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Abstract 

Background:  Fetal overgrowth “programs” an elevated risk of type 2 diabetes in adulthood. Epigenetic alterations 
may be a mechanism in programming the vulnerability. We sought to characterize genome-wide alterations in pla‑
cental gene methylations in fetal overgrowth and the associations with metabolic health biomarkers including leptin, 
adiponectin and fetal growth factors.

Results:  Comparing genome-wide placental gene DNA methylations in large-for-gestational-age (LGA, an indicator 
of fetal overgrowth, n = 30) versus optimal-for-gestational-age (OGA, control, n = 30) infants using the Illumina Infin‑
ium Human Methylation-EPIC BeadChip, we identified 543 differential methylation positions (DMPs; 397 hypermethyl‑
ated, 146 hypomethylated) at false discovery rate < 5% and absolute methylation difference > 0.05 after adjusting for 
placental cell-type heterogeneity, maternal age, pre-pregnancy BMI and HbA1c levels during pregnancy. Twenty-five 
DMPs annotated to 20 genes (QSOX1, FCHSD2, LOC101928162, ADGRB3, GCNT1, TAP1, MYO16, NAV1, ATP8A2, LBXCOR1, 
EN2, INCA1, CAMTA2, SORCS2, SLC4A4, RPA3, UMAD1,USP53, OR2L13 and NR3C2) could explain 80% of the birth weight 
variations. Pathway analyses did not detect any statistically significant pathways after correcting for multiple tests. We 
validated a newly discovered differentially (hyper-)methylated gene-visual system homeobox 1 (VSX1) in an inde‑
pendent pyrosequencing study sample (LGA 47, OGA 47). Our data confirmed a hypermethylated gene—cadherin 13 
(CDH13) reported in a previous epigenome-wide association study. Adiponectin in cord blood was correlated with its 
gene methylation in the placenta, while leptin and fetal growth factors (insulin, IGF-1, IGF-2) were not.

Conclusions:  Fetal overgrowth may be associated with a large number of altered placental gene methylations. 
Placental VSX1 and CDH13 genes are hypermethylated in fetal overgrowth. Placental ADIPOQ gene methylations and 
fetal circulating adiponectin levels were correlated, suggesting the contribution of placenta-originated adiponectin to 
cord blood adiponectin.
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Background
Fetal overgrowth, as indicated by high birth weight or 
large-for-gestational-age (LGA), is associated with ele-
vated risks of metabolic syndrome and type 2 diabetes in 
adulthood [1–3]. The fetus may adapt to adverse environ-
mental cues during gestation that may have long-lasting 
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impact on the vulnerability to a number of chronic dis-
eases [4, 5]—a phenomenon known as developmen-
tal “programming.” Such programming in fetal growth 
restriction may be partly attributable to reduced β-cell 
mass [6], whereas less is understood about the program-
ming mechanisms in excessive fetal growth.

Epigenetic changes especially in DNA methylation 
regulating gene expression play a central role in fetal 
development [7] and may be a mechanism in develop-
mentally programming the vulnerability to metabolic 
syndrome related disorders. During fetal development, 
the placenta, through the production of various enzymes 
and hormones, plays an important role in regulating 
fetal growth and development [8]. Emerging studies in 
humans have associated birth weight with placental DNA 
methylation, but most of these studies have been focused 
on gene-specific methylation changes in the placentas in 
small-for-gestational-age (SGA) newborns. We are aware 
of only two small studies (n < 20) [9, 10] on differentially 
methylated genes in LGA in the placenta. No studies 
have assessed the associations between LGA-associated 
placental differential gene methylations and fetal circu-
lating levels of metabolic health biomarkers. Therefore, 
we sought to evaluate placental gene DNA methylation 
alterations in LGA, and explore the associations with 
fetal circulating (cord blood) metabolic health biomark-
ers including leptin, adiponectin and fetal growth factors 
[insulin, insulin-like growth factor I (IGF-I) and IGF II].

Results
Characteristics of study subjects
Table  1 presents maternal and neonatal characteristics 
of the 30 pairs of study subjects. Comparing LGA versus 
birth weight optimal-for-gestational-age (OGA) control 
subjects, there were no significant differences in mater-
nal age, ethnicity, parity, education, smoking, gestational 
hypertension, family history of hypertension, family his-
tory of diabetes, maternal blood glycated hemoglobin 
(HbA1c) levels during the 2nd and 3rd trimesters of preg-
nancy, and gestational age at delivery. Women bearing 
a LGA fetus had higher pre-pregnancy body mass index 
(BMI mean: 24.0 vs. 22.0  kg/m2) and were more likely 
to have a cesarean section delivery (73.3% vs. 26.7%). As 
expected, average birth weight and birth length were sub-
stantially higher in LGA vs. OGA newborns.

LGA newborns had significantly higher cord blood 
IGF-I concentrations (mean: 88.8 vs.68.6  ng/mL, 
P = 0.006), and lower HMW adiponectin concentrations 
(14.6 vs. 20.5  μg/mL, P = 0.014) (Table  1). There were 
no significant differences in cord blood insulin, C-pep-
tide, proinsulin, leptin, IGF-II and total adiponectin 
concentrations.

Differentially methylated positions (DMPs)
Adjusting for maternal age, pre-pregnancy BMI, whole 
blood HbA1c levels at the second and third trimesters 
of pregnancy and the identified four principal compo-
nents (from principal component analysis) representing 

Table 1  Characteristics of study subjects in a matched (1:1) 
study of 30 pairs of term placentas in LGA and OGA newborns in 
the Shanghai birth cohort

Data presented are n (%) for categorical variables and mean ± SD for continuous 
variables

LGA large-for-gestational-age (birth weight > 90th percentile); OGA optimal-
for-gestational-age (birth weight 25th–75th percentiles); BMI body mass index, 
IGF-I insulin-like growth factor I, IGF-II insulin-like growth factor II, HMW, high 
molecular weight

*P values in t tests for differences in means (for continuous variables) or chi-
square tests for differences in proportions (categorical variables) between the 
two groups. P values for biomarkers were from paired t tests. P values in bold: 
P < 0.05

LGA (n = 30) OGA(n = 30) P*

Mothers

Age (years) 29.5 ± 3.5 29.8 ± 3.2 0.78

 > 35 y 2 (6.7) 2 (6.7) 1.00

Ethnicity, Han 30 (100.0) 30 (100.0) 1.00

Education (university) 19 (63.3) 20 (66.7) 0.79

Primiparity 24 (60.0) 24 (60.0) 1.00

Pre-pregnancy BMI (kg/m2) 24.0 ± 3.4 21.2 ± 3.8 0.006
Obesity (BMI > 28) 5 (19.2) 2 (7.4) 0.20

Gestational hypertension 3 (10.0) 0 (0.0) 0.08

Family history of diabetes 4 (13.3) 2 (6.7) 0.39

Family history of hyperten‑
sion

10 (33.3) 14 (46.7) 0.29

Smoking in pregnancy 1 (3.3) 0 (0.0) 0.31

HbA1c in second trimester 5.0 ± 0.5 5.0 ± 0.3 0.66

HbA1c in third trimester 5.1 ± 0.4 5.1 ± 0.3 0.77

Newborns

Cesarean delivery 22 (73.3) 8 (26.7)  < 0.001
Sex, male 17 (56.7) 17 (56.7) 1.00

Gestational age (weeks) 39.5 ± 0.8 39.6 ± 0.8 0.66

Preterm birth (< 37 weeks) 0 (0.0) 0 (0.0)

Birth weight (g) 4276.2 ± 340.7 3390.2 ± 264.7  < 0.001
Z score 2.37 ± 0.85 0.13 ± 0.66  < 0.001
Birth length (cm) 51.14 ± 0.77 50.05 ± 0.68  < 0.001
Z score 1.12 ± 0.78 0.03 ± 0.71  < 0.001
Cord blood biomarkers

Insulin (pmol/L) 33.6 ± 26.3 40.1 ± 43.4 0.48

Proinsulin (pmol/L) 32.5 ± 32.0 24.4 ± 22.1 0.26

C-Peptide (pmol/L) 291.0 ± 168.9 286.8 ± 161.1 0.92

IGF-I (ng/ml) 88.8 ± 30.4 68.6 ± 22.9 0.006
IGF-II (ng/ml) 196.8 ± 28.5 191.4 ± 32.8 0.51

Leptin (ng/ml) 12.4 ± 8.5 9.4 ± 6.7 0.15

Adiponectin, HMW (μg/mL) 14.6 ± 7.0 20.5 ± 10.4 0.01
Adiponectin, Total (μg/mL) 37.0 ± 16.8 40.6 ± 18.4 0.43
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placental cell types (other co-variables were excluded 
since they were similar and did not affect the com-
parisons), a total of 543 CpG sites were differentially 
methylated positions (DMPs) comparing LGA and 
OGA groups accounting for multiple tests with false 
discovery rate (FDR) < 5% and absolute methylation dif-
ference (delta beta) > 0.05, including 397 hypermethyl-
ated and 146 hypomethylated DMPs (Fig. 1, Additional 
file  2: Table  S1). These loci were distributed over 316 
genes (232 hypermethylated genes, 84 hypomethylated 
genes).

The top 50 DMPs (25 hypermethylated, 25 hypometh-
ylated CpG sites) are presented in Tables  2 and 3. The 
hypermethylated loci were annotated to 14 genes (EN2, 
LOC283999, CADM2, ADGB, KRTAP13-4, CRMP1, 
GFRA1, NRXN1, VSX1, PPFIA2, PLXNC1, DNAJB5, 
DAOA and ZPLD1). The hypomethylated sites were 
annotated to 13 genes (FAM155A, C21orf34, WNT5B, 
DTNA, OPRM1, SORCS3, KIF26B, SLCO3A1, KIF26B, 
LOC284930, SLIT3, NXPH1 and HLA-L).

Our placental epigenome data validated that the cad-
herin 13(CDH13) gene was hypermethylated in LGA 

Fig. 1  Volcano plot of differentially methylated positions (DMPs) in placental gene DNAs comparing large-for-gestational-age (LGA, birth 
weight > 90th percentile) versus optimal-for-gestational-age (OGA, 25–75th percentiles, control) newborns. DMPs in the upper left and right 
quadrants (colored) are differentially methylated at false discovery rate (FDR) < 5%
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as reported in a previous epigenome-wide association 
study [10] (our study: CDH13 methylation increased 
by 0.05 in LGA; the previous study: CDH13 methyla-
tion increased by 0.21 in LGA, according to the pub-
lication and communications with the corresponding 
author).

Pyrosequencing validation study
We sought to validate a few differentially methylated 
CpG sites with relatively large methylation differences 
between LGA and OGA groups in the epigenome-wide 
association analysis. The study subjects were an inde-
pendent random sample of 47 pairs of LGA and OGA 
newborns matched by sex and gestational age from 
the Shanghai birth cohort (Additional file  3: Table  S2). 
Women bearing a LGA fetus had higher pre-pregnancy 
BMI and were more likely to be have a cesarean section 
delivery, while other maternal characteristics were simi-
lar in LGA and OGA groups. As expected, average birth 

weight and birth length were substantially higher in LGA 
versus OGA newborns.

Three CpG sites were selected among the top 25 DMPs 
in the pyrosequencing validation study. The CpG site 
(cg11700298) annotated to cell adhesion molecule 2 
(CADM2)] was selected because polymorphism in this 
gene has been associated with obesity and type 2 dia-
betes [11, 12]. We randomly selected 2 more CpG sites 
among the top 25 DMPs in the validation study. They 
were cg17650274 [annotated to gene visual system home-
obox  1 (VSX1)] and cg17512353 [annotated to gene 
major histocompatibility complex, class I, L (HLA-L)]. 
The pyrosequencing validation vs. epigenome-wide study 
results for the 3 DMPs are shown in Additional file  3: 
Table S3; only one DMP (VSX1 gene) was validated in the 
pyrosequencing study.

GO and KEGG pathways
The GO analysis showed that DMPs were mostly 
enriched in axon development (biological processes), 

Table 2  Top 25 hypermethylated sites in placental DNAs in LGA versus OGA newborns

LGA, large-for-gestational-age (birth weight > 90th percentile); OGA = optimal-for-gestational-age (birth weight 25th–75th percentiles)

The gene name in bold, the CpG site was selected in the pyrosequencing validation study

CpG Gene Gene
Group

Adjusted
P

Avg_
LGA

Avg_
Con

Delta
Beta

cg22733133 EN2 Body 0.045 0.53 0.34 0.19

cg09473315 LOC283999 Body 0.038 0.32 0.14 0.18

cg20159490 0.040 0.70 0.52 0.18

cg27655158 0.045 0.34 0.17 0.17

cg20065768 0.036 0.66 0.50 0.16

cg11700298 CADM2 5′UTR; Body 0.036 0.76 0.60 0.16

cg17470674 0.004 0.82 0.66 0.16

cg01359081 ADGB Body 0.014 0.47 0.31 0.16

cg17722823 KRTAP13-4 TSS200 0.045 0.51 0.36 0.15

cg09562045 CRMP1 Body;TSS200 0.033 0.28 0.13 0.15

cg27295595 0.044 0.60 0.45 0.15

cg06039355 GFRA1 5′UTR;TSS1500; 0.026 0.44 0.30 0.14

cg06292076 0.038 0.44 0.30 0.14

cg23524195 GFRA1 TSS1500 0.039 0.30 0.17 0.13

cg15134685 NRXN1 1stExon;5’UTR;Body 0.043 0.38 0.25 0.13

cg08045176 0.038 0.61 0.48 0.13

cg17650274 VSX1 TSS1500 0.018 0.54 0.41 0.13

cg20926288 PPFIA2 5′UTR​ 0.032 0.82 0.69 0.13

cg13565656 PLXNC1 1stExon 0.049 0.28 0.15 0.13

cg22916722 0.015 0.23 0.10 0.13

cg14645317 DNAJB5 TSS1500 0.045 0.42 0.29 0.13

cg01735366 0.030 0.79 0.66 0.13

cg14480194 0.006 0.38 0.26 0.12

cg25623522 DAOA TSS1500; 0.031 0.71 0.58 0.12

cg00657674 ZPLD1 3′UTR​ 0.027 0.62 0.50 0.12
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motile cilium (cellular components), metal-ion trans-
membrane transporter activity (molecular functions) 
(Additional file  2: Table  S4). KEGG pathway analysis 
showed that DMPs might mainly be involved in 9 path-
ways including GnRH secretion, protein digestion and 
absorption (Additional file  2: Table  S5). However, after 
correction for multiple tests, the results were not statisti-
cally significant for all pathways.

Ingenuity pathway analysis (IPA)
IPA identified 16 canonical pathways (Fisher’s exact crude 
P < 0.05, Additional file 2: Table S6). None of the pathways 
achieved statistical significance after Benjamini–Hoch-
berg correction for multiple tests. Differentially methyl-
ated genes were most enriched in the G-Protein Coupled 
Receptor Signaling (9 genes, crude P < 0.05). There was 
also some evidence of enrichment (crude P < 0.05) in the 
Pentose Phosphate (Oxidative Branch) and Estrogen Bio-
synthesis pathways.

Differentially methylated regions (DMRs)
To reduce data dimensionality and identify differential 
methylations over gene areas, we analyzed the methyla-
tion data for differentially methylated regions (DMRs) by 
DMRcate and comb-p. The DMRcate program identified 
135 DMRs at FDR < 5% between LGA and OGA groups 
(Additional file  2: Table  S7), and these DMRs were anno-
tated to 94 genes, while the other DMRs were located in the 
OpenSea areas. The comb-p program identified 31 DMRs 
with Sidak corrected P < 0.05 (Additional file 2: Table S8), 15 
DMRs were annotated to genes, while the other DMRs were 
located in the OpenSea areas. Three DMRs were identified 
by both DMRcate and comb-p, and these loci were anno-
tated to 3 genes (PRMT2, BACE1 and TRAK2; Table 4).

Correlations of DMPs with birth weight and cord blood 
biomarkers
Among the 543 DMPs, 494 CpG sites were corre-
lated with birth weight z score (crude P < 0.05), and the 

Table 3  Top 25 hypomethylated sites in placental DNAs in LGA vs. OGA newborns

LGA, large-for-gestational-age (birth weight > 90th percentile); OGA = optimal-for-gestational-age (birth weight 25th-75th percentiles)

The gene name in bold, the CpG site was selected in the pyrosequencing validation study

CpG Gene Gene
Group

Adjusted
P

Avg_
LGA

Avg_
OGA

Delta
Beta

cg01799062 FAM155A Body 0.042 0.49 0.65 − 0.16

cg22120852 0.039 0.58 0.73 − 0.15

cg10068793 C21orf34 TSS1500 0.036 0.53 0.68 − 0.15

cg02824489 WNT5B Body 0.036 0.65 0.79 − 0.14

cg20509944 DTNA TSS200;5’UTR​ 0.034 0.54 0.68 − 0.14

cg14348757 OPRM1 1stExon; Body 0.034 0.31 0.45 − 0.14

cg03917817 0.037 0.56 0.69 − 0.13

cg15489003 0.029 0.26 0.39 − 0.13

cg17718664 SORCS3 TSS1500;Body 0.016 0.48 0.61 − 0.13

cg22492024 0.033 0.45 0.57 − 0.12

cg11912591 KIF26B Body 0.044 0.25 0.37 − 0.12

cg10500641 0.025 0.71 0.83 − 0.13

cg09801894 0.040 0.66 0.78 − 0.12

cg06631347 SLCO3A1 Body 0.045 0.71 0.83 − 0.12

cg08886301 KIF26B Body 0.025 0.35 0.46 − 0.11

cg25379995 LOC284930 Body 0.029 0.52 0.63 − 0.11

cg02255236 SLIT3 Body 0.040 0.81 0.92 − 0.11

cg10443049 NXPH1 Body 0.040 0.18 0.29 − 0.11

cg27538194 0.049 0.43 0.54 − 0.11

cg10104921 0.045 0.50 0.61 − 0.11

cg17512353 HLA-L Body 0.034 0.52 0.62 − 0.10

cg03370491 0.013 0.54 0.64 − 0.10

cg07409443 0.035 0.44 0.54 − 0.10

cg13306032 0.039 0.21 0.31 − 0.10

cg10358197 0.048 0.46 0.56 − 0.10
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correlations for 486 DMPs remained statistically signifi-
cant after correction for multiple tests (Additional file 2: 
Table S9). These 486 DMPs were annotated to 286 genes. 
In LASSO regression identifying the most important 
DMPs, 25 DMPs were selected and could explain 80.2% 
of the variations in birth weight (z) (Additional file  2: 
Table S10). These 25 DMPs were annotated to 20 genes 
(QSOX1, FCHSD2, LOC101928162, ADGRB3, GCNT1, 
TAP1, MYO16, NAV1, ATP8A2, LBXCOR1, EN2, INCA1, 
CAMTA2, SORCS2, SLC4A4, RPA3, UMAD1,USP53, 
OR2L13 and NR3C2) (Additional file 2: Table S10).

Additional file  2: Table  S11 presents the correlations 
of DMPs with cord blood insulin, proinsulin, C-peptide, 
IGF-II, IGF-I, leptin, total or HMW adiponectin. All 
these correlations did not reach statistical significance 
after Benjamini and Hochberg correction for multiple 
tests.

Gene‑specific correlations of placental DNA methylations 
and cord blood biomarkers
Additional file  3: Table  S12 presents the gene-specific 
correlations of placental gene CpG sites and cord blood 
biomarkers. For INS-IGF2/IGF2AS/IGF2, methyla-
tion levels in four CpG sites (cg08014499, cg21728792, 
cg05203776 and cg22225943) were positively correlated 
with cord blood insulin (r = 0.26 to 0.28, crude P = 0.03 to 
0.05), and in one CpG site positively correlated with cord 
blood C-peptide (cg17434309, r = 0.28, crude P = 0.03), 
proinsulin (cg17434309, r = 0.31, crude P = 0.02) and 
IGF-II (cg23889607, r = 0.30, crude P = 0.02). Methyla-
tion levels in four CpG sites (cg13928782, cg21574853, 
cg07096953 and cg20088847) were negatively corre-
lated with cord blood IGF-II (r = − 0.30 to − 0.35, crude 
P = 0.007 to 0.024), and in one CpG site negatively corre-
lated with cord blood proinsulin (cg13670288, r = − 0.26, 
crude P = 0.049). All these correlations, however, did not 
reach statistical significance after correction for multiple 
tests.

Several correlations between ADIPOQ gene meth-
ylation levels and cord blood total or HMW adiponectin 

remained statistically significant after correction for 
multiple tests. Total adiponectin was correlated with 
cg16126291 (r = − 0.35, adjusted P = 0.03), cg02235049 
(r = − 0.32, adjusted P = 0.047), cg10681525 (r = − 0.40, 
adjusted P = 0.01) and cg18537894 (r = 0.40, adjusted 
P = 0.01). HMW adiponectin was correlated with 
cg16126291 (r = − 0.42, adjusted P = 0.01) and 
cg18537894 (r = 0.36, adjusted P = 0.036).

Discussion
Main findings
We observed 543 DMPs in placental DNA in LGA—an 
indicator of fetal overgrowth, and identified 25 DMPs 
annotated to 20 genes that could explain the majority of 
birth weight variations. We validated that the VSX1 gene 
was hypermethylated in fetal overgrowth in an inde-
pendent pyrosequencing study sample, and confirmed 
a hypermethylated gene (CDH13) in fetal overgrowth 
reported in a previous epigenome-wide association study. 
Three DMRs were identified and annotated to three 
genes (PRMT2, BACE1 and TRAK2). We did not detect 
any specific significant pathway after correction for mul-
tiple tests. Placental gene methylation and fetal circulat-
ing hormone biomarkers were correlated for adiponectin, 
but not for leptin and fetal growth factors.

Data interpretation and comparisons with findings 
in previous studies
Our study is the largest in assessing genome-wide pla-
cental DNA methylations in LGA. A previous study in 27 
LGA and 19 appropriate for gestational age (AGA) con-
trols observed no gene methylation alterations in LGA 
in an epigenome-wide association analysis of cord tissue 
DNA methylations using the Infinium Human Meth-
ylation 450 K BeadChips [13]. Another epigenome-wide 
association study (5 LGA, 6 AGA controls) reported no 
differences in placental DNA methylation levels using 
reduced representation bisulfite sequencing [10]. How-
ever, a large study (n = 1023) assessing placental global 
DNA methylation by LC–MS/MS demonstrated that 

Table 4  Placental DNA differentially methylated regions (DMRs) in LGA vs. OGA newborns identified in both comb-p and DMRcate 
package analyses

LGA, large-for-gestational-age (birth weight > 90th percentile); OGA = optimal-for-gestational-age (birth weight 25th–75th percentiles)

DMR CpGs of
the DMR

Direction of association Nearby
gene

Gene
group

Chr21:48,078,809–48,079,700 cg01123035, cg22256816  + / +  PRMT2 Body

chr11:117,166,784–117,167,825 cg22974118, cg03026698,
cg27313579, cg01814586,
cg07189750

 ± / + / ±  BACE1 TSS1500;Body

Chr2:202,286,912–202,287,373 cg01561344, cg16375762  − / +  TRAK2 5’UTR​
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LGA displayed significantly higher global placental DNA 
methylation compared to AGA [14]. Another study (6 
LGA and 6 AGA controls) reported that among 17,244 
methylation variable positions, 705 were hypermethyl-
ated (> 1.7-fold) and 351 were hypomethylated (< 0.5-
fold) in LGA in placental DNA methylations using the 
Infinium Human Methylation 850  K BeadChips [9]. 
These results are consistent with our data: Hypermethyl-
ated sites (n = 397) are more frequent than hypomethyl-
ated sites (n = 146) in LGA.

DMPs
We identified 486 DMPs in placental gene DNA compar-
ing LGA versus controls. Many of these DMPs (165/486) 
demonstrated weak-to-moderate correlations (r: 0.25 to 
0.45) with a fetal growth factor (IGF-I, IGF-II, insulin), 
leptin or adiponectin in cord blood in crude correlation 
analyses (Additional file 2: Table S11), but none reached 
statistical significance after correction for multiple tests. 
The placenta is a transient fetal organ, and its gene 
expression might affect fetal growth through influencing 
the function of the placenta, rather than through affecting 
fetal circulating levels of growth factors. This may explain 
the lack of correlation between placental IGF-I gene 
methylations and circulating/fetal IGF-I concentrations, 
because IGF-I is produced in fetal liver cells only. Gene 
methylation patterns are tissue-specific. A specific gene’s 
methylation pattern in the placenta might unlikely reflect 
the gene’s methylation pattern in other fetal tissues espe-
cially if the gene’s expression is tissue-specific. For genes 
that are expressed in multiple tissues, one might specu-
late that some methylation patterns may be shared across 
multiple tissues. It is unknown which gene’s specific 
methylation patterns in the placenta are present in other 
fetal tissues. The implications of placental gene methyla-
tion signatures for short- and long-term metabolic health 
in the offspring are largely unknown and remain to be 
understood. Emerging evidence suggests the prognostic 
value of placental gene methylations on long-term meta-
bolic health in children: Placental lipoprotein lipase gene 
DNA methylation alterations have been correlated with 
fat mass in children at age 5 years [15].

Notably, 25 DMPs annotated to 20 genes (QSOX1, 
FCHSD2, LOC101928162, ADGRB3, GCNT1, TAP1, 
MYO16, NAV1, ATP8A2, LBXCOR1, EN2, INCA1, 
CAMTA2, SORCS2, SLC4A4, RPA3, UMAD1, USP53, 
OR2L13 and NR3C2) could explain over 80% of the birth 
weight variations. Some of these genes have been impli-
cated in the regulation of glucose homeostasis, β cell 
function, adipose tissue or muscle growth. FCHSD2 and 
SLC4A4 have been associated with β cell function[16, 
17], while USP53 has been related to adiposity homeo-
stasis [18]. SLC4A4 knockout mice were protected from 

diet-induced metabolic stress and β cell dysfunction [17] 
Loss of FCHSD2 was associated with impaired insulin 
secretion in a human-derived β cell study [16]. Elevated 
USP53 gene RNA expression in adipose tissue has been 
associated with good weight control in obese subjects 
[18]. The QSOX1 gene has been implicated in cortical 
bone accrual and strength in mice [19]. The ADGRB3 
gene may be involved in myoblast fusion in the muscle of 
vertebrates [20] and implicated in insulin secretion from 
pancreatic β-cells [21]. Adipocyte-specific overexpres-
sion of NR3C2 exacerbates metabolic syndrome in mice 
[22]. However, there have been no reports on whether 
these genes are correlated with fetal growth in humans or 
animals. Our data on placental gene methylations suggest 
the importance of these 20 genes for fetal growth, prob-
ably through their impacts on placental function that 
deserves further mechanistic studies. A lack of replicable 
findings in genome-wide association studies is a common 
problem in data interpretation concerning the robust-
ness of positive findings. It is noteworthy that our data 
validated a hypermethylated gene (CDH13) reported in a 
previous epigenome-wide association study [10].

CDH13 (cadherin 13), a 95 kd glycoprotein, is an atypi-
cal member of the cadherin family of cell adhesion mol-
ecules [23]. CDH13 may serve as an adiponectin receptor 
and has been associated with plasma adiponectin and the 
risk of type 2 diabetes [24, 25]. CDH13 levels in adipose 
tissue and the circulation are decreased in obese mice 
and humans and are restored by weight loss in humans 
[26]. Therefore, CDH13 is considered as a marker of fat 
tissue plasticity that might reflect the health status of adi-
pose tissue. We observed that CDH13 was hypermeth-
ylation in LGA, consistent with the results in a previous 
study [10]. Tyrberg and colleagues reported T-cadherin 
(CDH13) as a novel component of insulin granules, sug-
gesting that it might contribute to the regulation of insu-
lin secretion independently of adiponectin [27]. It would 
be interesting to determine whether altered placental 
CDH13 gene hypermethylation may be an epigenetic bio-
marker of the elevated risk of metabolic dysfunctional 
disorders in LGA subjects in long-term follow-up studies.

Placental VSX1 gene was observed to be hypermeth-
ylated in LGA in both the epigenome-wide association 
analysis and pyrosequencing validation study. We failed 
to confirm the other two DMPs identified from the epi-
genome-wide association analysis in the pyrosequencing 
validation study, underscoring the uncertain nature of 
genome-wide discovery research. Despite best efforts in 
accounting for potential confounding effects and biases, 
unmeasured confounding effects might weaken the 
power of genome-wide association studies in identifying 
the true differences.
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The VSX1 (visual system homeobox  1) gene encodes 
a paired-like homeodomain transcription factor and is 
associated with eye development [28]. VSX1 gene vari-
ants may play an important role in the development of 
keratoconus [29]. Our data suggest hypermethylation of 
placental VSX1 gene in fetal overgrowth, and long-term 
follow-up studies are required to determine its potential 
significance as an epigenetic biomarker for metabolic 
health in later life.

DMRs
Three DMRs in LGA were identified in both DMRcate 
and comb-p analyses, which were annotated to three 
metabolic health relevant genes—BACE1, TRAK2 and 
PRMT2.

BACE1 (β-site APP-cleaving enzyme 1) is expressed 
in pancreas, liver and skeletal muscle [30]. BACE1 may 
play an important role in glucose metabolism; BACE1-
deficient liver and skeletal muscle exhibit improved 
insulin sensitivity and glucose homeostasis in mice [31]. 
Neuronal human BACE1 knock-in in mice induced sys-
temic diabetes [32]. High glucose levels might upregulate 
BACE1 expression via ROS generation in SK-N-MC cells 
[33]. Moreover, the BACE1 gene polymorphism has been 
associated with the risk of diabetes in PIMA Indians [34]. 
Thus, alterations in BACE1 levels may be involved in the 
pathophysiology of diabetes.

Trafficking protein kinesin binding 2 (TRAK2) is a reg-
ulator of protein and organelle trafficking through its role 
as a kinesin and dynein binding protein, and it may func-
tion in neuronal mitochondrial trafficking [35]. TRAK2 
has been reported as a novel regulator of ATP-binding 
cassette, sub-family A member 1 (ABCA1) expression, 
cholesterol efflux and HDL biogenesis, and therefore, 
TRAK2 may be an important target in the treatment of 
cardiovascular disorders [36].

Protein arginine methyltransferase 2 (PRMT2)—a type 
I enzyme, contains a highly conserved catalytic Ado-Met 
binding domain and unique Src homology (SH) 3 domain 
that binds proteins with proline-rich motifs [37]. Genetic 
deletion of PRMT2 has been associated with a lean, lep-
tin-hypersensitive “anti-diabetes-like” phenotype in mice 
[38].

Our results suggest altered methylations in placental 
PRMT2, BACE1 and TRAK2 genes in fetal overgrowth. It 
remains to be determined whether they could be promis-
ing epigenetic biomarkers of the increased risk of meta-
bolic dysfunctional disorders in LGA subjects in later life.

Pathways
The IPA results suggest the enrichment of three genes 
in the “Pentose Phosphate” and “Estrogen Biosynthesis” 
pathways. A smaller study (6 LGA and 6 controls) in cord 

blood DNA reported 27 genes enriched in “Diseases and 
Disorders” terms [39] without pathway analysis. There 
were no consistent findings between our GO and KEGG 
pathway results and those reported in a previous study 
[9]. To be noted, all pathways did not reach statistical sig-
nificance after correction for multiple tests in our study. 
Previous studies did not adjust for multiple tests. Larger 
studies are warranted to clarify whether any specific 
pathway may be affected in placental gene methylations 
in LGA.

Associations with cord blood biomarkers
Placental gene methylations were correlated with fetal 
circulating (cord blood) hormone levels for adiponectin, 
but not for leptin and fetal growth factors after correc-
tion for multiple tests. Bouchard and colleagues reported 
that placental ADIPOQ gene methylation levels were 
negatively correlated with maternal circulating adiponec-
tin concentrations [40]. We are unaware of any report 
on placental ADIPOQ methylation and cord blood adi-
ponectin. In our data, total adiponectin was inversely 
correlated with ADIPOQ gene methylations at 3 CpG 
sites (cg16126291, cg02235049 and cg10681525), and 
HMW adiponectin was negatively correlated with meth-
ylations at 2 CpG sites (cg16126291 and cg02235049). 
Fetal/cord blood adiponectin levels are attributable to 
adiponectin secretion by both fetal adipose tissue (brown 
adipocytes) and vascular cells [41–43]. Adiponectin is 
highly expressed in vascular endothelial cells of fetal cap-
illaries [41]. There is no evidence of maternal origin of 
adiponectin in fetal circulation [42]. It remains contro-
versial whether the human placenta secrets adiponectin 
[44]. The placenta is a fetal tissue rich in blood vessels 
and capillaries which may explain the placental “produc-
tion” of adiponectin. In our study, cord blood adiponectin 
concentrations were negatively correlated with multiple 
placental ADIPOQ gene methylation sites, suggesting the 
contribution of placenta-originated adiponectin in cord 
blood adiponectin.

Limitations
There were several study limitations. First, the sample 
size was relatively modest (but still the largest placenta 
epigenome study on LGA thus far). The study might be 
under-powered to detect small differences, and we could 
not rule out the possibility of false positive findings which 
may be present in all (epi)genome-wide association stud-
ies. This might explain the lack of consistent findings in 
previous (epi)genome-wide association studies and that 
only one of the three selected DMPs was validated in an 
independent sample. Large studies are warranted to vali-
date the findings. Second, the DNA isolated from placen-
tal tissues comes from multiple cell types that might have 
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not been adequately accounted for using the principal 
component analysis. This may limit the capacity to iden-
tify the true differences. Third, the study was limited to 
Chinese subjects. More studies in other ethnic groups are 
warranted to understand the generalizability of the study 
findings.

Conclusions
Fetal overgrowth appears to be associated with altered 
methylations in a large number of placental genes. Pla-
cental CDH13 and VSX1 genes are hypermethylated 
in fetal overgrowth. Long-term follow-up studies are 
required to determine whether these differentially meth-
ylated genes may be promising epigenetic biomarkers of 
the elevated risk of metabolic dysfunctional disorders in 
later life in subjects with fetal overgrowth. Placental ADI-
POQ gene methylations and fetal circulating adiponectin 
levels were correlated, suggesting the contribution of pla-
centa-originated adiponectin in cord blood adiponectin.

Methods
Study design
We conducted a nested case–control study in the Shang-
hai birth cohort (SBC) [45]. LGA was defined as birth 
weight > 90th percentile, according to the Chinese sex- 
and gestational age-specific birth weight standards [46]. 
Controls were optimal-for-gestational-age (OGA, birth 
weight 25th-75th percentiles) newborns. Each LGA was 
matched (1:1) to an OGA newborn by sex and gesta-
tional age (within 7 days) at delivery. The study subjects 
(30 pairs of LGA/OGA) were randomly sampled from all 
eligible LGA and OGA newborns in the SBC. All cases 
and controls were term births with normal Apgar score 
(> 7), and all mothers were free of severe chronic diseases 
before pregnancy (e.g., essential hypertension, type 1 or 
2 diabetes), severe pregnancy complications (e.g., preec-
lampsia) or life-threatening conditions.

Placenta and cord blood samples
Trained research staff collected cord blood and placental 
tissue samples following standardized operating proce-
dures. Each of the four placenta quadrants was sampled 
approximately 1.5  cm away from the umbilical cord 
insertion from the fetal side of the placenta. Fetal mem-
branes and visible large vessels were removed, and phos-
phate-buffered saline was used to wash placenta samples 
before separating into maternal- and fetal-side samples. 
Placental and cord blood samples were kept at 4℃ in a 
refrigerator between 0 and 4 h before stored at − 80  °C 
in a freezer until DNA extraction. There were no reports 
of specimen handling protocol violations. Genomic DNA 
was extracted from fetal-side placental samples using 

DNeasy & Tissue Kit (Qiagen) following the manufac-
turer’s manual. Purity was examined by measuring the 
A260:A280 ratio (mean ± SD: 1.89 ± 0.02; range 1.85–1.98).

All collected maternal and cord blood samples (in 
EDTA tubes for plasma, in tubes without any coagulant 
for serum) were kept on ice, stored temporarily in a 4 °C 
refrigerator and centrifuged (4000 r/min for 10  min) 
within 2  h after the specimen collection. The separated 
serum and plasma samples were stored in multiple ali-
quots at − 80 °C until assays.

Genome‑wide DNA methylation measurements
Prior to DNA isolation, placental tissue samples were 
homogenized for 1 min at 6000 rpm × 3 (5 min on ice in 
between intervals) in lysis buffer (180 μl buffer ATL with 
20  μl proteinase K). Placental DNA was then isolated 
using the DNAeasy kit (Qiagen, UK, Catalog # 69,504) 
according to manufacturer’s instructions. DNA (500 ng) 
was treated with bisulfate using an EZ DNA Methylation 
Gold kit (Zymo Research, Irvine, CA, Catalog # D5006) 
according to the manufacturer’s instructions. DNA 
methylations were measured by Illumina Human Meth-
ylation EPIC BeadChip (Illumina, Inc., San Diego, CA, 
USA), which provides genome-wide coverage contain-
ing > 850,000 CpG methylation sites. The experiments 
followed the manufacturer’s protocol (https://​emea.​
suppo​rt.​illum​ina.​com/​conte​nt/​dam/​illum​ina-​suppo​rt/​
docum​ents/​docum​entat​ion/​chemi​stry_​docum​entat​ion/​
infin​ium_​assays/​infin​ium_​hd_​methy​lation/​infin​ium-​hd-​
methy​lation-​guide-​15019​519-​01.​pdf ). Samples were ran-
domly placed in different slides in the experiments.

Package “minfi” was used to import and preprocess 
raw methylation data. For all the study samples, the pro-
portion of CpG sites with detection P value > 0.01 was 
less than 5%. Thus, all samples were included in subse-
quent data analyses. We excluded 2,677 CpG sites with 
detection P value > 0.01 in more than 5% of all the sam-
ples. Functional normalization was applied to remove 
between-array (unwanted) variations using control 
probes [47]. We further excluded 41,710 CpG sites with 
bead count < 3 in more than 5% of all the samples, 18,487 
annotated to sex chromosomes, 83,460 SNPs inside the 
probe body, in the CpG interrogation site, or at the sin-
gle nucleotide extension with a minor allele frequency 
of ≥ 0.05, 33,202 suspected cross-reactive sites [48], and 
2301 non-CpG sites, leaving 684,022 CpG sites in sub-
sequent data processing. Beta-mixture quantile dila-
tion (BMIQ) was then applied to adjust for type 2 probe 
bias [49]. We filtered out sites with average methylation 
(β value) < 5% or > 95% (n = 183,267), as extreme β val-
ues tended to have low reproducibility [50], and small-
to-moderate changes in methylation levels may not 

https://emea.support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd_methylation/infinium-hd-methylation-guide-15019519-01.pdf
https://emea.support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd_methylation/infinium-hd-methylation-guide-15019519-01.pdf
https://emea.support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd_methylation/infinium-hd-methylation-guide-15019519-01.pdf
https://emea.support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd_methylation/infinium-hd-methylation-guide-15019519-01.pdf
https://emea.support.illumina.com/content/dam/illumina-support/documents/documentation/chemistry_documentation/infinium_assays/infinium_hd_methylation/infinium-hd-methylation-guide-15019519-01.pdf
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have much biologically significant implications at both 
extremes. A total of 500,755 CpG sites were retained in 
the final epigenome-wide association analysis. Poten-
tial bias due to different slides was adjusted for using the 
ComBat function in sva package [51]. The density plot 
did not reveal significant differences in beta value distri-
butions between LGA and OGA (Additional file  1: Fig-
ure S1). Beta values were transformed to M values using 
lumi package in differential methylation analysis since M 
values had better statistical performance [52]. Beta values 
were presented for quantifying the differences in meth-
ylation levels between groups for data interpretation.

Pyrosequencing validation study
We sought to validate several DMPs identified in the 
genome-wide discovery analysis. The study subjects were 
an independent random sample of 47 pairs of LGA-OGA 
(control) subjects from the Shanghai birth cohort. Pla-
cental DNA was sodium-bisulfite treated using the EZ-96 
DNA Methylation-Lighting Kit (Zymo Research, Irvine, 
CA, Catalog # D5006), and PCR-amplified with primers 
designed by PyroMark Assay Design software (version 
2.0, Qiagen). All procedures were performed according 
to the manufacturer’s protocols. Pyrosequencing was 
performed using the PyroMark Q48 system (Qiagen), 
and cytosine methylation was quantified using the Pyro-
Mark Q241.010 software.

Biochemical assays
Cord serum insulin and insulin-like growth factor 1 (IGF-
I) were measured by chemiluminescent assays (ADVIA 
Centaur and Immulite2000, SIEMENS, Germany). Cord 
plasma IGF-II was measured by an ELISA kit from R&D 
system (Minnesota, USA, catalog # DG200), and plasma 
C-peptide and proinsulin by ELISA kits from Merco-
dia system (Uppsala, Sweden. catalog # 10–1136-01 for 
C-peptide, catalog # 10–1118-01 for proinsulin), respec-
tively. Plasma total and high-molecular-weight (HMW) 
adiponectin were measured by an ELISA kit from ALPCO 
(Salem, NH, USA, catalog # 47-ADPHU-E01), and 
plasma leptin by an ELISA kit from Invitrogen (Carlsbad, 
CA, USA, catalog # KAC2281), respectively. Maternal 
whole blood HbA1c was measured by high-performance 
liquid chromatography (BIO-RAD VARIANT II, Califor-
nia, USA). The detection limits were 3.5 pmol/l for insu-
lin, 25 ng/ml for IGF-I, 1.88 pg/ml for IGF-II, 1.7 pmol/l 
for proinsulin, 25 pmol/L for C-peptide, 0.034 ng/mL for 
HMW and total adiponectin and 3.5  pg/mL for leptin, 
respectively. Intra-assay and inter-assay coefficients of 
variation were in the ranges of 2.0–6.5% for insulin and 
IGF-I, 5.0–8.6% for proinsulin, 0.4–13.5% for C-peptide 
and 2.4–9.3% for IGF-II, 6.9%–10.4% for leptin, total and 
HMW adiponectin, respectively. In all biomarker assays, 

the laboratory technicians were blinded to the clinical 
status (LGA or not) of study subjects.

Statistical analysis
All analyses were conducted in R using the R studio 
(https://​www.​rstud​io.​com/). The association between 
LGA status and DNA methylation (M-value) in each 
CpG site was assessed by lmFit function in limma pack-
age. For placental cell types, we used the ReFACTor pack-
age to select the number of principal components and 
then included the selected components (k = 4) as the 
covariates in adjusting for cell-type heterogeneity in dif-
ferential methylation position (DMP) analyses [53]. The 
selection of principal components was based on a score 
calculated as the -log of the ratio of two adjacent eigen-
values [the i-th eigenvalue to the (i-1)-th eigenvalue] in 
the principal components analysis. The number of prin-
cipal components was chosen (k = 4) when the score was 
near 0. The comparisons were adjusted for important 
covariates including maternal age, pre-pregnancy BMI, 
and glycosylated hemoglobin levels (HbA1c) during the 
second and third trimesters of pregnancy. To minimize 
false discovery findings, p values were adjusted accord-
ing to Benjamini and Hochberg’s method in correction 
for multiple tests. DMPs comparing LGA and control 
groups were selected at false discovery rate (FDR) < 5% 
and absolute methylation difference (delta beta) > 0.05 (to 
identify “true” DMPs with differences that are unlikely to 
be measurement errors). To identify the most important 
differentially methylated genes that are correlated with 
birth weight, the Least Absolute Shrinkage and Selection 
Operator (LASSO)-regression [54] was performed using 
the “glmnet” package.

To understand the functional roles of the DMPs, we 
performed Ingenuity Pathway Analysis (IPA) to annotate 
the significant canonical pathways and performed Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway enrichment analyses using 
the missMethyl package [55].

At the region-level, differentially methylated regions 
(DMRs) were identified using the DMRcate package 
[56] and comb-p [57]. DMRcate package identifies the 
differentially methylated regions based on tunable ker-
nel smoothing of the signal of methylation changes [56]. 
As recommended by the authors, a bandwidth of 1000 
nucleosides and a scaling factor of 2 were used. Comb-p 
deals with autocorrelations in neighboring p values and 
reports region-based p values using Sidak correction for 
multiple tests. P value < 10–3 was set to start a region, and 
a distance of 200 bp was selected to extend the region in 
the presence of another P value < 10–3. Significant DMRs 
were selected at FDR < 5%.

https://www.rstudio.com/
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Pearson partial correlations were used to exam-
ine the associations of DNA methylations with cord 
blood biomarkers (leptin, adiponectin, insulin, proin-
sulin, C-peptide, IGF-I and IGF-II) adjusting for ges-
tational age at birth. First, we assessed the correlations 
with DNA methylation levels in the corresponding spe-
cific genes (LEP, ADIPOQ, IGF1, INS-IGF2). Of the 
500,755 CpG sites, a total of 21 sites were annotated to 
LEP (chr7: 127,876,829–127,894,849), 12 sites to ADI-
POQ (chr3: 186,559,147–186,575,325), 12 sites to IGF1 
(chr1:102,795,843–102,875,301) and 119 sites to INS/
INS-IGF2/IGF2 (chr11: 2,150,687–2,183,864). The total 
numbers of sites remained in the partial correlation 
analyses were 21 for LEP, 12 for ADIPOQ, 12 for IGF1 
and 119 for INS/INS-IGF2/IGF2 genes, respectively. 
Benjamini–Hochberg’s method was used in calculating 
the p values in correction for multiple tests. Second, we 
assessed the correlations of LGA-associated DMPs with 
fetal growth (birth weight z score) and cord blood bio-
markers. CpG sites with crude P values < 0.05 were pre-
sented along with the Benjamini–Hochberg corrected P 
values accounting for multiple tests.
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