27-29,31-34]

All studies with best
markers *[12-22, 24,
25,27-29,31-34]

Studies with CADM,
FAM19A4, MAL

and miR124-2°12-14,
17-22,28,33]

Set threshold

to achieve 70% speci-
ficity[12, 14, 17-20,
22,33]

All studies with best
markers exclud-

ing high-bias studies
2d[12-15,17-22, 24,
25,27,29]

CIN3 + detection

All studies with all
markers #°[12-24, 26,
27,29-32, 34]

All studies with best
markers #€[12-24, 26,
27,29-32,34]

Studies with CADM,
FAM19A4, MAL

and miR124-2°[12-14,
17-23]

Set threshold

to achieve 70% speci-
ficity [12, 14, 17-20,
22,33]

All studies with best
markers exclud-

ing high-bias studies
af12-15,17-24,27,

29, 30]

55

25

20

55

25

20

16,022

9011

6693

3686

7736

16,669

9682

7202

3655

8681

0.35

0.28

0.25

0.29

0.25

0.24

0.18

0.14

0.17

0.17

0.67 (0.63-0.70)

0.68 (0.63-0.72)

0.64 (0.59-0.68)

0.59 (0.53-0.65)

0.66 (0.61-0.70)

0.78 (0.75-0.81)

0.78 (0.74-0.82)

0.72 (0.68-0.76)

0.69 (0.63-0.74)

0.77 (0.72-0.81)

0.80 (0.75-0.83)

0.75(0.71-0.80)

0.74 (0.69-0.78)

0.74 (0.70-0.77)

0.74 (0.69-0.78)

0.77 (0.73-0.80)

0.74 (0.69-0.78)

0.72 (0.67-0.76)

0.74 (0.70-0.77)

0.73 (0.68-0.76)

422771 (p<0.001)

160.418 (p<0.001)

77.518 (p<0.001)

17.604(p <0.001)

110.195 (p<0.001)

353.267(p<0.001)

87.682 (p<0.001)

24.008 (p<0.001)

2778 (p=0.125)

58.123 (p<0.001)

100 (99-100)

99 (98-99)

97 (96-99)

89 (77-100)

98 (97-99)

99 (99-100)

98 (96-99)

92 (84-99)

28 (0-100)

97 (94-99)

0.77 (0.73-0.81)

0.77 (0.73-0.81)

0.74(0.70-0.77)

0.73 (0.69-0.77)

0.75(0.71-0.79)

0.85(0.81-0.87)

0.83 (0.79-0.86)

0.77 (0.74-0.81)

0.77 (0.73-0.80)

0.81(0.77-0.84)

2The sensitivity and specificity were estimated as reported by authors. When multiple thresholds reported, 70% specificity was selected. ®Pooled together all the
genes and gene combination reported in each study. For studies [16, 23, 25, 26, 29, 32], more than one entrance was considered. “Only one entrance per study

was considered. The best combination reported by the authors was selected. For [16] and [32] was considered JAM3; for [29] and [27] was considered C130rf18/
EPB41L3/JAM3; for [25] was considered S5 classifier (EPB41L3/HPV16L1/HPV16L2/HPV18L2/HPV31L1/HPV33L2). %Only one entrance per study was considered. The best
combination reported by the authors was selected. For [29] and [27] was considered C130rf18/EPB41L3/JAM3; for [25] was considered S5 classifier (EPB41L3/HPV16L1/
HPV16L2/HPV18L2/HPV31L1/HPV33L2). *Only one entrance for study was considered. The best combination reported by the authors was selected. For [30] was
considered PAX1/ZNF582; for [16] was considered JAM3; for [29] was considered C130rf18/EPB41L3/JAM3; for [25] was considered S5 classifier; for [27] was considered
SOX1/ZSCANT; for [32] was considered SOX1. f Only one entrance for study was considered. The best combination reported by the authors was selected. For [30] was
considered PAX1/ZNF582; for [29] was considered C130rf18/EPB41L3/JAM3; for [25] was considered S5 classifier; for [27] was considered SOX1/ZSCANT; for [32] was

considered SOX1

negative, which might be a source of bias, although the
reported risk of misclassification is rather low [40, 41].
Furthermore, some studies considered the women lost to
follow-up as negative for CIN2+lesion, which might be
associated with lesion misclassification and, therefore,

might have impacted in the estimated sensitivity and
specificity.

Notwithstanding, focusing on the best markers
reported from each study, DNA methylation markers
reached, overall, a specificity similar to that reported for
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Fig. 3 SROC graphs for CIN 2+ (A-D) and CIN3+detection (E-H). A and E all the markers reported in all studies; B and F the best markers reported
in each study (avoiding considering the same sample more than once); C-G the most studied genes (CADM1, FAM19A4, MAL, and miR124-2);

and D-H studies which set the threshold to achieve 70% specificity. Gray dots represent referral population-based studies, blue dots represent
cohort studies, red dots represent case—control studies, and green dots represent convenience studies

Table 3 Meta-analysis of the performance of DNA methylation assays for the detection of CIN2+and CIN3+according to the study

design

N datasets Nsamples Pooled Pooled sensitivity Pooled specificity Q 12 Pooled AUC,

preVaIenCe (95% CI) (95% CI) (p-value) (95% CI) (95% CI)

CIN2 + detection ¢
Population Referral 8 3627 0.28 0.60 (0.52-0.66) 0.70 (0.62-0.77) 91489 (p<0.001) 98(96-99) 0.68 (0.64-0.72)
studies [14, 18-22,
271
Cohort studies [17, 6 1293 042 0.70 (0.62-0.76) 0.78 (0.69-0.86) 35657 (p<0.007) 94 (90-99) 0.79(0.75-0.82)
24,28,29,31,33]
Convenience stud- 8 3234 020 069(064-073)  079(077-081)  0478(p=0394) 0(0-100) 0.82(0.78-0.85)
ies[12,13,15,16]
CIN3 + detection *°9
Population referral 9 4601 0.16 069(064-074)  071(064-078) 28019 (p<0.007) 93(86-99) 0.75(0.71-0.78)
studies [14, 18-23,
271
Cohort studies [17, 6 1331 0.36 0.81(0.72-0.87) 0.72 (0.65-0.79) 27134 (p<0.007) 93 (86-99) 0.83(0.80-0.86)
24, 26,29-31]
Convenience stud- 8 3234 0.14 0.80 (0.75-0.84) 0.77 (0.75-0.79) 0.646 (p=0.362) 0(0-100) 0.81(0.78-0.84)

ies[12,13,15,16]

2 Due to the limited number of case—control studies (n=3), it was not possible to perform statistical analysis. "The sensitivity and specificity were estimated as
reported by authors. When multiple thresholds reported, 70% specificity was selected. Only one entrance per study was considered. The best combination reported
by the authors was selected. “©Only one entrance per study was considered. The best combination reported by the authors was selected. For [16] was considered JAM3;
for [29] was considered C130rf18/EPB41L3/JAM3. 9Only one entrance per study was considered. The best combination reported by the authors was selected. For H5[30]
was considered PAX1/ZNF582; for K3 [29] was considered C130rf18/EPB41L3/JAM3; for J7 [27] was considered SOX1/ZSCANT1 selection bias
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Table 4 Meta-analysis of the performance of DNA methylation assays for the detection of CIN2+and CIN3+according the sample

collection method

N Datasets N samples Pooled Pooled Pooled Q 12 Pooled AUC,
prevalence Sensitivity, Specificity, (p-value) (95%Cl)  (95% Cl)
(95% Cl) (95% Cl)

CIN2 + detection *°

Health professional-col- 18
lected [12, 13, 16-18, 20,
24,25,27-29,31-34]
1419,21,22,28) 5

6005 0.27

Self-collected ¢ 3006 0.30

CIN3 + detection ¢

Health professional-col- 18
lected [12, 13, 16-18, 20,
23,24, 26,27,29-32, 34]

Self-collected [14, 15,19, 7
21,22]

6676 0.18

3006 0.19

0.70 (0.65-0.74)

0.63 (0.54-0.72)

0.81(0.76-0.85)

0.72 (0.63-0.80)

0.76 (0.71-0.81) 74.715 (p<0.001) 97 (96-99) 0.79 (0.75-0.82)

0.73(0.63-0.81) 84.968 (p<0.007) 98(96-99) 0.73 (0.69-0.77)

0.75(0.70-0.79)  52.628 (p<0.007) 96 (93-99) 0.85 (0.82-0.88)

0.70 (0.60-0.78) 32.355 (p<0.007) 94 (88-99) 0.77 (0.74-0.81)

2The sensitivity and specificity were estimated as reported by authors. When multiple thresholds reported, 70% specificity was selected. "Only one entrance per
study was considered. The best combination reported by the authors was selected. For [16] and [32] was considered JAM3; for [29] and [27] was considered C13orf18/
EPB41L3/JAM3; for [25] was considered S5 classifier (EPB41L3/HPV16L1/HPV16L2/HPV18L2/HPV31L1/HPV33L2). “Only one entrance for study was considered. The best
combination reported by the authors was selected. For [30] was considered PAX1/ZNF582; for [16] was considered JAM3; for [29] was considered C13o0rf18/EPB41L3/
JAMS3; for [25] was considered S5 classifier; for [27] was considered SOX1/ZSCANT; for [32] was considered SOX1.f Only one entrance for study was considered. The best
combination reported by the authors was selected. For [30] was considered PAX1/ZNF582; for [29] was considered C13orf18/EPB41L3/JAM3; for [25] was considered S5

classifier; for [27] was considered SOX1/ZSCANT; for [32] was considered SOX1

cytology [using atypical squamous cells of undetermined
significance (ASC-US) as cutoff] for CIN2+ detection,
although with slightly lower sensitivity [42]. Concerning
CIN3+ detection, methylation markers provided higher
specificity with equivalent sensitivity, compared to cytol-
ogy [42]. Indeed, it is widely recognized that upfront
knowledge of hrHPV positivity impacts on cytological
observation and reporting, usually increasing sensitiv-
ity but with a decrease in specificity [42, 43]. Except for
visual inspection using acetic acid (VIA), meta-analyses
of the other recommended triage strategies (genotyp-
ing and cytology) displayed lower or similar specificity
than that reported for methylation markers in this meta-
analysis. VIA, however, disclosed lower sensitivity for
CIN3+ detection [42].

CADM1, FAMI19A4, MAL, and miR124-2 are the most
commonly reported genes analyzed, although in different
combinations. Six of the seven studies designed as refer-
ral population-based were conducted with these genes.
However, most studies were conducted in the Dutch pop-
ulation, which may limit a broader application in clinical
practice. Although FAM19A4 and miR124-2 methylation
test has already received the Conformité Européene In
Vitro Diagnostic (CE-IVD) label through QIAsure Meth-
ylation Test [44], concerns about its sensitivity have hin-
dered its diffusion, especially for CIN2+ detection [13].
Additionally, although GynTect® (comprising ASTNI,
DLXI, ITGA4, RXFP3, SOX17, and ZNF67I) has been
approved for clinical practice, it was not yet included in
WHO guidelines [39].

Interestingly, Kremer and co-workers reported the
association between clinical regression of high-grade
CIN and a negative result in the QIAsure Methylation
test [44]. In this study, women referred for colposcopy
with biopsy-confirmed CIN2/CIN3 were monitored
every six months during 24-30 months to evaluate
clinical regression or progression of HSIL. Importantly,
about 75% of women enrolled were under 35 years,
i.e., at reproductive age, in which fertility preservation
is of utmost importance [44]. Clinical regression was
observed in 58% of recruited women, whereas clinical
progression occurred in only 22%. Remarkably, a nega-
tive methylation result at baseline was associated with
an increased likelihood of clinical regression. When
combined with the cytological findings [ASC-US or
low-grade squamous intraepithelial lesion (LSIL) or
negative HPV16 genotyping (HPV167)] clinical regres-
sion incidence exceeded 85% [44]. Moreover, a report
on risk stratification for hrHPV* women with ASC-US/
LSIL from the same team demonstrated that a double
positive test (methylation and HPV 16/18 genotyping)
associated with higher risk of CIN3* incidence com-
pared to a single positive result (methylation or HPV
16/18 genotyping). Furthermore, a double negative
result associated with CIN3* incidence risk under 10%
[45]. Thus, methylation analyses might identify cases
more likely to endure regression. Importantly, stud-
ies with self-collected samples demonstrated a slightly
lower performance. Of note, most of these studies
were population-based, which might be less prone to
bias design. FAMI19A4 methylation showed similar
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N datasets PPV

Set prevalence

(mean+SD)
Pooled 5% 10% 20% 30% 40% 50% 60%
prevalence® PPV PPV PPV PPV PPV PPV PPV
(meanxSD) (meanxSD) (meanxSD) (meanxSD) (mean+SD) (meanzSD) (meanzSD)
CIN2 + detection
All studies 56 0.620 0.138 0.252 0432 0.565 0.669 0.752 0.820
with all mark- (0.601-0.639) (0.128-0.148) (0.237-0.267) (0412-0.452) (0.545-0.585) (0.651-0.687) (0.737-0.767) (0.808-0.832)
ers P [12-22,
24,25,27-29,
31-34]
All studies 25 0.514 0.126 0.233 0.405 0.538 0.644 0.731 0.803
with best (0491-0.537) (0.116-0.136) (0.216-0.250) (0.382-0.428) (0.515-0.561) (0.622-0.666) (0.713-0.749) (0.788-0.818)
markers®*
[12-22,24,
25,27-29,
31-34]
Studies 15 0.446 0.113 0.212 0.376 0.508 0616 0.706 0.783
with CADM 1, (0424-0468) (0.104-0.122) (0.197-0.227) (0.355-0.397) (0.486-0.530) (0.595-0.637) (0.688-0.724) (0.768-0.798)
FAM19A4,
MAL and/
or miR124-
29112-14,
17-22,28,33]
Set threshold 9 0478 0.106 0.200 0.359 0.490 0.599 0.691 0.770
to achieve (461-0.494)  (0.099-0.113) (0.189-0.211) (0.343-0.375) (0.473.0.507) (0.582-0.616) (0.676-0.706) (0.758-0.782)
70% specific-
ity [12, 14,
17-20,22,33]
CIN3+ detection
All studies 55 0515 0.151 0.273 0457 0.591 0.692 0.771 0.835
with all mark- (0497-0.533) (0.142-0.160) (0.258-0.288) (0.439-0.475) (0.573-0.609) (0.676-0.708) (0758-0.784) (0.825-0.845)
ers *° [12-24,
26,27,29-32,
34]
All studies 25 0.392 0.134 0.246 0423 0.557 0.661 0.745 0.814
with best (0.371-0.413)  (0.123-0.145) (0.229-0.263) (0.401-0.445) (0.513-0.579) (0.641-0.681) (0.734-0.756) (0.800-0.828)
markers*®
[12-24, 26,
27,29-32, 34]
Studies 14 0.294 0.119 0.221 0.389 0.522 0.629 0.718 0.792
with CADM1, (0.274-0314) (0.109-0.129) (0.204-0.238) (0.365-0.413) (0.497-0.547) (0.606-0.652) (0.698-0.738) 0.776-0.808)
FAM19A4,
MAL and/
or miR124-
2°[12-14,
17-23]
Set threshold 9 0.347 0.120 0.224 0.393 0526 0.633 0.721 0.795
to achieve (0.326-0.368) (0.110-0.130) (0.208-0.240) (0.371-0.415) (0.503-0.549) (0.612-0.654) (0.703-0.739) (0.780-0.810)
70% specific-
ity [12, 14,
17-20,22,33]
N NPV Set prevalence
studies (mean=SD)
Pooled 5% 10% 20% 30% 40% 50% 60%
prevalence® NPV NPV NPV NPV NPV NPV NPV
(mean+SD) (mean+SD) (mean+SD) (mean*SD) (mean+SD) (mean+SD) (meanz*SD)
CIN2 + detection
All studies with all 56 0.880 0.978 0.954 0.902 0.844 0.776 0.698 0.607
markersa'b[12—22, (0.875-0885) (0.977-079)  (0.952- (0.898-0.906) (838-850) (0.768- (0.688-0.708) (0.596-
24,25,27-29, 0.956) 0.784) 0.618)

31-34]
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Table 5 (continued)
N NPV Set prevalence
studies (mean=SD)
Pooled 5% 10% 20% 30% 40% 50% 60%
prevalence® NPV NPV NPV NPV NPV NPV NPV
(mean=SD) (mean+SD) (mean=SD) (mean+SD) (meanzSD) (mean+SD) (meanz=SD)
All studies with best 25 0.857 0.978 0.954 0.903 0.844 0.777 0.699 0.608
markers*“[12-22, 24, (0.848-0.866) (0.976— (0.951- (0.897-0.909) (0.834- (0.764-790)  (0.684-0.714) (0.591-
25,27-29,31-34] 0.980) 0.957) 0.854) 0.625)
Studies with CADM1, 15 0.858 0.975 0.948 0.890 0.825 0.752 0.669 0574
FAM19A4, MAL (0.859-0.866) (0.973- (0.945- (0.883-0.897) (0.815- (0.739- (0.654-0.684) (0.557-
and miR124- 0.977) 0.951) 0.835) 0.765) 0.591)
29012-14,17-22,
28, 33]
Set threshold 9 0.815 0972 0.942 0.878 0.808 0.730 0.643 0.546
to achieve 70% (0.804-0.826) (0.970- (0.938- (0.871-0.885) (0.797- (0.716- (0.627-0.659) (0.529-
specificity[12, 14, 0.974) 0.946) 0.819) 0.744) 0.563)
17-20, 22, 33]
CIN3 +detection
All studies with all 55 0916 0.985 0.969 0.933 0.890 0.839 0.776 0.698
markersa'bﬂ 2-24, (0.911-0.921) (0.984- (0.967- (0.929-0.937) (0.884- (0.830- (0.765-0.787) (0.684—
26,27,29-32, 34] 0.986) 0.971) 0.896) 0.847) 0.712)
All studies with best 25 0.938 0.984 0.967 0.929 0.885 0.832 0.768 0.688
markers®[12-24, (0.932-0.006  (0.982- (0.964- (0.922-0.936) (0.875-0- (0.818-846) (0.750-0.783) (0.666—
26,27,29-32,34] 0.986) 0.970) 895) 0.710)
Studies with CADM1, 14 0.939 0.979 0.958 0.910 0.855 0.791 0.716 0.627
FAM19A4, MAL (0.934-0.944) (0.977- (0.954- (0.903-0917) (0.844- 0.777- (0.698-0.734) (0.607-
and miR124- 0.981) 0.962) 0.866) 0.805) 0.647)
2°[12-14,17-23]
Set threshold 9 0919 0.978 0.955 0.903 0.845 0.778 0.701 0.610
to achieve 70% (0.912-0.926) (0.976— (0.951- (0.895-0911) (0.833- (0.762- (0.681-0.721) (0.588-
specificity[12, 14, 0.980) 0.959) 0.857) 0.794) 0.632)

17-20, 22, 33]

2The sensitivity and specificity were estimated as reported by authors. When multiple thresholds reported, 70% specificity was selected. ®Pooled together all the
genes and gene combination reported in each study. For studies [16, 23, 25, 26, 29, 32], more than one entrance was considered. “Only one entrance per study

was considered. The best combination reported by the authors was selected. For [16] and [32] was considered JAM3; for [29] and [27] was considered C130rf18/
EPB41L3/JAM3; for [25] was considered S5 classifier (EPB41L3/HPV16L1/HPV16L2/HPV18L2/HPV31L1/HPV33L2). %Only one entrance for study was considered. The best
combination reported by the authors was selected. For [30] was considered PAX1/ZNF582; for [16] was considered JAM3; for [29] was considered C13orf18/EPB41L3/
JAM3; for [25] was considered S5 classifier; for [27] was considered SOX1/ZSCANT; for [32] was considered SOX1. *Presented in Table 2

performance in self-collected and heath professional-
collected samples [18, 19]. Moreover, the study of Kre-
mer et al. also demonstrated similar test performance
for clinician- and self-collected samples, encouraging
the adoption of this strategy for recruitment of women
non-adherent to screening programs, increasing
screening uptake as proposed by HPV Action Network
2 and allowing for fully automated molecular testing
pipeline.

Furthermore, Kelly et al. [46] also demonstrated the
value of methylation markers for cancer detection (not
restricted to hrHPV-positive women). Overall, meth-
ylation markers disclosed 63% and 71% sensitivity
and 76% and 75% specificity, for CIN2+and CIN3+,
respectively [46]. These results emphasize the ben-
efit of using methylation markers for cervical cancer
screening.

Conclusions

In conclusion, this systematic review and meta-analysis
confirmed that DNA methylation-based markers con-
stitute a promising tool for hrHPV-positive women in
cervical cancer screening programs as its higher specific-
ity complements the high sensitivity of hrHPV testing.
In addition to decreased overdiagnosis and consequent
overtreatment, increasing quality of life and reducing
healthcare costs, this strategy may also contribute to
decrease pressure upon colposcopy units, improving sus-
tainability and waiting times. Cervical cancer screening
program evolution over the decades has been constant,
in search of the optimal balance between effectiveness
and reliability. Methylation markers may well be the next
advancement, improving adhesion, cost-effectiveness,
and quality of life.
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Methods

Study outcomes

Studies which reported DNA methylation according to
cervical lesions or sensitivity and specificity of the DNA
methylation-based assays for detecting the outcome in
the hrHPV-positive women population were included in
this meta-analysis. Additionally, a histological endpoint
of HSIL or higher [CIN2+ or CIN3+, which can include
carcinoma in situ and invasive cervical carcinoma (ICC)]
was required for the study inclusion.

Search strategy and selection process

PubMed, Scopus, and Cochrane databases were searched
for publications until March 31, 2021. No other databases
or gray literature was used. The detailed search strategies
for the three databases are provided as supplementary
material (Additional file 2). All titles and abstracts were
screened by two independent authors (SS and JL). Full-
text copies of the remaining publications were obtained,
and eligibility was assessed by the same two authors. A
third author (BM) solved the discrepancies in publica-
tion eligibility. Each study was identified with an ID code
composed by a letter (corresponding to the publication
year) and a sequential number to facilitate the identifica-
tion of the manuscript by the authors. Missing numbers
in the identification correspond to excluded articles.

Inclusion and exclusion criteria

Since we aimed to evaluate the performance of DNA
methylation-based assays as a triage test in hrHPV-based
primary cervical cancer screening, we only included
studies in which cervical swabs/scrapes from hrHPV-
positive women were used. Studies that only employed
DNA methylation as a primary setting or as triage after
an abnormal cytology result were excluded. Studies that
only compared a few groups of lesions [e.g., CIN1 vs.
ICC] were excluded as they did not mimic the cervical
cancer screening program context. Moreover, studies
that reported solely the DNA methylation percentage
without any estimation for CIN2+4or CIN3+detection
were excluded, as well as those studies reporting DNA
methylation only for one type of hrHPV since the results
could not be applied to all hrHPV-positive women in cer-
vical cancer screening programs. Only original studies
written in Portuguese or English were included.

Data collection

From the final list, a standardized form was developed
for data collection by two independent authors (SS and
JL). Any discrepancies were solved by a third author
(BM). Detailed information about collected variables
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is provided as supplementary material. DNA methyla-
tion single markers and/or combinations of markers
were considered independently when provided. True
positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN) were extracted for both out-
comes (CIN2+and CIN3+). When not clearly reported,
TP, FP, TN, and FN were calculated based on sensitiv-
ity and specificity reported in the corresponding manu-
scripts, following the formulas: sensitivity="TP/total of
cases (TP+FN), and specificity=TN/total of controls
(TN+FP). When a discrepancy was found between
reported and calculated parameters, or when these per-
formance variables could not be calculated, authors were
contacted for clarification. Each study was also classified
according with the used referral population (if a popu-
lation-based selection was performed for sample selec-
tion, representing a screening program context), cohort
(if sample selection was performed based only on hrHPV
status), case—control (if samples selection was based on
the histological outcome), or convenience (if the studies
used a selection of samples from a previous population-
based study).

Statistical analysis

When available, the TP, FP, TN, and FN were extracted
using the predefined cutoff of each study. When multiple
cutoffs from the ROC curves were available, a predefined
70% specificity was chosen for TP, FP, TN, and FN assess-
ment. Estimated pooled sensitivity and specificity were
calculated using a bivariate model in STATA (metandi
and midas). In this approach, sensitivity and specificity
are pooled as joined variables considering any correla-
tion that might exist between the variables through a
random-effect model [47-49]. Moreover, SROC analysis
was performed, and the area under the curve (AUC) was
estimated. Additionally, subgroup analyses were made
for sensitivity and specificity for CIN2+and CIN3+ out-
comes. Univariate meta-regression was performed for
the type of sample (self-collected vs. clinician-collected),
cohort overlap among studies, methylation panel (multi-
ple vs. single gene analysis), and the existence of prede-
fined cutoft for methylation levels.

Since prevalence highly influences biomarker perfor-
mance, PPV and NPV were estimated based on pooled
sensitivity and specificity. A bivariate random-effect
model (predv_r from mada package) was employed using
R software instead of pooled likelihood ratios[50-52].
PPV and NPV values were estimated for prevalence rang-
ing between 5 and 60% for CIN2+and CIN3+ detection
[47, 53].
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Quality assessment

Two authors (SS and JL) assessed the quality of stud-
ies using the QUADAS-2 [54] tool. Discrepancies
were solved by a third author (BM). Bias was assessed
based on: participant selection (population character-
istics, inclusion and exclusion criteria, and proportion
of women with CIN2+/CIN3+included), index test
description (DNA methylation assessment description
and cutoff for methylation positivity), and reference
test (histological confirmation assessment). Additional
file 1: Table S2 depicts the quality assessment for all the
included studies.

This analysis is reported according to the Preferred
Reporting Items of Systematic Reviews and Meta-analy-
sis of Diagnostic Test Accuracy Studies (PRISMA-DTA)
guidelines [55, 56] and the present review was registered
on the PROSPERO database at the Centre of Reviews
and Dissemination, University of York, UK, with the reg-
istration number CRD42022350086 (https://www.crd.
york.ac.uk/PROSPERO/display_record.php?RecordID=
350086).

Abbreviations

ANKRD18CP Ankyrin repeat domain 18C, pseudogene
ASCL1 Achaete-scute family bHLH transcription factor 1
ASC-US Atypical squamous cells of undetermined significance

AUC Area under the curve

CADM1 Cell adhesion molecule 1

CE-IVD Conformité Européene in vitro diagnostic
CIN Cervical intraepithelial neoplasia

DLX 1 Distal-less homeobox 1

EPB41L3 Erythrocyte membrane protein band 4.1 like 3

FN False negatives

FP False positives

hrHPV High-risk human papillomavirus

HSIL High-grade intraepithelial lesions

ICC Invasive cervical carcinoma

[TGA4 Integrin subunit alpha 4

JAM3 Junctional adhesion molecule 3

LHX8 LIM homeobox 8

MAL Mal, T cell differentiation protein

miR124-2 MicroRNA 124-2

NPV Negative predictive values

PAX1 Paired box 1

PPV Positive predictive values

ROC Receiver operating characteristics

RUBCNL Rubicon-like autophagy enhancer

RXFP3 Relaxin family peptide receptor 3

SLIT2 Slit guidance ligand 2

SOX 17 SRY-box transcription factor 17

SOX1 SRY-box transcription factor 1

SROC Summary receiver operating characteristics

ST6GALNACS ST6 N-acetylgalactosaminide alpha-2,6-sialyltrans-
ferase 5

TAFA4 TAFA chemokine-life family member 4

TERT Telomerase reverse transcriptase

N True negatives

TP True positives

ZCAN1 Zinc finger and SCAN domain containing 1

ZNF582 Zinc finger protein 582

ZNF671 Zinc finger protein 671
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