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Abstract 

Background  DNA methylation (DNAm) plays an important role in lipid metabolism, however, no epigenome-wide 
association study (EWAS) of lipid levels has been conducted among childhood cancer survivors. Here, we performed 
EWAS analysis with longitudinally collected blood lipid data from survivors in the St. Jude lifetime cohort study.

Methods  Among 2052 childhood cancer survivors of European ancestry (EA) and 370 survivors of African ancestry 
(AA), four types of blood lipids, including high-density lipoprotein (HDL), low-density lipoprotein (LDL), total choles‑
terol (TC), and triglycerides (TG), were measured during follow-up beyond 5-years from childhood cancer diagnosis. 
For the exposure EWAS (i.e., lipids measured before blood draw for DNAm), the DNAm level was an outcome variable 
and each of the blood lipid level was an exposure variable; vice versa for the outcome EWAS (i.e., lipids measured after 
blood draw for DNAm).

Results  Among EA survivors, we identified 43 lipid-associated CpGs in the HDL (n = 7), TC (n = 3), and TG (n = 33) 
exposure EWAS, and 106 lipid-associated CpGs in the HDL (n = 5), LDL (n = 3), TC (n = 4), and TG (n = 94) outcome 
EWAS. Among AA survivors, we identified 15 lipid-associated CpGs in TG exposure (n = 6), HDL (n = 1), LDL (n = 1), 
TG (n = 5) and TC (n = 2) outcome EWAS with epigenome-wide significance (P < 9 × 10−8). There were no overlap‑
ping lipids-associated CpGs between exposure and outcome EWAS among EA and AA survivors, suggesting that the 
DNAm changes of different CpGs could be the cause or consequence of blood lipid levels. In the meta-EWAS, 12 addi‑
tional CpGs reached epigenome-wide significance. Notably, 32 out of 74 lipid-associated CpGs showed substantial 
heterogeneity (Phet < 0.1 or I2 > 70%) between EA and AA survivors, highlighting differences in DNAm markers of blood 
lipids between populations with diverse genetic ancestry. Ten lipid-associated CpGs were cis-expression quantitative 
trait methylation with their DNAm levels associated with the expression of corresponding genes, out of which seven 
were negatively associated.
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Conclusions  We identified distinct signatures of DNAm for blood lipids as exposures or outcomes and between EA 
and AA survivors, revealing additional genes involved in lipid metabolism and potential novel targets for controlling 
blood lipids in childhood cancer survivors.

Keywords  DNA methylation, Lipid levels, Childhood cancer survivors, EWAS, African ancestry, European ancestry

Background
Mounting evidence suggests that epigenetics, specifically 
DNA methylation (DNAm), plays an important role in 
lipid metabolism, and epigenome-wide association stud-
ies (EWAS) of blood lipid levels have identified robust 
5′-cytosine-phosphate-guanine-3′ (CpG) sites and plau-
sible underlying genes associated with lipid metabolism 
and related diseases [1]. However, an EWAS analysis of 
lipid levels has not been conducted among survivors of 
childhood cancer who experience early onset and a sub-
stantially higher burden of chronic health conditions 
(CHCs), compared to community controls without a 
history of childhood cancer [2, 3]. These health dispari-
ties are mostly attributable to genotoxic cancer treat-
ment exposures at a young age with the most notable link 
being between cardiovascular diseases and exposures to 
anthracyclines and/or chest-directed radiation therapy 
(RT) [4]. Recognizing the high burden of CHCs among 
childhood cancer survivors [2, 3, 5], we have compre-
hensively analyzed DNAm variations among long-term 
survivors and conducted systematic investigations of 
potential casual pathways for treatment-associated CHCs 
[6]. Our previous findings provide compelling evidence 
of mediation effect of DNAm between abdominal-RT 
and dyslipidemia (triglycerides > 150 mg/dL or total cho-
lesterol > 200 mg/dL) [6]. Dyslipidemia is highly prevalent 
within the broad spectrum of morbidities of childhood 
and adolescent cancer survivors [7], and a major risk 
factor for cardiac events, which are the leading cause of 
noncancer-related premature mortality and account for 
approximately 26% of deaths among survivors within 
45 years of diagnosis [8].

In the general population, African American adults 
have higher prevalence of high low-density lipopro-
tein (LDL) and low high-density lipoprotein (HDL) lev-
els but lower prevalence of high triglycerides (TG) than 
European American adults in both men and women [9, 
10]. A study considering racial/ethnic differences among 
childhood cancer survivors in the St. Jude lifetime cohort 
study (SJLIFE) reported that childhood cancer survivors 
of African ancestry (AA) had higher risk of cardiovas-
cular diseases overall including specific conditions such 
as stroke, heart attack, and heart failure than survivors 
of European ancestry (EA), potentially explained by the 
higher prevalence of obesity, diabetes, hypertension, 
and dyslipidemia among AA survivors [11]. Studies have 

reported notable population-specific DNAm differences 
in multiple physical functions (e.g., immunity and kid-
ney development) [12, 13], suggesting that EWAS across 
populations is critical to the interpretation of health dis-
parities [14]. However, there is a lack of diversity in cur-
rently available EWAS data, with most studies conducted 
in individuals of EA.

To further our understanding of the underlying bio-
logical mechanisms of different blood lipid levels among 
childhood cancer survivors and the differences between 
EA and AA populations as determined by their genetic 
ancestry, we employed a comprehensive and agnostic 
EWAS approach across these two populations. Tak-
ing advantage of longitudinal clinical assessments of 
SJLIFE survivors, we analyzed association of DNAm with 
blood lipids as exposures (i.e., blood lipids were meas-
ured before DNAm) and outcomes (i.e., blood lipids 
were measured after DNAm). Findings were compared 
between these two scenarios as well as between the two 
ancestral groups (i.e., EA and AA). The potential func-
tion of significant CpG sites were further demonstrated 
by their correlations with gene expression levels meas-
ured by RNA sequencing. We compared our findings 
among childhood cancer survivors with the known blood 
lipid-associated CpGs previously reported in non-cancer 
general populations. Clinically, the set of lipid-associated 
CpG sites (i.e., signatures) would facilitate the identifica-
tion of survivors who have already experienced abnormal 
lipid levels or at higher risk of abnormal lipid levels in the 
future.

Results
Characteristics of the study population and EWAS analysis 
design
Adult survivors of childhood cancer from the SJLIFE 
study [15, 16] were included in this analysis (Table  1). 
Among 2052 EA survivors (median age at blood draw for 
DNAm = 32.3  years, interquartile range [IQR] = 26.5–
40.1  years; 47.2% female), body mass index (BMI) was 
9.9–67.7  kg/m2 (Table  1). Among 370 AA survivors 
(median age at blood draw for DNAm = 29.6  years, 
IQR = 23.8–37.0  years; 53.2% female), BMI was 12.6–
58.9  kg/m2 (Table  1). The summary statistics of the 
weighted average levels of HDL, LDL, TG, and TC 
(including the number of survivors with multiple lipid 
measurements) before or after DNA sampling are shown 
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Table 1  Characteristics of the SJLIFE study population

Characteristic Survivors of European ancestry Survivors of African ancestry Pa

n (%) n (%)

Total 2052 (100.0) 370 (100.0)

Sex 0.03

 Male 1084 (52.8) 173 (46.8)

 Female 968 (47.2) 197 (53.2)

Diagnosis

Leukemia 699 (34.1) 77 (20.8) < 0.0001

  Acute lymphoblastic leukemia 644 (31.4) 67 (18.1)

  Acute myeloid leukemia 53 (2.6) 9 (2.4)

  Other leukemia 2 (0.1) 1 (0.3)

 Lymphoma 448 (21.8) 69 (18.6) 0.17

  Hodgkin lymphoma 288 (14.0) 45 (12.2)

  Non-Hodgkin lymphoma 160 (7.8) 24 (6.5)

 Sarcoma 274 (13.4) 56 (15.1) 0.36

  Ewing sarcoma 74 (3.6) 2 (0.5)

  Osteosarcoma 74 (3.6) 18 (4.9)

  Rhabdomyosarcoma 71 (3.5) 18 (4.9)

  Soft tissue sarcoma 55 (2.7) 18 (4.9)

 CNS tumors 231 (11.3) 45 (12.2) 0.61

  Astrocytoma or glioma 93 (4.5) 18 (4.9)

  Medulloblastoma or PNET 56 (2.7) 10 (2.7)

  Ependymoma 26 (1.3) 5 (1.4)

  Other CNS tumors 56 (2.7) 12 (3.2)

 Embryonal 276 (13.5) 81 (21.9) < 0.0001

  Wilms tumor 134 (6.5) 44 (11.9)

  Neuroblastoma 107 (5.2) 14 (3.8)

  Germ cell tumor 35 (1.7) 23 (6.2)

 Other 124 (6.0) 42 (11.4) 0.0002

  Retinoblastoma 45 (2.2) 21 (5.7)

  Hepatoblastoma 13 (0.6) 2 (0.5)

  Melanoma 12 (0.6) 2 (0.5)

  Carcinomas 24 (1.2) 14 (3.8)

  Others 30 (1.5) 3 (0.8)

Chemotherapy

 Alkylating agent, classical 1194 (58.2) 202 (54.6) 0.20

 Alkylating agent, heavy metal 239 (11.7) 63 (17.0)  0.004

 Alkylating agent, nonclassical 67 (3.3) 12 (3.2)  0.98

 Anthracyclines 1190 (58.0) 180 (48.6) 0.0008

 Antimetabolites 1024 (49.9) 133 (35.9) < 0.0001

 Asparaginase enzymes 631 (30.8) 76 (20.5) < 0.0001

 Epipodophyllotoxins 709 (34.6) 108 (29.2) 0.04

 Corticosteroids 965 (47.0) 122 (33.0) < 0.0001

 Vinca alkaloids 1482 (72.2) 236 (63.8) 0.0009

Radiation therapy, region exposed

 Brain 629 (30.7) 98 (26.5) 0.11

 Chest 577 (28.1) 102 (27.6) 0.83

 Abdominal 412 (20.1) 84 (22.7) 0.25

 Pelvic 352 (17.2) 80 (21.6) 0.04
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in Table 1. Compared with survivors of EA, those of AA 
had lower mean of weighted average of TG as an expo-
sure (81.2 vs. 125.3 mg/dL, P < 0.0001) and outcome (83.4 
vs. 130.6, P < 0.0001), TC as an exposure (171.3 vs 179.2 
mg/dL, P=0.02) and an outcome (163.8 vs. 182.3 mg/dL, 
P < 0.0001), and LDL as an outcome (95.0 vs. 106.1  mg/
dL, P <0.0001). AA survivors also had higher mean 
of weighted average of HDL as an exposure (57.2 vs. 
51.1  mg/dL, P < 0.0001). The correlations of weighted 
average levels of lipids before and after DNA sampling 
were shown in Additional file 1: Table S1. The percentage 
of survivors taking any lipid control medications before 
DNAm sampling was 8.04% in EA and 4.86% in AA. The 

median time and range between the DNAm and pre-lipid 
profiles are 1.6, 0.0–5.3, years for EA and 1.6, 0.5–5.1, 
years for AA, and the median time and range between 
DNAm and post-lipid profiles are 2.2, 0.0–5.5, years for 
EA, and 2.3, 0.1–16.6, years (Table 1).

After quality control of DNAm data, a total of 
689,414 CpGs were further advanced for EWAS. The 
associations between the DNAm level of each CpG 
and specific blood lipid level (HDL, LDL, TG, or TC) 
as an exposure or outcome were analyzed separately 
(Fig. 1). Quantile–quantile plots of each EWAS among 
survivors of EA and AA were shown in Additional 
file 1: Fig. S1 and Additional file 1: Fig. S2, respectively. 

Table 1  (continued)

Characteristic Survivors of European ancestry Survivors of African ancestry Pa

n (%) n (%)

Tobacco smoking status 0.11

 Never smoking 956 (46.6) 183 (49.5)

 Ever smoking 349 (17.0) 51 (13.8)

 Unknown 747 (36.4) 136 (36.8)

Lipid control medication before DNA sampling 0.03

 Never used 1887 (92.0) 352 (95.1)

 Ever used 165 (8.0) 18 (4.9)

Lipid control medication after DNA sampling 0.06

 Never used 1958 (95.4) 361 (97.6)

 Ever used 94 (4.6) 9 (2.4)

Chronic health condition (Weighted average, mg/dL) n Mean ± SD n Mean ± SD Pa

 Triglycerides, exposure 734 125.3 ± 92.9 117 81.2 ± 46.6 < 0.0001

 Triglycerides, outcome 1126 130.6 ± 98.0 197 83.4 ± 47.8 < 0.0001

 Total cholesterol, exposure 734 179.2 ± 34.9 117 171.3 ± 32.3 0.02

 Total cholesterol, outcome 1124 182.3 ± 39.2 197 163.8 ± 48.0 < 0.0001

 High-density lipoprotein, Exposure 734 51.1 ± 14.7 117 57.2 ± 14.2 < 0.0001

 High-density lipoprotein, Outcome 1124 50.5 ± 16.3 197 52.3 ± 20.0 0.21

 Low-density lipoprotein, Exposure 717 103.6 ± 29.6 116 98.3 ± 28.4 0.08

 Low-density lipoprotein, Outcome 1092 106.1 ± 31.5 196 95.0 ± 35.3 < 0.0001

Body mass index, kg/m2 2051 28.5 ± 7.4 368 29.2 ± 8.0 0.13

Median Range Median Range Pa

Age at DNA sampling, years 32.3 18.0, 66.4 29.6 18.4, 65.1 < 0.0001

Median age of multiple lipid measurements, yearsb

 Exposure 30.0 14.6, 65.1 26.6 15.2, 56.6 0.03

 Outcome 35.3 19.6, 67.8 34.0 20.0, 67.5 0.01

Time duration between DNA sampling and median age of 
multiple lipid measurements, years

 Exposure 1.6 0.0, 5.3 1.6 0.5, 5.1 0.41

 Outcome 2.2 0.0, 5.5 2.3 0.1, 16.6 0.44

CNS central nervous system, IQR interquartile range, PNET primitive neuroectodermal tumor
a Chi-square test for categorical variables, Student’s t-test for continuous variables. Distribution differences for both age and time duration were assessed by Wilcoxon 
rank sum test
b The median age of multiple lipid measurements for each survivor was calculated, and the median across all survivors was subsequently derived
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EWAS of blood lipids among survivors of EA showed 
moderately low genomic inflation factors between 0.92 
and 1.13 (Additional file  1: Fig. S1). EWAS of blood 
lipids among survivors of AA showed moderately low 
to high genomic inflation factors between 0.92 and 
2.32 (Additional file 1: Fig. S2).

CpG sites associated with blood lipids among survivors 
of European ancestry
The landscapes of the overall association results 
among survivors of EA were shown in Fig.  2. Seven, 
three, and 33 epigenome-wide significant blood lipid-
associated CpGs were identified for HDL, TC, and 
TG, respectively, in the exposure EWAS (P < 9 × 10−8, 
Fig.  2A–C). No significant CpG achieved epigenome-
wide significance in the LDL exposure EWAS among 
survivors of EA (P < 9 × 10−8, Fig.  2D). Detailed esti-
mates for the association between each CpG and spe-
cific blood lipid level as an exposure were provided in 
Additional file  1: Table  S2. Notably, a cluster of three 
CpGs (cg00574958, cg05325763, and cg17058475), 
mapped to the 5′UTR of the CPT1A gene, were com-
mon in the TG and TC exposure EWAS (Table  2 and 
Additional file 1: Fig. S3). Five, three, four, and 94 CpGs 
were significantly associated with HDL, LDL, TC, and 
TG, respectively, in the outcome EWAS (P < 9 × 10−8, 
Fig. 2E–H and Additional file 1: Table S3). Three CpGs 
were common across HDL, LDL, and TC outcome 
EWAS, including ch.1.829344F mapped to the 5′UTR 
region of the SRPM1 gene, cg20935223 mapped to the 
3′UTR region of the CYTH3 gene, and cg21750129 
mapped to the 3′UTR region of the TRPM3 gene 

(Table 2 and Additional file 1: Fig. S3). No significant 
CpGs were common between blood lipid exposure and 
outcome EWAS (P < 9 × 10−8).

CpG sites associated with blood lipids among survivors 
of African ancestry
The overall landscape of CpG associations with blood 
lipid EWAS among survivors of AA were shown in the 
Additional file  1: Fig. S4. Six TG-associated CpGs were 
identified in the exposure EWAS (Additional file  1: Fig. 
S4A and Table  S4), and five TG-associated CpGs, two 
TC-associated CpGs, one HDL-associated CpG, and one 
LDL-associated CpG were found in the outcome EWAS 
(Additional file 1: Fig. S4E–H and Table S4) (P < 9 × 10−8). 
No significant CpG was found in HDL, LDL, and TC 
exposure EWAS. Similarly, there was no significant CpGs 
common in exposure and outcome EWAS among survi-
vors of AA (P < 9 × 10−8). In TG exposure EWAS, there 
were five significant CpGs mapping to nearby genes 
including cg26675329 and cg04747445 within 1500  bp 
upstream of the transcription start site of the IL18RAP 
gene and the BBX gene, respectively; cg05416955 and 
cg21376908 in the gene body of the CARD9 gene and the 
MSI2 gene, respectively; and cg16197879 in the 5’UTR 
region of the CLDN14 gene (P < 9 × 10−8, Additional 
file  1: Table  S4). In TC outcome EWAS, cg16411101 in 
the 5’UTR of the SSCP3 gene was significant in both 
LDL and TC outcome EWAS, and the other significant 
CpG was cg23724016 in the 3’UTR of the CDHR5 gene 
(P < 9 × 10−8). In HDL outcome, one significant CpG 
cg14558275 is mapped to the PIK3CG gene. In TG out-
come, cg05416345 and cg01111718 are in the gene body 
of the IFFO2 gene and the GRIA4 gene, respectively; 

Fig. 1  Schematic framework of study design. EWAS epigenome-wide association study, DNAm DNA methylation, SJLIFE St. Jude lifetime cohort 
study. Median (range) of time, the median/range of time between DNAm sampling age and median age of multiple lipid measurements
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cg04348872 and cg12686539 are in the first and second 
exon of the ADCY3 gene and the ZNF891 gene, respec-
tively. We did not identify any overlapping significant 
CpG between survivors of EA and AA in SJLIFE cohort 
in any of the exposure or outcome EWAS of blood lipids 
(P < 9 × 10−8).

Trans‑ethnic meta‑analysis
In the meta-analysis of blood lipid EWAS among EA 
and AA survivors, we identified 74 significant lipid-CpG 
associations (70 unique CpGs, P < 9 × 10−8). Specifically, 

four, one, and 33 significant CpGs were associated with 
HDL, TC, and TG exposures, respectively; and two, one, 
two, and 31 were associated with HDL, LDL, TC, and TG 
outcomes, respectively (P < 9 × 10−8, Additional file  1: 
Table  S5). Among these significant lipid-CpG associa-
tions, twelve did not reach epigenome-wide significance 
level in either EWAS among survivors of EA or AA alone, 
including three for HDL exposure, three for TG expo-
sure, and six for TG outcome (Table 3). All 12 had homo-
geneous effects with the same direction of association 
in survivors of EA and AA (Phet > 0.1, Table  3). Among 

Fig. 2  Manhattan plots of exposure and outcome EWAS of blood lipids among survivors of European ancestry in SJLIFE cohort. EWAS 
epigenome-wide association study, SJLIFE St. Jude lifetime cohort study, HDL high-density lipoprotein, LDL low-density lipoprotein, TG triglycerides, 
TC total cholesterol
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the remaining 62 lipid-CpG associations that were sig-
nificant in EWAS among survivors of EA or AA alone 
(P < 9 × 10−8), twenty-two had homogeneous effects with 
the same direction between survivors of EA and AA 
(Phet > 0.1), twenty-four had opposite directions of asso-
ciation with significant heterogeneity between survivors 
of AA and EA (Phet < 0.1), and the remaining 16 signifi-
cant lipid-CpG associations either had the same direction 
of association but with significant heterogeneity between 
survivors of EA and AA (Phet < 0.1) or had the opposite 
direction of association but with homogenous effect 
(Phet > 0.1) (Additional file 1: Table S5).

Association between DNAm levels of lipid–associated CpGs 
and gene expression
For each of the blood-lipid associated CpGs, we esti-
mated the linear association between DNAm levels and 
gene expression levels (adjusting for DNA/RNA sam-
pling age and sex). Among the nearby genes of the sig-
nificant lipid-associated CpGs among EA, there were 
no count data (number of reads from RNA sequencing) 
for 52 genes. Of the remaining 56 CpG-gene pairs, there 
were ten CpG-gene pairs with significant (FDR < 0.05) 
associations between the DNAm level of lipid-associ-
ated CpGs and gene expression of their nearby genes, 
including HDAC7 (cg01620154), AXIN2 (cg23475474), 
ECE1 (cg01758046), TRERF1 (cg07507418), TNRC6B 
(cg00543524), MICU1 (cg08641767), NUDCD3 
(cg01507280), NLN (cg01710244), AKAP1 (cg18807499), 
and LRP5 (cg24040155) among EA (Table  4). Most of 

the estimated effects of these CpGs were negative (i.e., 
increased methylation associated with decreased gene 
expression), except for ECE1 (cg01758046), NUDCD3 
(cg01507280), and NLN (cg01710244). Among the 12 
annotated genes of significant lipid-associated CpGs 
among AA survivors (Additional file  1: Table  S4), nine 
gene had no count data (i.e., number of reads from RNA 
sequencing). Of the remaining three CpG-gene pairs 
(PIK3CG-cg14558275, BBX-cg04747445, and IFFO2-
cg05416345), there was no significant association 
between DNAm levels of lipid-associated CpGs and the 
gene expression among AA.

Cross‑reference with the EWAS Catalog
By comparing our findings with previously reported blood 
lipid-associated CpGs in the general population from the 
EWAS Catalog, only four overlapping CpGs were identi-
fied among EA survivors, including cg00574958 (associ-
ated with TG and TC exposure), cg09737197 (associated 
with TG exposure), and cg17058475 (associated with TG 
and TC exposure) in CPT1A, and cg03725309 (associ-
ated with TG exposure) in SARS (Additional file 1: Tables 
S6 and S7), and none among AA survivors. Among the 
remaining 136 novel lipid-associated CpGs in childhood 
cancer survivors of EA, 26 were mapped to 23 genes that 
have been previously reported as lipid-associated (Addi-
tional file 1: Table S8). Among 12 additional blood lipid-
associated CpGs identified in the meta-EWAS, five CpGs 
were reported to be associated with other traits (e.g., 
sex, age, Schizophrenia, and ADHD (attention-deficit 

Table 2  Overlapping significant CpGs in exposure and outcome EWAS of blood lipid among survivors of European ancestry in SJLIFE 
cohort

EWAS epigenome-wide association study, chr_hg38 chromosome in GRCh38/hg38, Start_hg38 CpG start position in GRCh38/hg38, SE standard error, HDL high-density 
lipoprotein, LDL low-density lipoprotein, TG triglycerides, TC total cholesterol

CpG chr_hg38 Start_hg38 Nearby gene 
gengebnegene

EWAS Lipid Effect SE P

cg00574958 11 68840153 CPT1A Exposure TC − 2.25E−03 3.30E−04 2.15E−11

TG − 1.28E−03 1.20E−04 1.50E−24

cg05325763 11 68840250 CPT1A TC − 1.84E−03 3.20E−04 1.31E−08

TG − 1.13E−03 1.17E−04 1.48E−20

cg17058475 11 68840268 CPT1A TC − 2.05E−03 3.52E−04 8.81E−09

TG − 1.11E−03 1.31E−04 1.27E−16

ch.1.829344F 1 24657005 SRRM1 Outcome HDL 6.39 0.89 1.03E−12

LDL 17 2.19 2.18E−14

TC 25.51 2.94 1.36E−17

cg20935223 7 6168606 CYTH3 HDL 8.30 1.50 3.96E−08

LDL 22.27 3.75 3.99E−09

TC 30.22 5.02 2.40E−09

cg21750129 9 71249778 TRPM3 HDL 7.03 1.05 3.97E−11

LDL 15.86 2.64 2.63E−09

TC 24.53 3.52 5.73E−12
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and hyperactivity disorder)) but only cg01082498 (in the 
5’UTR region of the CPT1A gene) was associated with 
blood lipid level in the EWAS Catalog (Additional file 1: 
Table S9).

Discussion
Genetic and epigenetic (specifically, DNAm) studies have 
identified numerous genetic variants or CpG sites that 
are associated with blood lipids in the general popula-
tion, hence at least 2572 genes have been implicated in 
lipid metabolism (Additional file 1: Fig. S5) [17, 18]. We 
conducted the first EWAS of blood lipids among child-
hood cancer survivors, including EA and AA survivors 
from the SJLIFE cohort. Among EA survivors, we iden-
tified 149 (140 unique CpGs) significant associations 
with blood lipid levels; 136 of these were novel findings. 
Among AA survivors, we found 14 novel significant 
blood lipid-associated CpGs. There was no overlapping 
CpGs between EA and AA survivors. A majority of these 
findings are unique to the survivor population, which 
may be attributable to childhood cancer diagnoses and/
or treatments. For example, two TG exposure associated 
CpGs, cg24327132 and cg19120513, were associated with 
chest-RT and abdominal-RT [6].

In the meta-EWAS, twenty-four CpGs had opposite 
direction of association with significant heterogene-
ity between EA and AA survivors (Phet < 0.1), suggesting 
substantial disparity in lipid-associated CpGs between 
the two ancestral groups. Meta-EWAS yielded eight 
additional epigenome-wide significant CpGs with het-
erogeneity in effect size between EA and AA survivors 
(Phet < 0.1). However, future replication in EA or AA 
alone with independent data set is warranted to validate 
such findings.

TG outcome EWAS yielded the greatest number 
of significant CpGs among EA, with multiple novel 

lipid-associated CpGs mapped to the same nearby genes, 
including CDK5RAP3, FCGR2B, HSPA6, and HSPA7. 
CDK5RAP3, known to play important roles in liver devel-
opment and hepatic function. Previous research showed 
that hepatocyte-specific Cdk5rap3 knockout mice suf-
fered post-weaning lethality because of impaired lipid 
metabolism and serious hypoglycemia [19]. FCGR2B 
gene encodes FcγRIIb, with a novel role in CD11c+ cells 
in modulating serum cholesterol and triglyceride lev-
els and maintaining liver cholesterol homeostasis [20]. 
HSPA6 and HSPA7 are family members of the HSP70 
proteins, which are abundantly present in cancer and 
play crucial roles in cancer development, progression, 
and metastasis, clinically resulting in diverse outcomes 
for patient survival [21]. Moreover, cg20935223 was 
significantly associated with multiple lipid traits in the 
outcome EWAS and mapped to CYTH3 gene. CYTH3 
gene encodes Cytohesin-3, which is essential for insu-
lin receptor signaling and body fat regulation via lipid 
excretion [22]. Among novel genes (i.e., not genes with 
nearby lipid-associated CpGs in EWAS Catalog), four of 
them were reported as high-confidence genes that play 
a role in lipid levels, including LPIN2 (near cg07616376 
associated with TG exposure among EA), SCARB1 (near 
cg08458758 associated with TG outcome among EA), 
MSI2 (near cg21376908 associated with TG exposure 
among AA), and SSBP3 (near cg16411101 associated 
with LDL and TC outcome among AA) [23].

We integrated gene expression levels from RNA 
sequencing to further characterize the associations 
between DNAm and blood lipid levels, which strength-
ened this study. For example, we demonstrated that ten 
blood lipid-associated CpGs were associated with lev-
els of expression of the annotated genes, in which seven 
were inversely associated.

Table 4  Significant associations between significant CpGs identified in blood lipid (exposure/outcome) EWAS among survivors of 
European ancestry and the expression of their nearby genes (FDR < 0.05)

SE standard error, FDR false discovery rate

CpG Gene Ensembl ID Nearby gene Effect SE P FDR

cg01620154 ENSG00000061273 HDAC7 − 3.68 0.63 4.43E−08 1.24E−06

cg23475474 ENSG00000168646 AXIN2 − 4.30 0.72 2.54E−08 1.24E−06

cg01758046 ENSG00000117298 ECE1 2.28 0.56 8.54E−05 1.34E−03

cg07507418 ENSG00000124496 TRERF1 − 3.49 0.87 9.55E−05 1.34E−03

cg00543524 ENSG00000100354 TNRC6B − 1.49 0.39 1.69E−04 1.89E−03

cg08641767 ENSG00000107745 MICU1 − 1.74 0.47 2.75E−04 2.57E−03

cg01507280 ENSG00000015676 NUDCD3 3.13 0.92 8.48E−04 6.78E−03

cg01710244 ENSG00000123213 NLN 5.50 1.69 1.45E−03 1.01E−02

cg18807499 ENSG00000121057 AKAP1 − 3.88 1.45 8.27E−03 4.63E−02

cg24040155 ENSG00000162337 LRP5 − 6.12 2.28 8.09E−03 4.63E−02
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However, it is important to note that there are several 
limitations in this study. First, although we innovatively 
designed both exposure and outcome EWAS based on 
our longitudinal follow-up study, the cross-sectional 
nature of the data prevented us from disentangling the 
complex interplay between DNAm and blood lipid lev-
els. Nevertheless, we demonstrated potential regulation 
of gene expression as plausible mechanisms for DNAm 
alterations by performing RNA-sequencing analysis. 
Second, the sample size of survivors of AA was limited, 
that led to the limited power and the exploratory nature 
of the AA EWAS (i.e., some findings might be identified 
by chance). However, differences between EA and AA 
populations as determined by their genetic ancestry were 
observed with no overlapping blood lipid levels associ-
ated CpG between survivors of EA and those of AA. To 
further validate the findings, a larger sample size of AA 
survivors is warranted in the future. Previous methodo-
logical work suggested that more than 1,000 subjects are 
required to achieve 80% power for detection of differen-
tial DNAm at nominal genome-wide significance with an 
odds ratio of 1.15 [24]. Third, we obtained DNAm data at 
only one time point. In the outcome EWAS, all the blood 
lipid levels were measured after blood draw for DNAm, 
so the DNAm may be predictive of blood lipid levels. 
However, to better assess and interpret the changes of 
blood lipids level in exposure EWAS, longitudinal DNAm 
measurement (ideally, after the first blood lipid level 
measurement) is required to correlate changes of DNAm 
between two time points with changes in blood lipid lev-
els. Fourth, the follow-up of our cohort is limited and 
still-ongoing, so there was large proportion of missing 
data in the analytic setting of bi-directional association 
between DNAm and lipid levels which requires multi-
ple clinical assessments of lipid levels. Lastly, we did not 
consider cell type-specific DNAm in the current work. 
Recent research identified that DNAm variation in dis-
eases, such as type 1 diabetes, can be cell type-specific 
[25]. Therefore, in the future, we may deconvolute bulk 
DNAm measured in blood leukocytes into cell type–spe-
cific quantities and analyze the DNAm associations of 
each specific cell type.

Conclusions
Our findings demonstrated distinct DNAm signatures 
associated with blood lipid levels in EA and AA survivors, 
and that an additional set of genes may be implicated in 
lipid metabolism in the survivor population compared 
to the general population. Further longitudinal studies 
are warranted to replicate and validate DNAm biomark-
ers for blood lipid levels and other CHCs to facilitate the 
clinical translation for improved survivorship care.

Methods
Study population
SJLIFE is a retrospectively-constructed cohort with 
periodic evaluations of survivors beyond 5-years from 
childhood cancer diagnosis who were treated at St. 
Jude Children’s Research Hospital. The details of SJLIFE 
cohort study have been previously described [15, 16, 26]. 
Participants complete questionnaires assessing demo-
graphic and clinical factors, and receive comprehensive 
medical and laboratory assessments at each visit to deter-
mine health conditions. In this study, a total of 2,052 sur-
vivors of EA and 370 survivors of AA, with genome-wide 
DNAm profiling data, were included [27]. The ances-
try for each survivor was determined using genotypes 
derived from whole-genome sequencing and population 
admixture analysis as previously described [28]. Primary 
childhood cancer diagnoses, exposure to chemothera-
peutic agents and region-specific radiation dosimetry 
was obtained from medical records. All SJLIFE survivors 
completed at least one comprehensive clinical assess-
ment that included a battery of laboratory tests includ-
ing blood lipid measurement (HDL, LDL, TC, and TG) 
[26]. The blood lipid levels measured before blood sam-
pling for DNAm were used for exposure EWAS and the 
blood lipid levels measured after were used in outcome 
EWAS (Fig. 1). Weighted average was calculated if there 
were multiple measurements, and time intervals between 
two consecutive measurements were used as weights. We 
excluded lipid measurements without fasting. Samples 
with only one lipid measurements (coinciding with the 
time point for the blood draw for DNAm) were excluded 
to ensure that our exposure and outcome EWAS exam-
ined the temporal association between DNAm and blood 
lipid levels. All participants provided written informed 
consent, with institutional review board approval at St. 
Jude Children’s Research Hospital.

DNAm profiling and data processing
Illumina Infinium® MethylationEPIC BeadChip array 
including 850K CpG sites was used to generate genome-
wide DNAm profiling on DNA derived from peripheral 
blood mononuclear cells (PBMC) collected at each fol-
low-up visit for SJLIFE survivors. Details about labora-
tory experimental processes, array scanning, and DNAm 
bioinformatics data analysis were previously described by 
Song et al. [6].

Genotyping based on whole‑genome sequencing (WGS)
Genotyping was based on whole-genome sequencing 
data of blood derived DNA from 4402 SJLIFE survivors 
as previously described [29, 30]. Details about data pro-
cessing, genotyping calling as well as additional genotype 
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quality control criteria and procedures were previously 
described in Dong et al. [31].

Epigenome‑wide association analysis
Bidirectional EWAS was conducted using a multivari-
able linear regression to test the association of DNAm 
levels at each CpG (M-value, continuous variable) with 
blood lipid levels (continuous variable). We performed 
principal components analysis of methylation levels of 
all CpG sites to quantify potential batch effects in the 
DNAm data. The top four principal components were 
determined by the change rate of eigenvalues [6] and 
were included as covariates in the regression model. 
We also performed principal components analysis of 
genotypes derived from WGS to quantify the popula-
tion substructure in EA and AA survivors. The top four 
principal components were determined by the change 
rate of eigenvalues and were included as covariates in 
the regression model. In the exposure EWAS, a multi-
variable linear regression model was used with lipid level 
(weighted average was calculated if there were multiple 
measurements, and time intervals between two consecu-
tive measurements were used as weights) prior to DNA 
sampling as an independent variable and DNAm as a 
dependent variable, adjusting for sex, age at DNA sam-
pling, leukocyte subtype proportions, top four significant 
genetic principal components, top four methylation prin-
cipal components, cancer treatments, median age of lipid 
measurement, BMI, cigarette smoking, and lipid lower-
ing medicine use. All these covariates were potential 
confounding factors for DNAm level of each CpG, and 
hence were considered in the exposure EWAS. Cancer 
treatments included chemotherapy and radiation therapy 
within 5 years from primary childhood cancer diagnosis. 
The chemotherapy agents included classical alkylating 
agent, anthracyclines, corticosteroids, vinca alkaloids, 
asparaginase enzymes, antimetabolites, and epipodo-
phyllotoxins. The region-specific RT included brain-
RT, chest-RT, abdomen-RT, and pelvis-RT. For smoking 
status as a categorical variable, we included three levels 
(“never”, “ever”, and “unknown”) in the model. BMI was 
measured at the same time as DNAm sampling. CpGas-
soc R package was used for the exposure EWAS analyses 
[32]. In the outcome EWAS, a multivariable linear regres-
sion model was used for DNAm (age-, sex-, cell-type-, 
genotype principal components-, and methylation prin-
cipal components- adjusted) as an independent variable 
and lipid level (weighted average was calculated if there 
were multiple measurements, and time intervals between 
two consecutive measurements were used as weights) 
after DNA sampling as a dependent variable. For EA sur-
vivors, a base model without DNAm level but including 
the complete set of covariate (i.e., sex, cancer treatments, 

median age of lipid measurement, BMI, smoking, lipid 
lowering medicine use, lipid level measured at DNA sam-
pling, age at DNA sampling, and polygenic risk score for 
specific lipid level (in EA only) was fitted. Cancer treat-
ment exposures that were not statistically significant 
(P > 0.05) in the base model were subsequently excluded. 
In the final model, DNAm level of each CpG was added 
for the EWAS analysis. For AA survivors, considering 
the smaller sample size and potential overfitting, a simi-
lar but slightly different variable selection approach was 
taken by additionally excluding BMI, smoking status, and 
lipid lowering medicine use if any of these was not statis-
tically significant (P > 0.05) in the base model. Polygenic 
risk score for specific lipid level was constructed by fol-
lowing the same approach described previously [28] for 
EA survivors. Custom R code was used for the outcome 
EWAS analyses. A P value less than 9 × 10−8 was deemed 
as epigenome-wide significance level corresponding to 
5% family-wise error [33].

RNA‑sequence profiling and data processing
RNA was extracted from the same PBMC used for DNA 
methylation profiling. Details of library construction, 
sequencing, and data processing were described previ-
ously [27]. Briefly, paired-end 100 cycle sequencing was 
performed on a NovaSeq 6000 (Illumina). After quality 
control procedures, raw reads from the fastq files were 
aligned to the GRCh38.p13 version (v31) of the refer-
ence human genome from GENCODE through the auto-
mated internal pipeline [34]. The generated bam files 
were sorted and used to build an index using Samtools 
(version 1.9) [35] then used as inputs for counting reads 
using htseq-count [36] with GENCODE v31 gene anno-
tation gtf file.

A total of 165 samples of RNA-seq data (135 EA survi-
vors and 30 AA survivors) were available for further anal-
ysis. After removing transcripts with mean read counts 
across all 165 samples less than 10, a total of 12,882 genes 
were determined to be expressed in PBMC. Transcripts 
per million (TPM) [37] were calculated and transformed 
in the form of log2(TPM + 0.01). The function normalize-
Quantiles in the limma package [38] in R (version 3.6.1) 
was used for quantile normalization [39] of the log-trans-
formed values before further downstream analyses.

Expression quantitative trait methylation
We used the Infinium® MethylationEPIC BeadChip array 
annotations (v1.0 B5) provided by Illumina (https://​
webda​ta.​illum​ina.​com/​downl​oads/​produ​ctfil​es/​methy​
latio​nEPIC/​infin​ium-​methy​latio​nepic-v-​1-0-​b5-​manif​
est-​file-​csv.​zip) to map CpGs to their annotated genes. 
For 135 RNA-seq samples from EA survivors (out of 165 
in total), the normalized expression values of the nearest 

https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b5-manifest-file-csv.zip
https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b5-manifest-file-csv.zip
https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b5-manifest-file-csv.zip
https://webdata.illumina.com/downloads/productfiles/methylationEPIC/infinium-methylationepic-v-1-0-b5-manifest-file-csv.zip
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genes of each lipid-associated CpGs were extracted to fit 
a linear regression against the DNAm levels of each CpG.

Additional statistical and bioinformatic analyses
Quantile–Quantile plots were generated from P-values 
in each EWAS using the R lattice package. GenABEL R 
package [40] was used to estimate genomic inflation fac-
tor (i.e., lambda). We searched lipid-associated CpGs and 
nearby genes identified in our study and compared with 
those previously reported from the EWAS Catalog [17].
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