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Clinical Epigenetics

Epigenomic profiling of isolated blood cell 
types reveals highly specific B cell smoking 
signatures and links to disease risk
Xuting Wang1*, Michelle R. Campbell1, Hye‑Youn Cho1, Gary S. Pittman1^, Suzanne N. Martos1 and 
Douglas A. Bell1* 

Abstract 

Background  Tobacco smoking alters the DNA methylation profiles of immune cells which may underpin some of 
the pathogenesis of smoking-associated diseases. To link smoking-driven epigenetic effects in specific immune cell 
types with disease risk, we isolated six leukocyte subtypes, CD14+ monocytes, CD15+ granulocytes, CD19+ B cells, 
CD4+ T cells, CD8+ T cells, and CD56+ natural killer cells, from whole blood of 67 healthy adult smokers and 74 non‑
smokers for epigenome-wide association study (EWAS) using Illumina 450k and EPIC methylation arrays.

Results  Numbers of smoking-associated differentially methylated sites (smCpGs) at genome-wide significance 
(p < 1.2 × 10−7) varied widely across cell types, from 5 smCpGs in CD8+ T cells to 111 smCpGs in CD19+ B cells. We 
found unique smoking effects in each cell type, some of which were not apparent in whole blood. Methylation-based 
deconvolution to estimate B cell subtypes revealed that smokers had 7.2% (p = 0.033) less naïve B cells. Adjusting 
for naïve and memory B cell proportions in EWAS and RNA-seq allowed the identification of genes enriched for B 
cell activation-related cytokine signaling pathways, Th1/Th2 responses, and hematopoietic cancers. Integrating with 
large-scale public datasets, 62 smCpGs were among CpGs associated with health-relevant EWASs. Furthermore, 74 
smCpGs had reproducible methylation quantitative trait loci single nucleotide polymorphisms (SNPs) that were in 
complete linkage disequilibrium with genome-wide association study SNPs, associating with lung function, disease 
risks, and other traits.

Conclusions  We observed blood cell-type-specific smCpGs, a naïve-to-memory shift among B cells, and by integrat‑
ing genome-wide datasets, we identified their potential links to disease risks and health traits.
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Background
Tobacco smoking leads to disease and disability and 
harms nearly every organ of the body. More than 16 mil-
lion Americans are living with a disease caused by smok-
ing (www.​cdc.​gov). Tobacco smoke has pro-inflammatory 
and immunosuppressive effects [1] and is a major envi-
ronmental risk factor for adverse health outcomes includ-
ing lung cancer, chronic obstructive pulmonary disease, 
cardiovascular disease, type 2 diabetes, tuberculosis, 
certain eye diseases, and problems of the immune sys-
tem, including rheumatoid arthritis. At the cellular level, 
tobacco smoke exposure induces DNA damage [2] and 
influences mutation frequency [3–5]. Numerous recent 
epigenome-wide association studies (EWAS) using whole 
blood samples [6–15] have identified repeatable, smok-
ing-associated DNA methylation sites (smCpGs) mapped 
to genes including aryl hydrocarbon receptor repressor 
(AHRR), growth factor independent 1 transcriptional 
repressor (GFI1), alkaline phosphatase, placenta like 
2 (ALPPL2), Flotillin (FLOT1), and G protein-coupled 
receptor 15 (GPR15). However, the relatively small mag-
nitude of methylation changes at any specific locus (usu-
ally < 10%), indicates that only small populations of cells 
in the blood are affected by the exposure.

Blood leukocytes display characteristic transcription, 
chromatin, and DNA methylation patterns associated 
with their immune functions [16]. Smoking is known to 
affect immune cell function [1] and composition [17], 
and epigenetic studies utilizing whole blood may be 
detecting changes in activated immune cell subsets [18, 
19] or in specific leukocyte cell proportions. It is well rec-
ognized that these cell-type proportional changes may 
confound or affect the interpretation of results and use-
ful algorithmic approaches for adjustment for cell-type 
changes have been developed [18, 20–26]. However, an 
adjustment may mask some useful information about the 
immune system, and detailed epigenetic studies assess-
ing exposure effects on DNA methylation in specific cell 
types and relation to disease could help in understanding 
the meaning of whole blood-based EWAS results.

Smoking-related methylation changes in certain cell 
types could indicate different sensitivities to exposure 
and differing modes of action among cell lineages as 
well as potential functional effects that are important 
to cell-type-specific disease etiology or the early detec-
tion of disease. Our previous studies have examined 
smoking-associated methylation effects in purified 
CD14+ monocytes and observed associations with ath-
erosclerosis markers [27] or upregulation of transcrip-
tion via enhancer activation [28]. In a pilot study, we 
examined a limited set of CpGs across four cell types in 
a small group of smokers and observed differences in 
the response to smoking exposure among cell types [29]. 

The current study seeks to extend these observations to 
genome-wide smoking-driven epigenetic effects in six 
isolated blood cell types, utilizing the 12 cell-type adjust-
ment model of Salas et al. [30] to differentiate naïve and 
memory cell types and to relate these to tobacco smoke-
associated disease phenotypes.

We hypothesized that cell-type-specific alteration of 
DNA methylation profiles may underpin some of the 
pathogenesis of tobacco smoke-associated complex dis-
eases by altering the capacity for immunological activa-
tion, differentiation, and other parameters that differ 
among leukocyte cell types. To explore this hypothesis, 
we isolated major cell types and assessed genome-wide 
DNA methylation with Illumina arrays in cell-type DNA 
obtained from adult smokers and nonsmokers. The use of 
the Salas et al. [30] model clearly reveals smoking-asso-
ciated shifts in immune cell subtypes (naïve-to-memory 
transition) that likely drive smoking-altered methyla-
tion and transcription. By integrating smoking cell-type 
EWAS data with those from genetic studies (GWAS) of 
traits, phenotypes and transcription (expression quan-
titative loci, eQTLs, and methylation quantitative trait 
loci, mQTLs) in blood, we identify smCpGs associated 
with GWAS variants for a wide range of complex traits 
including lung function, demonstrating the utility of this 
approach for refining epigenetic association signals.

Results
Smoking impact on DNA methylation differs 
among isolated blood cell types
We isolated six major cell types from whole blood (WB) 
obtained from volunteer adult smokers (n = 67) and 
nonsmokers (n = 74) living in the Raleigh, Durham and 
Chapel Hill, North Carolina region using magnetic beads 
coated with antibodies against surface markers follow-
ing the scheme shown in Additional file  1: Fig. S1 and 
determined genome-wide methylation levels using Illu-
mina 450k and EPIC arrays. We applied a multivariable 
robust linear regression model [31] to adjust for potential 
confounding factors (Additional file 7: Table S1), includ-
ing age, sex, ancestry, body mass index (BMI) and the 
presence of other cell types within a cell-type fraction as 
predicted by deconvolution algorithm [18]. Table  1 lists 
the counts of smoking-associated CpGs (smCpGs) and 
the proportion of CpGs that were specific to that cell 
type at different statistical significance levels, including 
genome-wide (Bonferroni, or BF, p < 1.2 × 10−7), and 5% 
false discovery rate (FDR 5%). Comparing EWAS carried 
out after winsorizing outliers (90% winsorization) in the 
DNA methylation dataset, smCpGs remaining at Bonfer-
roni significance among cell types ranged from 91.8 to 
100% (Additional file 7: Table S2).

http://www.cdc.gov
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At genome-wide (BF) significance, we identified a 
wide range in the number of smCpGs among cell types, 
from the least, 5 loci detected in CD8+ T cells (CD8T), 
to 111 loci in CD19+ B cells (B cells), although both 
CD8T and B cells are less than 10% of total leukocytes 
in normal blood samples (Table 1; Fig. 1A, B). In total, 
we identified 238 smCpGs from 6 cell types at BF cut-
off (Additional file  7: Table  S3), which were investi-
gated thoroughly. When the significance threshold was 
changed from BF to FDR 5%, the number of smCpGs 
in B cells increased about 28-fold (3096 CpGs), while 
the increase in CD8T was only twofold to 10 CpGs 
(Table 1). Thus, smoking had a very different impact on 
DNA methylation across cell types, even among lym-
phocyte subtypes. Examining cell-type-specific CpGs, 
i.e., those that were only detected in a particular cell 
type at a given significance level, we found different 
degrees of specificity, ranging from 20% in CD8T to 82% 
in B cells at BF level (Table 1). At FDR 5%, the numbers 
of cell-type-specific smoking CpGs were increased for 
all cell types. Examining similarities between cell types, 
pairwise comparison of smCpGs detected at BF level 
(Fig.  1C) showed the myeloid cell types, granulocytes 
(Gran) and monocytes (Mono), shared 64% of smCpGs, 
whereas CD8T shared 80% (4/5 CpGs) with natural 
killer cells (NK cells). Only one CpG, cg05575921 in 
the AHRR gene, was common to all cell types at the 
BF level and this CpG is the most replicated smCpG 

in human blood DNA studies [32]. However, the effect 
size (methylation difference, nonsmoker–smoker, 
ΔMeth) and statistical significance levels of cg05575921 
in each cell type were strikingly different, from the 
greatest effect (− 38%, p = 7.5 × 10−38) in Gran, to the 
least (− 4% p = 9.6 × 10−8) in CD8T cells. We examined 
the replication of the 238 cell-type smCpGs against a 
list of 8865 smCpGs identified previously at BF level 
in 10 published EWAS (study size range, n = 253 to 
15,907) on smoking using whole blood samples [13, 33–
40]. At genome-wide significance, 171 of 238 cell-type 
smCpGs (72%) were replicated in the EWAS literature, 
while the highly specific cell-type smCpGs (meaning at 
least 104 p value difference in one cell type relative to all 
other cell types) showed a lower replication rate of 55% 
(Table 1).

Comparing the directional change in methylation 
between smokers and nonsmokers in all cell types, 223 
of 238 cell-type smCpGs (94%) had the same direc-
tional changes in 4 cell types or more; among these, 167 
CpGs (75%) were hypomethylated and 56 (25%) hyper-
methylated in relation to smoking. In Fig.  2A, the top 
4 rows are examples of smCpGs that were FDR signifi-
cant in all cell types with the same directional change. 
However, as shown in Table  1, a large number of BF 
CpGs (54%) were highly specific and significant in only 
one cell type. A sample of the most significant of these 
highly specific smCpGs is displayed in the supervised 

Table 1  Distribution of significant and highly specific smoking-associated CpGs (smCpGs) among blood cell types and replication in 
published epigenome-wide association studies

BF Bonferroni, FDR false discovery rate
a The maximal sample size of any cell type is NS = 71 and SM = 64. DNA amount, or data quality eliminated some samples from analysis. Six subjects only have a WB 
sample, without any cell type
b Highly specific were > 104 p value difference in one cell type relative to all other cell types
c Replication comparison from the following references [13, 33–39]

Cell type
(Sample na)

CpGs at BF
(Percent specific to 
this cell type)

Highly specific 
among BF
(Percent highly 
specific)b

FDR 5%
(Percent specific to 
this cell type)

BF replicatedc Replicated highly 
cell-type-specificb

B cell (CD19+)
(NS = 69, SM = 64)c

111
(82.0%)

80
(72.1%)

3096
(93.4%)

62
(56%)

36
(45%)

Granulocyte (CD15+)
(NS = 67, SM = 63)

96
(42.7%)

26
(27.1%)

986
(74.2%)

84
(88%)

16
(62%)

Monocyte (CD14+)
(NS = 71, SM = 62)

83
(33.7%)

12
(14.5%)

501
(54.1%)

78
(94%)

10
(83%)

Natural killer cell (CD56+)
(NS = 68, SM = 58)

19
(36.8%)

5
(26.3%)

482
(78.8%)

17
(90%)

4
(80%)

CD4T cell (CD4+)
(NS = 67, SM = 60)

12
(66.7%)

5
(41.7%)

45
(62.2%)

12
(100%)

5
(100%)

CD8T cell (CD8+)
(NS = 68, SM = 60)

5
(20.0%)

1
(20%)

10
(30.0%)

4
(80%)

0
(0%)

All cell types 238
(73.9%)

129
(54.2%)

4655
(93.5%)

171
(72%)

71
(55%)
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heatmap (Fig.  2A). The heatmap also displays the sig-
nificance level of these CpGs as assessed in a group 
of whole blood samples examined in this study; many 
showed only marginal (p < 0.05) significance in whole 
blood. In Fig. 2B, the effect size (ΔMeth) for a group of 
highly specific B cell smCpGs in the DOK1-LOXL3 gene 
region is shown across all cell types. The large effect 

size in B cells contrasts with the very small ΔMeth for 
the other cell types and whole blood.

Smoking‑associated methylation changes in whole blood 
are the composite of methylation changes in cell types
We observed that smoking has different impacts on DNA 
methylation among isolated blood cell types. To confirm 
that smoking-associated effects in whole blood are a 
composite of individual cell-type effects measured sepa-
rately, we selected 74 smCpGs that passed BF cutoff in 
whole blood to create composite ΔMeth values. To cre-
ate the composite to compare to whole blood, for each 
cell type the average ΔMeth for each CpG was multiplied 
by the average cell-type proportion, then these six values 
were summed. That is for each CpG:

In Fig.  2C, the ΔMeth_composite of all cell types is 
plotted against the measured ΔMeth for that CpG in the 
whole blood sample; the composites of myeloid and lym-
phoid cell types are also plotted against whole blood. Fig-
ure 2C shows the highly significant correlation (r = 0.98, 
p = 7.2 × 10−55) between the composite ΔMeth values 
and whole blood ΔMeth values at 74 smoking-associated 
CpGs. The slopes for myeloid and lymphoid composites 
provide a view of the relative contribution that these cell-
type groups make toward smoking-induced methylation 
changes in whole blood.

Subtype shift in isolated B cells associated with smoking
A recent method from Salas et  al. [30] used reference 
DNA methylation profiles from 12 leukocytes subtypes 
(neutrophils, eosinophils, basophils, monocytes, naïve 
and memory B cells, naïve and memory CD4 and CD8 T 
cells, natural killer, and CD4 T regulatory cells) to decon-
volute the relative abundance of these subtypes in whole 
blood. We used this model to detect smoking-associ-
ated subtype shifts (especially from naïve to memory) 
within each isolated cell type. Table  2 lists the cell-type 
frequency averages in smokers and nonsmokers and p 
values for differences after adjusting for age, sex, ances-
try, and BMI. CD4T cells and CD8T cells isolated from 
smokers displayed a trend, shifting from naïve to mem-
ory, while the shift toward memory within the isolated 
B cells was significant (nonsmokers, naive B cells 60.0% 
of total CD19+ B cells; smokers, naïve B cells 52.8%; 
padj = 0.033).

To further assess if this subtype shift in B cells associ-
ated with smoking was a general feature in whole blood, 

△M_composite = △M_B cell× 0.073+△M_Gran

× 0.55+△M_Mono× 0.037

+△M_NK× 0.060+△M_CD4T

× 0.20+△M_CD8T× 0.087

Fig. 1  Blood cell types and detected smoking-associated CpGs 
(smCpGs). A The estimated average percentage of cell types in whole 
blood samples using Houseman model [18]. B Counts of smCpGs 
and cell-type-specific smCpGs observed at Bonferroni (BF) statistical 
significance among blood cell types. C Percent (counts) of overlap 
of BF significant smCpGs among blood cell types. Darker shading 
indicates greater overlap
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we re-analyzed our previously published smoking EWAS 
dataset (GSE85210) [40] to estimate B cell subtypes in 
whole blood from 253 individuals (172 smokers and 81 

nonsmokers). We confirmed that smoking was associ-
ated with a significant shift from naïve B cells to memory 
B cells (nonsmokers, naïve B cells were 79.2% of total 

Fig. 2  Blood cell types display unique smoking-associated methylation effects. A Heatmap displays significance level of highly cell-type-specific 
smCpGs across six cell types and whole blood. B Differential methylation level (ΔMethylation) across six cell types and whole blood shown for 
five B cell-specific smCpGs in the DOK1-LOXL3 gene region. C Comparison of measured differential methylation of 74 whole blood smCpGs (BF 
significance) with estimated ΔMeth of composite whole blood, myeloid and lymphoid components
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B cells and decreased to 66.9% of total B cells in smok-
ers; a loss of -12.3%, p.adj = 9.3 × 10−7; Additional file  7: 
Table S4) and these changes were significant after adjust-
ing for age, sex and ancestry. Furthermore, using meth-
ylation levels of AHRR cg05575921 as a quantitative 
biomarker of smoking exposure we observed a significant 
dose–response relationship (padj = 1.84 × 10−6) between 
smoking and naïve B cell subtype proportion (Addi-
tional file 2: Fig. S2). The original whole blood analysis of 
Su et al. [40] was adjusted for 6 cell types and identified 
738 smCpGs at BF level. Following adjustment for 12 cell 
types, the number drops to 55, suggesting that the naïve-
to-memory shifts in T and B cells may be important fac-
tors in other smoking studies.

Functional annotation of smoking‑associated CpGs
We next sought to investigate the biological relevance 
of the identified smCpGs by performing functional 
annotation and ontology enrichment analysis on 
smCpGs observed at FDR 1% (9 genes to 702 genes 
per cell type). Using eForge2.0 [41], we found distinc-
tive enrichment of cell-type-specific experimentally 
identified regulatory components (Fig.  3A) with tran-
scriptional histone marks, H3K4me1 and H3K4me3, 
and enhancer chromatin states showing the great-
est enrichment in B cells. Using Ingenuity Pathway 
Analysis  (IPA), we observed strong cell-type-specific 
enrichment of canonical pathways with B cells show-
ing the greatest enrichment (Fig.  3B; Additional file  7: 
Table  S6). Enriched canonical pathways were related 

Table 2  Estimated proportion of leukocyte subtypes within isolated cell-type fractions from nonsmokers and smokers

Method of Salas et al. [30] used to estimate subtypes within isolated cell types

*The p values are from linear regression of subtype proportion on smoking status only

**The p-adj values are linear regression p values after adjusting age, ancestry, sex and body mass index

Cell type Subtype Nonsmokers
Percent within the 
isolated fraction

Smokers
Percent within the 
isolated fraction

Difference p* p-adj**

(Mean ± S.E.M.) (Mean ± S.E.M.) (Mean) (%)

B Cell
(CD19+)

Naïve B 60.0% ± 1.9% 52.8% ± 2.2%  − 7.20 0.014 0.033

Memory B 31.3% ± 1.8% 36.0% ± 2.2% 4.70 0.096 0.12

Granulocyte
(CD15+)

Neutrophils 95.0% ± 0.3% 93.6% ± 0.6%  − 1.40 0.028 0.054

Basophils 0.1% ± 0.0% 0.2% ± 0.1% 0.10 0.134 0.348

Eosinophils 0.0% ± 0.0% 0.0% ± 0.0% 0.00 0.334 0.26

Monocyte
(CD14+)

Monocytes 93.8% ± 0.5% 93.1% ± 0.4%  − 0.60 0.332 0.684

NK Cell (CD56+) Natural killer 49.4% ± 1.7% 46.5% ± 1.8%  − 2.90 0.244 0.231

CD4T Cell (CD4+) Naïve CD4T 35.1% ± 2.0% 30.2% ± 2.0%  − 4.90 0.09 0.413

Memory CD4T 49.2% ± 1.8% 52.1% ± 1.7% 2.90 0.253 0.739

Regulatory T (Treg) 5.3% ± 0.4% 5.6% ± 0.5% 0.30 0.641 0.544

CD8T Cell (CD8+) Naïve CD8T 37.6% ± 2.2% 31.3% ± 2.7%  − 6.40 0.07 0.319

Memory CD8T 45.7% ± 2.0% 48.9% ± 2.4% 3.20 0.31 0.648

(See figure on next page.)
Fig. 3  Enriched regulatory elements and pathways of smoking-associated CpGs (smCpGs). A cell-type-specific regulatory components. B canonical 
pathways of the genes annotated to smCpGs in each blood cell type. The color gradient indicts the significance (− Log10p value) and the size 
of dots indicts the number of genes involved. Detailed pathways and involved genes for B cell smCpGs are listed in Additional file 7: Table S6. 
*Indicates pathways of differentially methylated region-annotated genes involved in naïve-to-memory B cell differentiation. C Volcano plot of 
differentially expressed genes (DEGs) in B cells depicts negative Log10-transformed p values against Log2-transformed fold changes of DEGs in 
smoker B cells at different significance levels. Open circles indicate DEGs involved in naive B cell activation to be differentiated into memory cells. D 
Dot plot depicts the enriched pathways of blood B cell transcriptomics in smokers (n = 519 at p < 0.01), those remaining after adjustment (n = 419, p 
< 0.01) and those involved in naïve-to-memory B cell differentiation in smokers (n = 313, p < 0.01). Differentially expressed genes (DEGs) determined 
by RNA sequencing analysis (RNA-seq) with adjustment for nine covariates (age, sex, race, body mass index, CD4T %, CD8T %, NK %, Monocyte 
%, Granulocyte %) or ten (9 covariates + Naïve B cell %). Selected top-ranked canonical pathways are identified by IPA. Dot size indicts the –
Log10 adjusted p values of the pathways. Dot color presents activation z-score trend. Detailed pathways and involved genes listed in Table S10. E 
Common 36 genes between RNA-seq (p < 0.01) and epigenome-wide association study (false discovery rate 1%) analyses of B cells in smokers
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to immune response (Th1 and Th2 activation, signal-
ing by interleukins IL-7, IL-9, IL-10, IL-15, IL-22, and 
interferon, and transcriptional regulation via transcrip-
tion factors (AHR), peroxisome proliferator-activated 
receptor (PPAR) and octamer-binding transcription 
factor 4 (OCT-4), signaling by JAK tyrosine kinases 

(JAK1, 2, 3), signaling by growth factors including epi-
dermal growth factor (EGF), platelet-derived growth 
factor (PDGF), and hepatocyte growth factor (HGF). 
B cell epigenome enrichment in the immune signaling 
pathway supported a shift of naïve B cells to memory B 
cells in smokers.

Fig. 3  (See legend on previous page.)
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To further explore the shift from naïve-to-memory 
B cells and to identify smCpGs associated with the 
shift, we carried out the B cell smoking EWAS both 
with and without adjustment for the estimated propor-
tions of naïve and memory B cells based on the Salas 
et  al. model [30]. This produced a dramatic change in 
the numbers of smCpGs and genes (from 606 smCpGs 
in 702 genes without adjustment to 163 CpGs in 173 
genes with naïve and memory B cells adjustment) at 
FDR 1% (Additional file  7: Table  S5). Smoking-related 
genes (and smCpGs) that remained in the list following 
adjustment included many known smCpGs frequently 
identified in blood (e.g., CpGs in AHRR, ALPPL2, 
GPR15, GFI1, F2RL3) and most of the highly B cell-
specific genes shown in Fig.  2A, B. Among the genes 
associated with naïve-to-memory shift (486 CpGs/585 
genes) were many related to cytokine signaling path-
ways for B cell functions and activation, Th1/Th2 acti-
vation and hematopoietic cancers (Additional file  7: 
Table S7).

Smoking‑associated transcriptional effects in B cells, 
subtype shifts and functional annotation
To further explore transcriptional changes associated 
with smoking and the shift from naïve B cell to memory B 
cells we carried out bulk RNA-seq on RNA from isolated 
peripheral blood B cells, a mixture of naïve and memory 
B cells, in 17 nonsmokers and 18 smokers. We analyzed 
differential expression using DESeq2 implemented in 
Partek Flow (Chesterfield, MO) adjusting for 9 covari-
ates (age, sex, race, BMI, CD4T%, CD8T%, NK%, Gran%, 
Mono%) in differentially expressed gene (DEG) Analysis 
1 and for 10 covariates in DEG Analysis 2 adding adjust-
ment for naïve B cell proportions.

DEG Analysis 1 revealed 83 DEGs at FDR < 5% (Table 3) 
and 519 DEGs at p < 0.01 (Additional file  7: Table  S8) 
between smokers and nonsmokers. The volcano plot 
(Fig. 3C) and supervised heatmap (Additional file 3: Fig. 
S3) display the significant DEGs between smokers and 
nonsmokers. DEG Analysis 2 adjusted for naïve B pro-
portion and revealed genes strongly associated with 
smoking in B cells (Additional file 7: Table S9; 31 genes 
at FDR 5%; 419 genes at p < 0.01) independent of cell-type 
shifts. These 31 genes (FDR 5%) remaining at FDR signifi-
cance are displayed as solid red dots in the volcano plot 
and include several known to be associated with smoking 
(e.g., GPR15; GPR55, F2RL3). We observed that a large 
number of genes were affected by the naïve adjustment 
(i.e., they lost significance, open circles in Fig.  3C) and 
this suggests they may have a role in naïve-to-memory 
B cell differentiation in smokers (313 out of 519 DEGs at 
p < 0.01, Additional file 7: Table S8). Importantly, many of 

the pathways of these 313 DEGs altered by naïve adjust-
ment are related to B cell functions involved in differen-
tiation to memory subtype (Additional file 7: Table S10; 
“Naïve-Mem” column of Fig.  3D). More specifically, 
pathways included B cell homing (e.g., GPR15, ICAM1), 
activation and class switching recombination (e.g., CCL4, 
AICDA, RARA​, PARP3, PIK3R6, VAV3), memory cell 
gene expression (e.g., TRERF1, MIR181A1HG, MSC-
AS1), and antibody-mediated humoral immunity (e.g., 
IGHE, CCL4, ICAM1, CD226).

Comparison of smoking‑associated B cell epigenome 
and transcriptome
We observed 36 genes in common between EWAS 
smCpG-annotated genes (FDR 1%) and smoking DEGs 
(p < 0.01) identified by RNA-seq (Fig.  3E; Additional 
file 7: Table S11). Most of these 36 genes show an inverse 
relationship between methylation and gene expression 
change suggesting epigenetic regulation of their gene 
expression. Among this group of genes, at least 15 (e.g., 
CLEC4A, MSC-AS1, TRAF3) are likely to be involved in 
naïve-to-memory differentiation (Additional file  4: Fig. 
S4). IPA indicated by this included early B cell develop-
ment (e.g., IL-7 and BAFF signaling), regulatory and 
effector B cell functions (e.g., JAK/STAT, GM-CSF, 
IL-10, and IL-15 signaling), as well as migration to ger-
minal centers (e.g., GPR and ILK signaling), activation 
and antigen presentation (e.g., PI3K and B cell receptor 
signaling). Furthermore, among this group were genes 
and pathways involved in B cell differentiation such as 
somatic hypermutation and class switching recombina-
tion (e.g., IL-9 and CD40 signaling), clonal expansion and 
fate decision (e.g., AhR and APRIL-mediated signaling), 
memory cell marker (CD27) signaling, immunoglobulin 
E allergic response (e.g., IL-9 signaling), and plasma cell 
functions and humoral immunity (e.g., RAR activation, 
IL-2 and NK cell signaling) (Additional file  4: Fig. S4). 
Overall, these epigenetic/transcriptomic changes support 
the observation of B cell subtype shift in smokers.

SmCpGs are enriched among blood EWAS CpGs associated 
with human health
We performed Gene Set Enrichment Analysis (GSEA) 
[42] to test if cell-type smCpGs were overrepresented 
among published blood EWAS CpGs associated with 
various diseases and health-related phenotypes at the BF 
level. To this end, we retrieved CpG lists of blood EWAS 
from the EWAS catalog (1593 studies, [43]), the EWAS 
Atlas (202 studies, [44]), and our group curated 80 stud-
ies not in the catalog identified in the PUBMED database. 
Then, using the 238 cell-type smCpGs as the pre-ranked 
gene set and 1875 sets of CpGs curated from the 
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Table 3  Representative peripheral blood B cell genes differentially expressed in smokers

Differentially expressed genes (DEGs) determined by DESeq analysis between smokers (n = 18) and nonsmokers (n = 17) with adjustment for 9 covariates (age, sex, 
race, body mass index, CD4+T%, CD8+T%, natural killer cell%, monocyte%, granulocyte%)

Full DEG list (n = 519 at p < 0.01) including 83 genes at false discovery rate (FDR) < 5% in Additional file 7: Table S8

Gene Description FDR FC Functions and ontologies

GPR15 G protein-coupled receptor 15 1.35E−34 12.20 Anti-inflammatory, chronic smoking biomarker

HOMER3 Homer scaffold protein 3 2.69 E−11 2.51 Negative regulation of T-cell activation, NFAT inhibition

GPR55 G protein-coupled receptor 55 5.52 E−10 2.19 Cannabinoid receptor, nicotine use disorder

MGAT3 Beta-1,4-mannosyl-glycoprotein 4-beta-N-acetylglucosami‑
nyltransferase

6.90 E−06 1.83 Glycoprotein oligosaccharide biosynthesis, N-glycosylation

ARHGAP6 Rho GTPase activating protein 6 9.08 E−05 2.22 Actin cytoskeleton, cell morphology

ETV7 ETS variant transcription factor 7 1.37 E−03 2.44 Transcriptional repressor

ITGAL Integrin subunit alpha L 1.37 E−03 1.28 ICAM receptor, leukocyte adhesion and transmigration, lym‑
phopoiesis, lymphocyte-mediated cytotoxicity

NCALD Neurocalcin delta 1.39 E−03 3.13 Calcium ion binding, cytosolic neuronal calcium sensor

STEAP3 STEAP3 metalloreductase 1.39 E−03 1.79 Erythrocyte iron homeostasis

HFE Homeostatic iron regulator 1.80 E−03 1.58 Iron homeostasis, homology with MHC class I

FOXP1 Forkhead box P1 3.11 E−03 − 1.26 Transcriptional regulator, B cell differentiation

AK8 Adenylate kinase 8 6.26 E−03 2.44 Transfer terminal phosphate group to nucleoside

NFE2L3 NFE2 like bZIP transcription factor 3 6.26 E−03 1.60 Erythrocyte-specific globin gene expression, lymphoma

MFN1 mitofusin 1 6.39 E−03 − 1.25 Mitochondrial clustering and fusion

AICDA Activation induced cytidine deaminase 7.10 E−03 2.22 B cell somatic hypermutation, gene conversion, and class-
switch recombination

CPAMD8 C3 and PZP like alpha-2-macroglobulin domain containing 
8

7.10 E−03 2.33 Complement, innate immunity

SLC46A1 Solute carrier family 46 member 1 7.10 E−03 1.38 Proton-coupled folate transporter

TRERF1 Transcriptional regulating factor 1 7.87 E−03 1.69 Transcriptional activator of CYP11A1

MYH10 Myosin heavy chain 10 1.22 E−02 − 2.09 B cell development, proliferation, and antibody response

IGLC7 Immunoglobulin lambda constant 7 1.23 E−02 2.18 Immunoglobulin light chain production

L1CAM L1 cell adhesion molecule 1.23 E−02 1.50 Neuronal migration and axonal growth, brain development

RARA​ Retinoic acid receptor alpha 1.32 E−02 1.31 B cell growth and class-switch, T cell immunity

TRPS1 Transcriptional repressor GATA binding 1 1.32 E−02 − 1.28 Cell cycle, chondrocyte proliferation, breast cancer marker

BBC3 BCL2 binding component 3 1.57 E−02 1.61 Apoptosis, regulation of memory B cell survival

MAPK11 Mitogen-activated protein kinase 11 1.66 E−−02 1.78 MAPK signal transducer, inflammation, T cell immunity

CD82 CD82 molecule 1.75 E−02 1.25 CD4/CD8 associated, TCR/CD3 pathway costimulation

MTARC2 Mitochondrial amidoxime reducing component 2 1.83 E−02 1.68 N-oxygenated molecule reduction, drug metabolism

BMF* Bcl2 modifying factor 2.20 E−02 1.38 Apoptosis, prevent autoimmunity, B cell homeostasis

CCR10 C–C motif chemokine receptor 9 2.92 E−02 2.59 Homing and migration of B cells, CCL27 receptor

ABCB4* ATP binding cassette subfamily B member 4 3.00 E−02 − 1.33 Biliary lipid secretion, B cell adaptive immune response

MYL9* Myosin light chain 9 3.40 E−02 1.95 T cell CD69 ligand, lung inflammatory immune response

TICAM1 Toll like receptor adaptor molecule 1 3.41 E−02 1.29 TLR adaptor, innate immunity against pathogens, anti-viral

ARHGAP32* Rho GTPase activating protein 24 3.65 E−02 − 1.54 Neuronal cell differentiation

RARG​ Retinoic acid receptor gamma 3.65 E−02 1.33 B cell growth and class-switch, T cell immunity

MAPK12 Mitogen-activated protein kinase 12 4.57 E−02 2.13 MAPK signal transducer, inflammation, muscle growth,

CD226* CD226 molecule 4.62 E−02 1.69 Cytotoxicity, T cell proliferation, autoimmune diseases

PARP3* Poly(ADP-ribose) polymerase family member 3 4.71 E−02 1.28 DNA damage repair, regulation of class switch recombination

GPR132 G protein-coupled receptor 15 4.86 E−02 1.26 Oxidized free fatty acid receptor, mitosis, hematopoiesis

ITGA3* Integrin subunit alpha 3 5.61 E−02 1.55 Matrix degradation, endothelial cell migration

CCR9* C–C motif chemokine receptor 10 8.03 E−02 − 2.29 T cell selection and migration, HIV-1 infection. CCL25 receptor

COL18A1* Collagen type XVIII alpha 1 chain 1.38 E−01 1.86 Extracellular matrix, MAPK signaling, angiogenesis inhibition

IGHE* Immunoglobulin heavy constant epsilon 1.66 E−01 2.32 IgE heavy chain constant region production

VAV3* Vav guanine nucleotide exchange factor 3 1.68 E−01 − 1.22 Angiogenesis, B cell receptor activation and development

CCL4* C–C motif chemokine ligand 4 2.15 E−01 − 2.31 B cell receptor pathway activation biomarker, CCR5 ligand
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published EWAS in human blood as the reference gene 
sets, we found smCpGs were overrepresented among 16 
EWAS CpG sets associated with human health (Fig. 4A). 

It is noteworthy that all of these 16 EWAS adjusted for 
“smoking” as a covariate although there may be residual 
confounding. The most significant CpG set was from 

FC fold change in smokers compared to nonsmokers

*Genes involved in naïve B cell activation to be differentiated to memory cells (determined after adjustment with naïve B cell %)

Table 3  (continued)

Fig. 4  SmCpGs are enriched among blood epigenome-wide association study (EWAS) CpGs associated with human health. A Result of pre-ranked 
Gene Set Enrichment Analysis (GSEA) testing if smoking-CpGs were enriched among blood EWAS CpGs that associated with various health 
outcomes. All FDR q value < 0.003. B Distribution among cell types of smoking-CpGs associated with health outcomes
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a “lung function” EWAS, which overlaps 35 cell-type 
smCpGs, with a normalized enrichment score (NES) 5.03 
and a p-value (Fisher Exact) 8.8 × 10−88. In total, 62 cell-
type smCpGs were also identified as EWAS CpGs related 
to human health. The upper panel of Fig.  4B displays 
the associated phenotypes (green blocks) and the lower 
panel provides the distribution of these smCpGs across 
cell types (blue blocks). However, we observed that the 
majority of the smCpGs (39 CpGs, 63%) identified in 
this enrichment were not cell-type-specific and most (54 
CpGs, 87%) were significant in myeloid cells (monocytes 
and/or granulocytes).

SmCpGs are linked to genetic variation associated 
with human diseases and health outcomes
Whether smoking-associated altered DNA methyla-
tion has any causal effect on human phenotypes has not 
been thoroughly evaluated. We performed an integra-
tive analysis that uses data from multi-omics studies in 
large human populations to functionally link smCpGs 
to genetic variation associated with human phenotypes. 
The workflow is outlined in Additional file 5: Fig. S5. We 
first identified mQTLs that could serve as proxies for 
smCpG sites identified in this study. For this, we utilized 
single-nucleotide polymorphism (SNPs) associated with 
methylation of CpG sites in peripheral blood measured 
in four independent large studies on European ancestry 
participants: the Biobank-Based Integrative Omics Stud-
ies (BIOS, n = 3841) [45], the Framingham Heart Study 
(FHS, n = 4170) [46], a meta-analysis of the Lothian Birth 
Cohorts and the Brisbane Systems Genetics Study (LBC_
BSGS, n = 1980) [47], and UK Household Longitudinal 
study (UKHLS, n = 1111) [48]. After filtering mQTLs 
(with p value < 2 × 10−11, distance of CpG to SNP < 10 kb, 
and replicated in two or more studies), we were able to 
proxy 137 smoking CpGs by using 2709 mQTL SNPs 
(Additional file 7: Table S12). To determine if these 2709 
mQTL proxy SNPs were associated with GWAS pheno-
types, we directly compared them with GWAS results 
and examined if they were in complete linkage disequi-
librium (LD) with GWAS SNPs (~ 130,000 SNPs with p 
value < 5 × 10−8). We found 74 smCpGs linked with 579 
mQTL SNPs that were either GWAS SNPs or in com-
plete linkage disequilibrium (LD)  with GWAS SNPs, 
which are associated with 4 categories of human pheno-
types including lung function, disease risk, blood traits, 
and other traits (Additional file 7: Table S13).

Tracing the cell-type origin of these smCpGs (Fig. 5A), 
we found lung function traits (blue ribbon) mainly linked 
to myeloid cells (Gran and Mono); but disease risk (red 
ribbon), blood traits (green ribbon) and all other traits 
(gray ribbon) were linked to both B cells and myeloid 
cells (Fig.  5A; Additional file  7: Table  S14). There were 

only very small number of smCpGs from NK or T cells 
linked to disease risk or phenotypes. We further visual-
ized the connection of these smCpGs to GWAS disease 
categories grouped by the anatomical system (Fig.  5B; 
Additional file  7: Table  S15). Among disease categories, 
“immune” had the most CpG-disease links (24 CpGs, 
red ribbon), which mainly originated from Gran, Mono 
and B cells, with a few from NK cells. Diseases in this 
category include allergy, asthma, ankylosing spondylitis, 
Crohn’s disease, eczema, multiple sclerosis, osteoarthri-
tis, psoriasis, psoriatic arthritis, sclerosing cholangitis, 
and ulcerative colitis. Similarly, Gran, Mono and B cells 
specific smCpGs were linked with cardiovascular dis-
eases, including hypertension, intracerebral hemorrhage, 
non-lobar intracerebral hemorrhage, ischemic stroke and 
stroke.

Integrating smCpGs with omics datasets
To further probe functional relationships, we utilized 
publicly available omics datasets generated from whole 
blood samples. We tested the association of smCpGs 
methylation levels with mRNA levels of nearby genes 
in cis (CpG position within a range from the transcrip-
tion start site (TSS) − 10 kb to transcription ending site 
(TES) + 10  kb), termed as expression quantitative trait 
methylation (eQTM) analysis. After searching eQTM 
datasets generated from peripheral blood of BIOS sam-
ples (n = 3841) [45] and FHS samples (n = 4170) [49], 
we found 40 smCpGs associated in cis with mRNA lev-
els at p < 1.0 × 10−5 (Additional file 7: Table S16, Column 
“eQTM”). Then we asked whether mQTL SNPs were 
eQTL SNPs that were associated in cis with mRNA levels 
(distance of CpG to SNP < 10 kb and CpG position within 
a range from TSS − 10 kb to TES + 10 kb). After searching 
4 peripheral blood eQTL datasets (BIOS [45], FHS [46], 
CAGE [50], and eQTLGen [51]), we found 121 smCpGs 
(Additional file  7: Table  S16, Column “eQTL”) that had 
2,054 mQTL SNPs that were also cis-eQTL SNPs with 
p < 1 × 10−5.

We identified 36 smCpGs (Additional file 7: Table S16) 
which have significant signals in at least 4 omics data-
sets. Six smCpGs have significant signals across all 
the omics datasets (Additional file  6: Fig. S6), includ-
ing cg03636183 (F2RL3), cg14753356 and cg15342087 
(IER3), cg01971407 (IFITM1), cg03707168 (PPP1R15A), 
and cg00310412 (SEMA7A). The omics findings sug-
gest a high priority for follow-up investigation of these 
smCpGs.

An illustrative example of potential functional and 
mechanistic connections across these omics end-
points on the smCpG cg03707168 is shown in Fig. 6A. 
It maps in exon 2 of protein phosphatase 1 regula-
tory subunit 15A gene (PPP1R15A, also referred to as 
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Fig. 5  Comparison analyses of smoking CpGs with public data sets. A Cell-type-specific smoking CpGs were linked to genome-wide association 
study (GWAS) single nucleotide polymorphisms (SNPs) that associated with lung function, diseases, blood phenotypes and other traits. B 
Cell-type-specific smoking CpGs linked to disease categories grouped by anatomical system
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GADD34, Fig.  6A), which is an activating transcrip-
tion factor 4 (ATF4)-target gene known to play a role 
in endoplasmic reticulum stress-induced cell death, 
and we previously reported it as a CD14+ monocyte-
specific smCpG-annotated gene in atherosclerosis 
patients [28]. In omics datasets, its methylation level 

(mQTL) is associated with PPP1R15A mRNA level in 
BIOS study (i.e., a QTM with p = 1.4 × 10−4); it is also 
associated with SNPs (rs4801778, rs595982, rs4347731) 
which have been determined to be eQTL SNPs. Fur-
thermore, this smCpG is also an EWAS CpG associated 
with lung function, all-cause mortality, and educational 

Fig. 6  Examples of mechanistic linkage of epigenome-wide association study (EWAS) smCpG with disease risk. A SmCpG (cg03707168, red bar) in 
PPP1R15A exon 2 associated with COVID-19 infection and reticulocyte count via single nucleotide polymorphism (SNP) rs4801778, and other traits 
via rs595982 and rs4347731. B The B cell-specific smCpG in NFKBIA gene (cg04545963, red bar) linked via mQTL and eQTL SNPs (positions displayed 
by black bars) to GWAS of lung function, asthma, and several other disease risk and traits
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attainment (see Fig.  4B), all traits that are associated 
with smoking history. The relationship between methyl-
ation, gene expression and genotype provides a possible 
molecular mechanism linking this smCpG to smoking-
related GWAS findings associating the gene to a variety 
of blood traits including mean corpuscular hemoglobin 
concentration, mean corpuscular volume, red blood 
cell distribution width, and reticulocyte count, and also 
susceptibility to COVID-19 infection.

Another important example includes a B cell-specific 
smCpG (cg04545963) in NF-κB inhibitor alpha gene 
(NFKBIA). cg04545963 has methylation levels associ-
ated with NFKBIA mRNA abundance (p = 5.7 × 10−21) in 
FHS samples (n = 4170) and genotypes of 4 nearby SNPs 
(Fig.  6B), which are also associated with gene expres-
sion levels (i.e., eQTLs). Intersecting these SNPs with 
GWAS studies links them to a large number of pheno-
types and diseases including lung function (FEV1/FVC 
ratio), asthma, eczema, cardiovascular disease, systolic 
blood pressure, eosinophil count, and lymphocyte count 
(Fig. 6B).

Discussion
Previously, as a pilot study, we identified distinct epige-
netic effects of tobacco smoking among four leukocyte 
subtypes (CD2+ T cells, CD19+ B cells, CD14+ mono-
cytes, and CD15+ granulocytes isolated with antibody-
coated magnetic beads) in a small group of 10 smokers 
and 10 nonsmokers [40]. RRBS was also used to fine-map 
differential methylation in CD14+ monocytes [28]. The 
present study extends this work to additional cell types 
in a larger group of healthy adult smokers (n = 67) and 
nonsmokers (n = 74) to allow EWAS identification of cell-
type-specific smoking effects.

We observed B lymphocytes display a large number 
of highly cell-type-specific alterations, suggesting pos-
sible differences in the mechanisms driving these events 
in lymphocyte lineages. In contrast, T cell subsets show 
very limited smoking-associated methylation effects. 
Both CD4+ and CD8+ T cells mature in the thymus and 
display a relatively long lifetime while remaining largely 
quiescent and proliferating only in response to antigenic 
stimulation. The small number of epigenetic alterations 
in T cells suggests that quiescent T cells may be pro-
tected from encountering the toxic agents in tobacco 
smoke. B cells follow a different trajectory, developing 
from common lymphoid progenitors in the bone marrow 
and maturing in lymph nodes and the spleen [52]. The 
large number of highly B cell-specific smCpGs suggests 
that smoking targets B cells after they have committed to 
the B cell lineage and reside in secondary lymphoid tis-
sues or bone marrow.

As expected, a composite measure using methylation 
values from individual cell types (effect size by cell-type 
proportion) was highly correlated with measurements in 
whole blood (Fig. 2C). Myeloid lineage cell types (mono-
cytes and granulocytes composing 40–70% of blood leu-
kocytes) generally displayed the greatest magnitude and 
significance of smoking-associated methylation differ-
ences among blood cell types and that the response was 
similar to that detected in whole blood. The reason for 
the greater myeloid difference is not completely appar-
ent. While some CpGs such as AHRR cg05575921 are 
strongly affected in all lineages, effects are much greater 
in myeloid lineages relative to lymphoid cell types. Reyn-
olds et al. [27] showed that AHRR cg05575921 was highly 
significantly altered in the CD14+ monocytes of former 
smokers who quit > 20  years previously. These observa-
tions strongly suggest a common mechanism across cell 
lineages for some loci like AHRR that involves effects 
in hematopoietic stem and progenitor cells (HSPCs) in 
the bone marrow. The presence of AHRR demethylation 
in a population of bone marrow HSPCs would explain 
why these smoking-associated methylation effects per-
sist for a very long time in former smokers and why they 
are observed in all lineages. It is possible that both loca-
tion and proliferation are important in cell-type effects. 
Myeloid cells are constantly proliferating from progeni-
tors in the bone marrow and have lifetimes measured in 
hours, the large proportion of myeloid cells affected may 
indicate that as myeloid progenitors differentiate, they 
may be exposed continuously to the agents in smoke that 
drive methylation alterations.

Most EWAS studies use the 6 cell-type Houseman 
model to adjust for potential cell-type shifts and we show 
this model is not sufficient to adjust for naïve-to-mem-
ory shifts. Using the 12 cell-type proportion estimator of 
Salas et al. [30] we observed that within the isolated B cell 
fraction (Table 2), smokers displayed a significant reduc-
tion in naïve B cells and an increase in memory B cells, 
and we confirm this in a larger whole blood smoking 
EWAS (Additional file 2: Fig. S2). Comparing regression 
analyses that were unadjusted or adjusted for naïve and 
memory proportions indicated that the majority of B cell 
smCpGs were in fact related to this shift. Interestingly 
most of the highly B cell-specific smCpGs (Fig.  2A, B) 
remained markedly significant even after adjustment for 
proportions of naïve and memory B cells, suggesting the 
highly specific smCpGs may be altered after B cell com-
mitment but prior to B cell activation, somatic hypermu-
tation, proliferation and memory B formation.

It is unclear if the mechanism driving the shift from 
naïve-to-memory B in smokers is directly due to tobacco 
smoke components or is an adaptive immune response 
resulting from the higher frequency of respiratory 
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infections in smokers. These possibilities could be 
related. In tobacco smoke, the mixture of polycyclic aro-
matic hydrocarbons, reactive oxidants, particles, and 
other toxic components is known to be immunosuppres-
sive, affecting immune system function. This impaired 
system may be more susceptible to respiratory infection 
and the adaptive response drives the naïve-to-memory 
shift. Pathway analysis supports this possible interac-
tion, we see enrichment of type 1 interferons (e.g., IFN-
α/β) signaling that might be associated with respiratory 
infections in smokers. IFN signaling enhances the anti-
viral function of adaptive immune cells through the pro-
motion of antibody production by B cells and cytotoxic 
responses by T and NK cells [53].

B-cell-specific smCpGs in NFKBIA, which encodes the 
cytoplasmic inhibitor interrupting nuclear translocation 
of NF-κB (IκB), were linked to mQTLs with numerous 
GWAS traits (Fig.  6B) and also pathways such as per-
oxisome proliferator-activated receptor (PPAR), IL-10 
signaling and reactive oxygen species production in 
macrophages. NF-κB regulates immune and inflamma-
tory responses against diverse cellular stimuli such as 
stress, oxidants, and infection, and incorrect regulation 
of NF-κB signaling has been linked to cancer and vari-
ous inflammatory and infectious disorders [54]. Defective 
IκB in mice led to improper B cell maturation, antibody 
production, and secondary lymphoid tissue development 
[55]. Pathway analyses of B cell smCpG-associated genes 
indicated that tobacco smoke may also influence cytokine 
signaling in B lymphocytes to skew or impair T cell-
dependent immune responses as well as T cell-independ-
ent B cell functions (Additional file 4: Fig. S4). Among the 
affected cytokine signaling genes, IL-7 and IL-4 regulate 
early B cell lymphopoiesis and pro-B cell survival [56, 57]. 
Key attributes of increased memory cell subpopulation 
(i.e., naïve-to-memory cell differentiation) in smokers 
may enrich signaling through CD40, IL-9, and IL-4 for 
immunoglobulin (Ig) class switch recombination and Ig 
production in activated B cells and through RAR, IL-10, 
and IL-21 for clonal expansion and fate decision [58–61].

Smoking-altered transcriptomics further tracked with 
B cell subpopulation shift in the smokers. DEGs were 
highly enriched in pathways involved in B cell migra-
tion, activation, class-switching and Ig production (e.g., 
GPR, actin cytoskeleton, B cell receptor, PI3K, CD40, 
and IL-9 signaling), differentiation to memory cells 
and IgG production (e.g., APRIL, IL-10, RXR activa-
tion, and NK cell signaling). Several DEGs (e.g., APBP2, 
COL4A4, COL18A1, HIPK2, GDPD5, RARA​, TRERF1) 
were reported to be expressed differentially in mem-
ory cells (class-switched CD27+ IgG+ or CD27+ IgA+) 
compared to naïve cells (CD27-IgD+) [62]. We revealed 
that in B cells GPR15 was the most upregulated gene by 

smoking (12-fold upregulation, adjusted p = 1.35 × 10−4) 
and cg19859270 was also highly significantly demeth-
ylated (− 10% ΔM) by smoking. GPR15 mediates lym-
phocyte homing and migration [63] and has been a 
meaningful epigenetic biomarker in whole blood and in 
the T cells of smokers [64]. In addition, decreased meth-
ylation of GPR15 (cg19859270) was a strong predictor 
of GPR15+ helper T cell increase in smokers who have 
AHRR (cg05575921) hypomethylation [65]. Enhanced 
GPR15 expression in CD3+ CD4+ T cells was strongly 
associated with tobacco and cannabis smoking and 
smoking-induced inflammation [65]. When we compare 
epigenome and transcriptome of B cells, 36 DEGs were 
annotated to the significant smCpGs, including GPR15, 
RORA, transcriptional regulating factor 1 (TRERF1), 
TNF receptor-associated factor 3 (TRAF3), collagen 
type XVIII alpha 1 chain (COL18A1), and homeodo-
main interacting protein kinase 2 (HIPK2). The genes 
and pathways signatures in common between methylome 
and transcriptome (Fig. 3E; Additional file 7: Table S11) 
suggest smoking is altering epigenetic regulation of gene 
expression, affecting the B cell differentiation program.

We performed an integrative analysis that uses data 
from omics studies in large human populations to detect 
smCpGs that may mediate human phenotypes through 
genetic variation. As two illustrative examples, we iden-
tified that smCpG cg03707168 in PPP1R15A exon 2 was 
linked to COVID-19 infection and blood traits includ-
ing mean corpuscular hemoglobin concentration, mean 
corpuscular volume, red blood cell distribution width, 
and reticulocyte count (Fig.  6A), and also that a B-cell-
specific smCpG cg04545963 in NFKBIA gene was linked 
to lung function (FEV1/FVC ratio), asthma, eczema, car-
diovascular diseases, systolic blood pressure, eosinophil 
count, and lymphocyte count (Fig.  6B). Our approach 
facilitates the interpretation of EWAS and GWAS loci in 
specific cellular contexts, suggesting mechanisms, and 
pointing to cell types for detection of phenotype-specific 
biomarkers.

Limitations
While our study was able to reveal highly significant 
smoking-associated B-cell-specific effects, the current 
study lacked statistical power and resolution to identify 
effects in subsets of T cells. At this time, it was not pos-
sible to carry out additional RNA-seq transcriptomic 
studies, which could reveal interesting connections to 
smoking-associated phenotypes. We were able to asso-
ciate about 30% of the smCpGs with genes containing 
GWAS SNPs; however, there were many smCpGs that 
could not be linked to human phenotypes, possibly due 
to stringent significance cutoffs, CpG to mQTL SNPs dis-
tances, and the limitations of public GWAS data.
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Conclusions
To our current knowledge, the study presented here is 
the most comprehensive dissection of smoking-associ-
ated DNA methylation changes in specific human blood 
cell types. Smoking impacts DNA methylation very dif-
ferently among cell types, with many unique effects in B 
cells. We observe tobacco-smoke exposure was associ-
ated with shifting proportions of naïve and memory B 
cells, evidenced in both methylation and transcriptom-
ics. Furthermore, using this dataset and publicly available 
epigenome and genome maps, we linked smCpGs with 
GWAS-identified risk loci. This integrative analysis pro-
vides a bridge to better understand smCpGs and GWAS 
results, enabling future studies to elucidate potential 
mechanisms in smoking-associated diseases.

Methods
Study populations
As part of the Epigenetic Biomarkers of Tobacco Smoke 
Exposure project, a group of healthy volunteers was 
recruited with written informed consent at the NIEHS 
Clinical Research Unit (protocol 10-E-0063) between 
March 2013 and January 2018 from Raleigh, Durham and 
Chapel Hill region of North Carolina using advertise-
ments. Nonsmokers were defined by self-report as not 
having smoked > 100 cigarettes in their lifetime. Smok-
ers reported their average daily cigarette consumption 
for the past 3  months. Serum nicotine/cotinine levels 
were measured by HPLC–MS (Quest, Inc.) as an indi-
cation of their smoking exposure status for all subjects. 
Demographic summary information of subjects is given 
in Additional file 7: Table S1. Six subjects only have a WB 
sample, without any cell type, the maximal sample size of 
any cell type is NS = 71 and SM = 64.

Peripheral blood leukocyte subtype isolation
The workflow of the blood cell-type isolation is shown in 
Additional file  1: Fig. S1. Briefly, granulocytes were iso-
lated directly from whole blood using CD15 Dynabeads 
(Invitrogen, Waltham, MA), magnetic beads covalently 
coupled with an anti-human CD15 antibody, accord-
ing to the manufacturer’s protocol. Additionally, whole 
blood was layered on Histopaque-1077 Ficoll medium 
in Accuspin™ Tubes (Sigma-Aldrich, St. Louis, MO) 
and density gradient centrifugation was performed to 
isolate the mononuclear layer. Peripheral blood mono-
nuclear cells (PBMCs) were then counted for viability 
and incubated with CD34 MicroBeads magnetic beads 
(Miltenyi Biotec, San Jose, CA). CD34 negative cells were 
collected in the flowthrough, recounted on a Cellometer 
Auto T4 Bright Field Cell Counter (Nexcelom, St. Law-
rence, MA), and incubated with CD14 Dynabeads to iso-
late CD14+ monocytes according to the manufacturer’s 

protocol. Flowthrough (CD14-) cells were again counted 
and split by volume. One half of the cells were incubated 
with CD19 PanB Dynabeads for isolation of CD19+ B 
cells. The other flowthrough half was split in two, with 
half incubating with CD4 Dynabeads (for CD4+ T cells) 
and half incubating in CD8 Dynabeads (for CD8+ T 
cells). All flowthrough (CD19-, CD4-, or CD8- cells) was 
then combined and incubated with CD56 MicroBeads 
(Miltenyi Biotec) according to the manufacturer’s proto-
col to isolate CD56+ NK cells. RNA and DNA were iso-
lated using the ALLPrep DNA/RNA/miRNA Universal 
Kit (Qiagen).

Methylation analyses
Extracted DNA (100–500 ng) was bisulfite converted and 
applied to the Illumina Human Methylation 450k or EPIC 
BeadChip at the National Cancer Institute Center for 
Genomics Research to measure methylation at 450,000 or 
850,000 CpG sites following the manufacturer’s instruc-
tions. The raw IDAT files of 450K and EPIC methylation 
arrays were read into R with the minfi package [66] sepa-
rately; the combineArrays function in minfi was utilized 
to combine the two arrays’ data together based on their 
common (452,567) probes. Then, the data was preproc-
essed with background and dye bias correction using the 
preprocess Noob method [67]. The ChAMP package was 
used to do BMIQ normalization [68, 69]. The combat 
function in sva package [70] was used to do batch (“Sam-
ple_Plate”) correction on methylation array data. Prior 
to normalization, DNA methylation data were filtered 
based on these criteria: any samples having more than 5% 
probes that failed detection, all CpG probes on the X and 
Y chromosomes, probes containing SNPs with a minor 
allele frequency ≥ 1% (in EUR or AFR populations of the 
1000 Genomes Project) within 5 nucleotides to the CpG 
site, and probes failing QC standards. We also removed 
43,254 probes reported to hybridize to one or more non-
target sites in the genome [71]. There were ~ 420,000 CpG 
probes remaining after exclusions. To investigate associa-
tions between smoking and DNA methylation, normal-
ized and batch-corrected beta-values were transformed 
to log ratio, defined as log2[β/(1 − β)], and then fitted 
using robust linear regression [31] adjusted for potential 
confounders, including age, sex, race, BMI, and possible 
contaminant cell-type proportions, estimated using the 
method of Houseman et  al. [18]. The Winsorize tech-
nique (https://​www.​rdocu​menta​tion.​org/​packa​ges/​DescT​
ools/​versi​ons/0.​99.​44/​topics/​Winso​rize) was used in an 
alternative EWAS analysis to test if outlier data points 
affected the resulting smCpGs. The method of Salas 
et al. [30] was used to detect shifts from naïve to mem-
ory among T and B cells. The raw IDAT files have been 

https://www.rdocumentation.org/packages/DescTools/versions/0.99.44/topics/Winsorize
https://www.rdocumentation.org/packages/DescTools/versions/0.99.44/topics/Winsorize
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deposited in Gene Expression Omnibus (GEO) database 
under the accession number (GSE224807).

Bulk RNA‑seq
Aliquots of total RNA (250 ng) from peripheral blood B 
cells were used to generate poly-adenylated RNA librar-
ies with TruSeq Stranded Total RNA Ribo-Zero Human 
Gold kit (Illumina, San Diego, CA). Samples were 
indexed with NEXTfle-96 RNA-seq Barcodes (Bioo-
scientific, Austin, TX) and 75  bp paired-end sequenc-
ing was performed on NovaSeq 6000 platform using S1 
flow cell (Illumina) in the NIEHS Epigenomics and DNA 
Sequencing Core Laboratory. FASTQ files containing 
26–119 million raw sequencing reads were aligned to 
hg38 using STAR and gene counts were generated with 
featureCounts using the GENCODE version 39 annota-
tion. Count matrix data were then imported to Partek 
Flow (Partek Inc., St. Louis, MO) and quantification of 
transcript expression and differential expression analyses 
were performed using DESeq adjusting for covariates as 
done in methylation (age, sex, race, BMI, 5 cell-type pro-
portions, with or without naïve B cell proportions). DEGs 
were determined between smokers and nonsmokers with 
a cutoff for significance at p < 0.05 and/or FDR-adjusted 
p < 0.01. Controlled hierarchical cluster analysis by smok-
ing status generated heatmaps showing a structure of 
DEG expression trends and partition of DEGs into dif-
ferent clusters using Partek Flow. RNA-seq raw data are 
deposited in GEO (accession number: GSE220113).

EWAS datasets
Public available EWAS results were downloaded from 
the EWAS Catalog [43] (http://​www.​ewasc​atalog.​org/, 
accessed June 1, 2022) and the EWAS Atlas [44] (https://​
ngdc.​cncb.​ac.​cn/​ewas/​atlas, accessed June 1, 2022). We 
selected associations from EWAS studies using adult 
whole blood samples that had a p value < 0.05/450000 
(450k array) or 0.05/850000 (EPIC array) and a popula-
tion size > 100.

GWAS datasets
GWAS datasets used were NHGRI-EBI GWAS Cata-
log [72] (accessed August 1, 2022), Lung Function GWAS 
(GCST007429, GCST007430, GCST007431, GCST007432) 
[73] (accessed August 10, 2020), and COVID19-hg GWAS 
meta-analyses Round 7 released April 8, 2022 (https://​
www.​covid​19hg.​org/​resul​ts/​r7/). We selected associations 
which had a p value < 5.0E − 8 and a population size > 1000 
in either discovery or replication phase.

Datasets of mQTLs
Publicly available mQTLs results were downloaded from 
four independent large studies on European ancestry 

participants: BIOS (n = 3841) [45], FHS (n = 4170) [46], a 
meta-analysis of LBC_BSGS (n = 1980) [47], and UKHLS 
(n = 1111) [48]. We selected mQTLs which were in cis 
(distance of CpG to SNP < 10  kb), p value < 2.0 × 10−11, 
and significant in at least two datasets.

Datasets of eQTMs
Publicly available eQTMs results were downloaded from 
two independent large studies on European ancestry par-
ticipants: BIOS (n = 3841) [45], FHS (FHS, n = 4170) [49]. 
We identified eQTMs in cis (CpG position within a range 
from TSS − 10 kb to TES + 10 kb) at FDR < 0.05.

Datasets of eQTLs
Publicly available eQTLs results were downloaded from 
four peripheral blood eQTL datasets: BIOS [45], FHS 
[46], CAGE [50], and eQTLGen [51]. We selected eQTLs 
in cis (distance of CpG to SNP < 10  kb and CpG posi-
tion within a range from TSS − 10 kb to TES + 10 kb) at p 
value < 1.0 × 10−5.

SNP genotyping and linkage disequilibrium data
The SNP genotyping data were downloaded from the 
1000 Genomes Project’s Phase 3 v5b (http://​ftp.​1000g​
enomes.​ebi.​ac.​uk/​vol1/​ftp/​relea​se/​20130​502/). The 
LD between SNPs was calculated using the VCFtools 
(https://​vcfto​ols.​github.​io/​index.​html) and genotype data 
from European populations. Two SNPs are in complete 
LD if r2 > 0.95.

Statistical methods
The open-source R program (https://​www.r-​proje​ct.​
org/) on the Linux platform was used for all statistical 
calculations.
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