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Cross talk between acetylation 
and methylation regulators reveals histone 
modifier expression patterns posing prognostic 
and therapeutic implications on patients 
with colon cancer
Rui Zhou1†, Fuli Xie1†, Kuncai Liu1†, Xuee Zhou1, Xuemei Chen2, Jinzhang Chen1,3, Shaoyan Xi4*, 
Zhenhua Huang1* and Xiaoxiang Rong1*    

Abstract 

Background:  Alterations in histone modifications have been reported to be related to tumorigenicity and tumor 
progression. However, whether histone modification can aid the classification of patients or influence clinical behavior 
in patients with colon cancer remains unclear. Therefore, this study aimed to evaluate histone modifier expression pat‑
terns using the unsupervised clustering of the transcriptomic expressions of 88 histone acetylation and methylation 
regulators.

Results:  In this study, by consensus clustering analysis based on the transcriptome data of 88 histone modification 
regulators, we identified four distinct expression patterns of histone modifiers associated with different prognoses, 
intrinsic fluorouracil sensitivities, biological pathways, and tumor microenvironment characteristics among 1372 colon 
cancer samples. In these four clusters, the HMC4 cluster represented a stroma activation phenotype characterized by 
both the worst prognosis and lowest response rates to fluorouracil treatment. Then, we established a scoring scheme 
comprising 155 genes designated as “HM_score” by using the Boruta algorithm to distinguish colon cancer patients 
within the HMC4 cluster. Patients with a high HM_score were considered to have high stromal pathway activation, 
high stromal fraction, and an unfavorable prognosis. Further analyses indicated that a high HM_score also correlated 
with reduced therapeutic benefits from fluorouracil chemotherapy. Moreover, through CRISPR library screening, ZEB2 
was found to be a critical driver gene that mediates fluorouracil resistance, which is associated with histone modifier 
expression patterns.
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Background
Colon cancer remains a major source of morbidity and 
mortality worldwide [1].

Similar to many other malignancies, Colon cancer is 
also a heterogeneous disease with distinct molecular 
properties, resulting in diverse clinical outcomes [2, 3]

Although several molecular classification strategies 
have been proposed to characterize distinct biological 
properties in colon cancer [3], more effective and clini-
cally accessible classifiers remain to be explored.

Histone modification is an important epigenetic 
method used to regulate chromatin structure, DNA 
repair, and gene expression. It plays a crucial role in 
oncogenic transformation and variations in therapeutic 
responses [4]. Although many types of histone modifi-
cation have been reported so far, acetylation and meth-
ylation are the two most well-studied types [4], and there 
are functional interactions between them [5]. Histone 
acetylation has been recognized as a fundamental pro-
cess that regulates gene transcriptional activation by 
neutralizing the positive charge at unmodified lysine resi-
dues to diminish the electrostatic affinity between DNA 
and histones to enable transcription factors to more eas-
ily bind to the promoter region [6]. It is also a dynamic 
and reversible process regulated by two kinds of enzymes 
with opposite effects: acetyltransferases (acetyl group 
transfer onto lysine residues) and deacetylases (acetyl 
group removal from lysine residues). Similarly, histone 
methylation is also tightly controlled by several methyl-
transferases (methyl group transfer onto lysine residues) 
and demethylase enzymes (methyl group removal from 
lysine residues) that function in concert to transfer and 
remove specific methyl groups critical for gene expres-
sion, cell fate, and genomic stability [7, 8]. However, 
compared with acetylation, histone methylation is more 
complex and subtle and is considered to be the most sta-
ble and inheritable chromatin modification form of all 
histone modifications [7, 8].

It has been widely reported that alterations in histone 
acetylation and methylation patterns and their interac-
tions are linked with the initiation and progression of 
colon cancer [9–11]. However, most studies were con-
ducted on one or two histone modification regulators 
due to technical limitations. The global effect of these 
regulators on biological outcomes and whether their 
interactions help classify patients from the perspective 

of histone modification in colon cancer remains unclear. 
Therefore, in this study, we comprehensively evaluated 
histone modifier expression patterns by clustering the 
transcriptomic expressions of 88 histone acetylation and 
methylation regulators in an unsupervised manner in an 
integrated cohort comprising 1372 patients with colon 
cancer from The Cancer Genome Atlas (TCGA) and 
Gene Expression Omnibus (GEO) databases. Moreover, 
we established a scoring scheme capable of individually 
quantifying histone modification status and predicting 
the clinical outcomes and fluorouracil (the basic drug 
of adjuvant chemotherapy for colon cancer) responses, 
designated as “HM_score.” Moreover, by perform-
ing a genome-wide screening of the “Clustered Regu-
larly Interspaced Short Palindromic Repeats (CRISPR)” 
library, we demonstrated that ZEB2 acts as a driver gene 
mediating the fluorouracil resistance related to histone 
modifier expression patterns.

Results
Landscape of the genetic variation of histone modification 
regulators in colon cancer
Figure  1 represents the work flow of this study. We 
retrieved four reviews on histone acetylation and 
methylation modification [4, 7, 8, 12], and a total of 88 
acknowledged histone modification regulators, includ-
ing 14 acetyltransferases, 18 deacetylases, 34 methyl-
transferases, and 22 demethylases, were identified and 
summarized for subsequent analysis (Additional file  1: 
Table  S1). To clarify the role of histone modification 
regulators in patients with colon cancer, the gene expres-
sion profile of 884 samples of colon tumor and 60 sam-
ples of nonneoplastic mucosa were collected from the 
GSE39582 and TCGA-COAD datasets. The compre-
hensive landscape of the expression pattern, prognostic 
significance, and interactions between these modifiers 
were depicted in the network plot (Fig. 2A–D, left). Most 
regulators demonstrated significant differential tran-
scriptional expression between tumor and normal tis-
sues and were significantly correlated with relapse-free 
survival (RFS, Additional file 1: Table S2), indicating that 
histone modification may play a crucial role in the patho-
genesis and progression of colon cancer. As for somatic 
mutations, we found that 237 of the 399 included sam-
ples (59.4%) demonstrated at least one altered histone 
modification regulator (defined as the total mutation 

Conclusions:  This study highlights that characterizing histone modifier expression patterns may help better under‑
stand the epigenetic mechanisms underlying tumor heterogeneity in patients with colon cancer and provide more 
personalized therapeutic strategies.
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rate); nevertheless, the mutation rate of most regulators 
was less than 10% (Fig.  2A–D, right). Interestingly, we 
noticed that the four regulators with the highest muta-
tion frequency in colon cancer, namely KMT2D (64/399, 
16.0%), KMT2B (52/399, 13.0%), KMT2C (48/399, 
12.0%), and SETD1B (46/399, 11.5%), were all histone H3 
lysine 4 (H3K4) methyltransferases that belonged to the 

“Complex of Proteins Associated with Set1” family [13]. 
The landscape of the mutation positions of these genes is 
displayed in Additional file 2: Fig. S1A–D. Furthermore, 
tumor microenvironment (TME) analyses revealed sig-
nificantly higher immune cell infiltration abundance, 
especially for cytotoxic cells, CD8+ T cells, activated 
dendritic cells, and Th2 cells, in samples from patients 

Fig. 1  Workflow diagram of this study. The main steps conducted in the study were as follows: (1) the collection of histone modification 
regulators by searching published articles; (2) the identification of histone modifier expression patterns using an unsupervised clustering analysis; 
(3) the construction of the histone modification score by the Boruta dimension reduction algorithm; and (4) the identification of the driver 
genes mediating the fluorouracil resistance related to histone modifier expression patterns and the candidate targets or compounds for the 
chemosensitization of patients in the HMC4 cluster by conducting a genome-wide screening of the CRISPR-Cas9 library and a Connectivity Map 
analysis, respectively

Fig. 2  Landscape of the transcriptomic and genetic alterations of histone modification regulators in colon cancer. A–D (left) Correlations, 
expressions, and prognosis of histone acetyltransferases (A, left), histone deacetylases (B, left), histone methyltransferases (C, left), and histone 
demethylase regulators (D, left) in patients with colon cancer. The red line represents a positive correlation with a p < 0.00001, and the blue line 
represents a negative correlation with a p < 0.00001. Yellow circles indicate a higher gene expression in colon cancer than in normal colon tissue. 
Blue circles indicate a lower gene expression in colon cancer than in normal colon tissue. Circle size represents the absolute value of the t-statistics 
obtained from the Student’s t test. The green points inside circles represent favorable factors for relapse-free survival, and the red points represent 
risk factors for relapse-free survival. A–D (right) The mutation frequency of histone acetyltransferases (A, right), histone deacetylases (B, right), 
histone methyltransferases (C, right), and histone demethylases regulators (D, right) in the TCGA-COAD cohorts. Each figure column represents 
one patient. The upper bar plot represents the total tumor mutation burden of patients. The number on the right shows the mutation frequency 
of each regulator. The right bar plot indicates the proportion of each variant type. E Matrix heatmap of the differential expression of histone 
modification regulators between the fluorouracil-response and fluorouracil-nonresponse groups. The expression of each histone modification 
regulator was compared by means of a two-sided Student’s t test. Red marked squares indicate higher expression in the fluorouracil-nonresponse 
group than in the fluorouracil-response group, and blue marked squares indicate higher expression in the fluorouracil-response group than in the 
fluorouracil-nonresponse group. *p < 0.05 and **p < 0.01

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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with mutations in any one of KMT2D, KMT2B, KMT2C, 
or SETD1B than in samples from patients without these 
mutations (Additional file  2: Fig. S1E). Consistently, the 
Sankey plot (Additional file 2: Fig. S1F) also showed that 
the mutations of these four “Complex of Proteins Asso-
ciated with Set1” family genes were mainly concentrated 
in patients with the high microsatellite instability (MSI-
H), CMS1(consensus molecular subtypes) [14], C2 (pan-
immune, TCGA) [15], or HM-indel (pan-GI, TCGA) [15] 
colon cancer subtypes, which mostly indicate immune 
activation phenotypes. We also studied the prevalence 
of histone modifier gene alterations across tumor types 
(Additional file  3: Fig. S2A–D and Additional file  1: 
Table  S3). The total mutation rate of histone modifiers 
in colon cancer samples (59.4%) was slightly lower than 
the average (64.7%) and was only higher than that in the 
liver (47.3%) and breast cancer (39.1%) samples. Interest-
ingly, besides colon cancer, KMT2D also demonstrated a 
relatively high alteration frequency (> 10%) in most other 
tumor types. However, SETD1B mutation was only con-
centrated in colon cancer samples and was not detected 
in most other tumor types. Finally, we explored the 
potential role of histone modification regulators in regu-
lating chemoresponses by comparing the expression of 
each histone modification regulator between fluoroura-
cil response and nonresponse groups using a two-sided 
Student’s t test in the dataset merged by GSE39582 and 
TCGA-COAD. As shown in Fig.  2E, most regulators 
presented significant differential expressions among the 
nonresponse and response subgroups of fluorouracil, 
indicating that these regulators may affect the efficacy 
of adjuvant chemotherapy in patients with colon cancer. 
Collectively, the above results indicated that expression 
alterations and genetic variations in histone modifiers 
were important factors contributing to tumor heteroge-
neity and were closely linked with the initiation, progres-
sion, and therapeutic effect of colon cancer.

Identification of histone modifier expression patterns 
and exploration of their clinical relevance
As histone modifications were reported to play a crucial 
role in the tumorigenesis and progression of colon can-
cer by causing abnormal epigenomic reprogramming 
[4], we aimed to evaluate whether the transcriptional 
profiling of the 88 acetylation and methylation regula-
tors can help classify patients with colon cancer. A total 
of 1372 patients diagnosed with stage I–III colon cancer 
from 5 GEO datasets (GSE17536, GSE33113, GSE37892, 
GSE38832, and GSE39582) and the TCGA-COAD 
dataset were enrolled (Additional file  1: Tables S4, S5). 
Unsupervised K-means clustering analyses of the meta-
GEO cohort (990 patients), TCGA-COAD cohort (382 
patients), and integrated meta-GEO and TCGA-COAD 

cohort (1372 patients) were conducted. Results have 
provided four distinct expression patterns of histone 
modifiers (Additional file  4: Fig. S3A–C), and the com-
positions of histone modifiers in these clusters were 
similar among all three cohorts (Additional file  4: Fig. 
S3D), indicating that the existence of these four clusters 
was stable. We termed these clusters HMC1 (n = 546), 
HMC2 (n = 280), HMC3 (n = 247), and HMC4 (n = 299). 
Among them, HMC1 exhibited a high expression abun-
dance of nearly all histone modifiers, indicating that the 
activity and turnover of histone acetylation and methyla-
tion were intense in HMC1, while the remaining three 
clusters showed the enrichment of partial regulators 
(Fig.  3A). The distribution of each histone modifiers in 
the four clusters is shown in Additional file  4: Fig. S3E, 
F. Specifically, we noticed that HMC4 was characterized 
by the prominent expression of regulators enriched in the 
fluorouracil-nonresponse subgroup (Fig. 3A). A survival 
analysis revealed that HMC4 had a significantly shorter 
RFS time than did HMC1, HMC2, and HMC3 (HMC4 
vs. HMC1–3: hazard radio [HR] = 1.63, 95% confidence 
interval [CI] 1.23–2.16, Fig.  3B). As for overall survival 
(OS), HMC4 also exhibited a higher mortality risk than 
the remaining clusters; however, this difference was sta-
tistically insignificant (Fig.  3C–E). It should be noted 
that the negative correlation between HMC4 and OS 
obviously increased in patients who underwent adjuvant 
chemotherapy (GSE39582: HR 1.92, 95%CI 1.11–3.30; 
TCGA-COAD: HR 3.09, 95%CI 0.97–9.84), suggesting 
that this pattern may be associated with chemotherapy 
resistance (Fig. 3E). To validate this hypothesis, we ana-
lyzed the relationship between HMC clusters and chem-
otherapy responses in both GSE39582 and TCGA-COAD 
datasets. As shown in Fig.  3F–G, adjuvant chemother-
apy conduction did not provide any survival benefits to 
patients in the HMC4 cluster in both GSE39582 (HR 
1.26, 95%CI 0.66–2.38) and TCGA-COAD (HR 1.03, 
95%CI 0.40–2.67) cohorts and the fluorouracil-response 
rate was also the lowest in patients in the HMC4 cluster. 
Taken together, these data imply that the histone modifi-
cation clusters were significantly correlated with patients’ 
prognosis and chemotherapy benefit, which might pro-
vide new insights on colon cancer classification system.

Biological characteristics of different histone modifier 
expression patterns
To further characterize and understand the biological 
differences between these intrinsic histone modification 
phenotypes, we performed a gene set variation analysis 
(GSVA) based on the “Hallmarker” gene set (Fig.  4A–
D). Results indicated that there are some similarities in 
the biological pathway activation between HMC1 and 
HMC2. For example, the activation levels of DNA repair-, 
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Fig. 3  Consensus clustering of histone modification regulators in patients with colon cancer. A Heatmaps demonstrating the histone modifier 
expression patterns in patients with colon cancer identified by the unsupervised clustering analysis of 88 histone modification regulators in the 
integrated meta-GEO and TCGA-COAD cohort. Cohort details and histone modification clusters are used as patient annotations. We specifically 
labeled the names of histone modification regulators highly expressed in patients in the HMC4 cluster. Red values indicate significantly higher 
expression in the fluorouracil-nonresponse group than in the fluorouracil-response group, blue values indicate significantly higher expression 
in the fluorouracil-response group than in the fluorouracil-nonresponse group, and gray values indicate statistically insignificant differences. B 
and C Kaplan–Meier curves of relapse-free survival (B) and overall survival (C) according to histone modifier expression patterns in the meta-GEO 
cohort. D Kaplan–Meier curves of overall survival according to histone modifier expression patterns in the TCGA-COAD cohort. E Forest plots of the 
association between HMC4 pattern and overall survival in subgroups stratified by adjuvant chemotherapy conduction. F Forest plots of benefits of 
adjuvant chemotherapy in different HMC clusters in the GSE39582 and TCGA-COAD cohorts. Unadjusted hazard ratios (boxes) and 95% confidence 
intervals (horizontal lines) are depicted; G bar charts summarize the proportions of patients with fluorouracil-response signatures and those 
with nonresponse signatures within and across different histone modifier expression patterns. RFS, relapse-free survival; OS, overall survival; CI, 
confidence interval; ADJC, adjuvant chemotherapy; R, response; and NR, nonresponse

Fig. 4  Biological function characteristics of distinct histone modifier expression patterns. A and B Heatmaps show the results of the gene set 
variation analysis (GSVA) based on “hallmark gene sets” in the four identified histone modifier expression patterns in the meta-GEO (A) and 
TCGA-COAD (B) cohorts. Red values represent activated pathways, and blue values represent inhibited pathways. Histone modifier expression 
patterns are used as sample annotations. C and D Boxplots of GSVA results based on “hallmark gene sets” in the four studied histone modifier 
expression patterns in the meta-GEO (C) and TCGA-COAD (D) cohorts. Boxes represent 25–75% of values, lines in boxes represent median values, 
whiskers represent 1.5 interquartile ranges, and black dots represent outliers. Red terms indicate that the corresponding pathway has the highest 
activation level in patients. E and F Boxplots of OLFM4 high stem cell abundance (left) and mesenchymal cell abundance (right) in the four studied 
histone modifier expression patterns in the meta-GEO (E) and TCGA-COAD (F) cohorts. Boxes represent 25–75% of values, lines in boxes represent 
median values, whiskers represent 1.5 interquartile ranges, and black dots represent outliers. G Scatter plots represent the comparison of the 
protein expression level of the pathway marker genes between patients in the HMC1-3 and HMC4 clusters. H Bar charts summarize the proportions 
of histone modifier expression patterns in and across different molecular characteristic subgroups. I Sankey diagram of histone modification 
clusters in groups with different molecular subtypes in the GSE39582 (left) and TCGA-COAD (right) cohorts. *p < 0.05, **p < 0.01, ***p < 0.001; ns, not 
significant; Ref, reference; CIMP, CpG island methylator phenotype; CIN, chromosome instability; MT, mutant type; WT, wild type; CMS, consensus 
molecular subtypes; and TMEC, tumor microenvironment cluster

(See figure on next page.)
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Fig. 4  (See legend on previous page.)
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E2F-, mTORC1-, and MYC-related pathways in HMC1 
and HMC2 samples were significantly higher than those 
in HMC3 and HMC4. Interestingly, the G2M checkpoint 
pathway score was the highest in HMC1 but the low-
est in HMC3 in both the meta-GEO and TCGA-COAD 
cohorts, suggesting that cell cycle disorder may be an 
important mechanism underlying the tumorigenesis 
of patients with HMC1. In addition, the protein secre-
tion pathway was also significantly inhibited in HMC3 
patients. In both meta-GEO and TCGA-COAD cohorts, 
HMC2 was enriched in multiple cell metabolism path-
ways, including glycolysis, fatty acid metabolism, and 
oxidative phosphorylation, suggesting that inhibition of 
metabolism may be a potential treatment strategy for 
HMC2 patients. Meanwhile, the Wnt signaling path-
way and Hedgehog pathway, two key signaling pathways 
that are crucial for stem and progenitor cell homeosta-
sis and function, were lowest in HMC2 patients, sug-
gesting that the stemness feature of HMC2 is weaker 
than that of other histone modifier expression patterns. 
Particularly, HMC4 represented a stromal/mesenchy-
mal phenotype with many enriched pathways, including 
epithelial–mesenchymal transition (EMT), hypoxia, and 
TGFβ signaling. Consistent with the results of GSVA, 
the protein expression levels of the molecular markers 
involved in EMT and TGFβ signaling were significantly 
higher in HMC4 than in the remaining clusters (Fig. 4G). 
Intriguingly, we found that the KRAS pathway showed 
the highest activation degree in HMC4, and the num-
ber of patients in the HMC4 cluster with KRAS mutant 
tumors was significantly higher than those with KRAS 
wild-type tumors (Fig.  4H). We further calculated the 
level of OLFM4+ stem cells and mesenchymal cells using 
signatures obtained from single-cell sequences proposed 
by Gao et  al. [16] and analyzed their associations with 
histone modifier expression patterns. Results have con-
firmed that the stem cell and mesenchymal cell signa-
tures both had the highest enrichment in patients of the 
HMC4 cluster (Fig. 4E, F). Finally, based on the molecu-
lar subtypes of the GSE39582 and TCGA-COAD cohorts 
(Fig. 4I), we found that most patients with the C4 (CIT) 
[17], C6 (CIT) [17], CMS4, TMEC2 [18], Sub 3 [19], and 
C6 (Pan-Immune, TCGA) [20] subtypes, which mostly 
represent stromal/mesenchymal phenotypes, were 
assigned to the HMC4 cluster. Overall, these results sug-
gest that histone modifier expression patterns were char-
acterized by distinct biological pathway activation status.

Immune landscapes of different histone modifier 
expression patterns
We subsequently explored differences in the immune 
landscapes among all histone modification clusters. A 
single-sample gene set enrichment analysis (ssGSEA) 

was performed to obtain the infiltration abundance of 
TME cells as described in the “Methods” section. As 
shown in Fig.  5A–D, the TME features of patients in 
the HMC1 cluster were close to those of an “immune-
desert” phenotype characterized by little immune cell 
infiltration; nevertheless, both HMC2 and HMC3 dis-
played moderate immune infiltration. However, helper 
T cells, especially Th2 cells, and central memory T cells 
were markedly downregulated in HMC3 compared with 
those in the remaining clusters, suggesting that antigen 
recognition was repressed in HMC3. Compared with the 
remaining clusters, HMC4 was characterized by signifi-
cant increases in stromal cell infiltration, such as fibro-
blasts and endothelial cells. Moreover, innate immune 
cells with immunosuppressive properties, such as mac-
rophages, neutrophils, mast cells, and B cells, also had 
the highest infiltration rate in HMC4. It is noteworthy 
that we found that CD8+ T cells, which are considered 
marker cells of adaptive immunity, were more abundant 
in HMC4 than in the remaining clusters in the TCGA-
COAD cohort. Previous studies have revealed that the 
immune-excluded TME phenotype was characterized 
by an abundance of immune cells, with these immune 
cells being retained in the stroma surrounding tumor cell 
nests rather than in the parenchyma [21]. Therefore, we 
speculated that the TME feature of patients in the HMC4 
cluster might be classified as the feature of the “immune-
excluded” phenotype. Subsequent analyses have revealed 
that patients in the HMC4 cluster had the highest T cell 
exhaustion [22], tertiary lymphoid structure signatures 
[23], and stromal cell infiltration intensity score [24] 
(Fig.  5E, F, and Additional file  5: Fig. S4). Moreover, we 
obtained intratumoral heterogeneity (ITH), tumor purity, 
tumor mutation burden (TMB), and the number of neo-
antigen results from the study of Thorsson et  al. [15] 
and analyzed their distribution across histone modifier 
expression patterns. Consistent with our earlier findings, 
patients in the HMC4 cluster exhibited the highest ITH 
and lowest tumor purity (Fig.  5G, H). However, there 
were no significant differences in TMB and number of 
neoantigen among HMC clusters (Fig. 5I, J). In summary, 
these data proved that the HMC4 cluster was closely 
related to the “immune-excluded” phenotype that was 
characterized by enrichment of both immune and stro-
mal cell types.

Histone modification score (HM_score) construction
Since patients in the HMC4 cluster had the worst progno-
sis and lowest fluorouracil-response rate, we believe that 
developing a scoring model capable of individually quan-
tifying histone modification status to identify patients in 
the HMC4 cluster may offer potential clinical application 
value. Therefore, we recognized differentially expressed 
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Fig. 5  Tumor microenvironment characteristics of distinct histone modifier expression patterns. A and B Heatmaps show immune cell infiltration 
in the four studied histone modifier expression patterns in the meta-GEO (A) and TCGA-COAD (B) cohorts. Red values represent highly infiltrated 
cells, and blue values represent minimally infiltrated cells. Histone modifier expression patterns are used as sample annotations. C and D Boxplot of 
immune cell infiltration in the four studied histone modifier expression patterns in the meta-GEO (C) and TCGA-COAD (D) cohorts. Boxes represent 
25–75% of values, lines in boxes represent median values, whiskers represent 1.5 interquartile ranges, and black dots represent outliers. Red terms 
indicate the highest level of infiltration in patients in the HMC4 cluster. E and F Boxplot of T cell exhaustion level (E) and tertiary lymphoid structure 
signatures (F) in the four studied histone modifier expression patterns in the meta-GEO (left) and TCGA-COAD (right) cohorts. Boxes represent 
25–75% of values, lines in boxes represent median values, whiskers represent 1.5 interquartile ranges, and black dots represent outliers. G–J Boxplot 
of intratumoral heterogeneity levels (G), tumor purity (H), tumor mutation burden (I), and neoantigen (J) in the four studied histone modifier 
expression patterns in the TCGA-COAD cohort. Boxes represent 25–75% of values, lines in boxes represent median values, whiskers represent 
1.5 interquartile ranges, and black dots represent outliers. *p < 0.05, **p < 0.01, ***p < 0.001; ns, not significant; TEX, T cell exhaustion; TLS, tertiary 
lymphoid structure; ITH, intratumoral heterogeneity; TMB, tumor mutation burden; single-nucleotide variant; and NEO, neoantigen
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genes (DEGs) in these four clusters. A total of 1003 DEGs 
(801 upregulated and 202 downregulated) in HMC4 
were identified (Fig. 6A and Additional file 1: Table S6). 
A gene ontology analysis of these DEGs revealed that 
the upregulated genes were enriched in biological pro-
cesses related to mesenchyme development, stromal 
activation, and cell response to external stress, whereas 
the downregulated DEGs were enriched in items related 
to cell metabolic processes (Fig.  6A and Additional 
file 1: Table S7). Subsequently, the Boruta algorithm was 
applied to reduce the dimension of these DEGs (Meth-
ods section), and we ultimately screened out 155 genes to 
form a histone modification-related signature termed as 
the HM_score (Fig. 6B, C and Additional file 1: Table S8). 
The boxplots (Additional file  6: Fig. S5A, B, left) have 
shown that the median HM_score value was highest in 
the HMC4 cluster in both meta-GEO and TCGA-COAD 
cohorts. A receiver operating characteristic (ROC) curve 

analysis further demonstrated that HM_score was a reli-
able index to distinguish patients in the HMC4 cluster 
with an area under the ROC curve (AUC) of 0.94 and 
0.95 in the meta-GEO dataset and in the TCGA-COAD 
dataset, respectively (Additional file 5: Fig. S4A, B, right). 
In conclusion, the above results strongly suggested that 
the HM_score can effectively distinguish HMC4 patients.

Clinical relevance and biological characteristics of HM_
score
We subsequently explored the prognostic impacts and 
predictive value of therapeutic benefits of the HM_score. 
Patients were divided into low- or high-score subgroups 
according to the cutoff values determined by the “sur-
vminer” package. The survival analyses indicated that 
groups with low HM_score had a significantly high RFS 
(HR 1.77, 95%CI 1.37–2.29) in the meta-GEO cohort 
(Fig.  7A). Moreover, the HM_score was validated as an 

Fig. 6  Construction of the histone modification score. A Differential gene expression analysis showing up (red)- and downregulated genes (blue) 
in all four histone modification clusters (middle). A gene ontology analysis depicted the enriched pathways of the genes downregulated (left) and 
upregulated (right) in patients in the HMC4 cluster. Circle size represents the number of genes enriched in this pathway. Circle color depth indicates 
p value. B Heatmap shows the gene expression patterns of histone modification clusters after dimension reduction using the Boruta algorithm. Red 
values represent high expression, and blue values represent low expression. Cohort details and histone modification clusters are used as patient 
annotations. C Principal component analysis of differentially expressed genes to distinguish HMC4 from other histone modifier expression patterns. 
FC, fold change
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Fig. 7  Clinical significance and biological function of the histone modification score. A Kaplan–Meier curves of relapse-free survival (left) and 
overall survival (middle) in the meta-GEO cohort and of overall survival (right) in the TCGA-COAD cohort according to the HM_score. B–D Forest 
plots of the association between the HM_score value and relapse-free survival in a multivariate Cox analysis (B); forest plots of the association 
between HM_score value and overall survival in subgroups stratified by adjuvant chemotherapy conduction (C); forest plots of the benefits of 
adjuvant chemotherapy in the low- and high-HM_score groups in the meta-GEO and TCGA-COAD cohorts (D). Unadjusted hazard ratios (boxes) 
and 95% confidence intervals (horizontal lines) are depicted. E and F Boxplot of HM_score values among patients with different fluorouracil 
responses (E) and among patients with different CMS molecular subgroups (F) in the meta-GEO and TCGA-COAD cohorts. Boxes represent 25–75% 
of values, lines in boxes represent median values, whiskers represent 1.5 interquartile ranges, and black dots represent outliers. G and H Heatmaps 
of the correlation between the HM_score value, pathway activation (G), and tumor microenvironment cell infiltration (H) in the meta-GEO (upper) 
and TCGA-COAD (down) cohorts. *p < 0.05 and **p < 0.01. I Boxplot of the HM_score values among patients with different fluorouracil responses 
(left) and among patients with different CMS molecular subgroups (right) in the SYSUCC cohort. Boxes represent 25–75% of values, lines in boxes 
represent median values, whiskers represent 1.5 interquartile ranges, and black dots represent outliers. J and K Heatmaps of the correlation 
between HM_score value, pathway activation (J), and tumor microenvironment cell infiltration (K) in the SYSUCC cohort. RFS, relapse-free survival; 
OS, overall survival; CI, confidence interval; CMS, consensus molecular subtypes; R, response; NR, nonresponse; and ADJC, adjuvant chemotherapy



Page 12 of 19Zhou et al. Clinical Epigenetics           (2022) 14:70 

independent prognostic biomarker for evaluating patient 
relapse using a multivariate Cox regression model (HR 
1.49, 95%CI 1.02–2.16, Fig.  7B) controlled for age, gen-
der, tumor stage, and CMS subtype. Similarly, we also 
noticed that the positive correlation between HM_score 
value and mortality rate was statistically significant in 
the subgroup of patients receiving chemotherapy in 
both the GSE39582 (HR 1.88, 95%CI 1.39–2.53) and 
TCGA-COAD (HR 2.54, 95%CI 1.47–4.38) cohorts 
(Fig. 7C), while chemotherapy conduction was a risk fac-
tor for unfavorable prognosis in patients within a high 
HM_score group (GSE39582: HR 1.38, 95%CI 0.81–2.33; 
TCGA-COAD: HR 1.33, 95%CI 0.52–3.36; Fig. 7D). The 
following boxplots also showed that HM_score was sig-
nificantly higher in the fluorouracil-nonresponse and 
CMS4 subtype groups than in the remaining groups 
(Fig.  7E, F). GSVA and immune analyses demonstrated 
that the HM_score was markedly positively correlated 
with stromal activation processes and stromal cell infil-
tration, which is consistent with the results of the HMC4 
cluster analysis (Fig. 7G, H). To confirm the clinical value 
and biological implication of the HM_score, we obtained 
bulk RNA-sequencing data from 30 additional patients 
with colon cancer from the Sun Yat-sen University Can-
cer Center (SYSUCC) as an external dataset (Additional 
file  1: Table  S5). Patients were also grouped into the 
HMC4 and non-HMC4 using the nearest template pre-
diction algorithm (GenePattern module “NTP,” https://​
cloud.​genep​attern.​org) based on the DEGs in HMC4 
we earlier identified. Consistent with the results of the 
meta-GEO and TCGA-COAD databases, the median 
HM_score value was significantly higher in the HMC4 
than in the non-HMC4 cluster in the SYSUCC cohort 
(Additional file 5: Fig. S4C, left), and HM_score defined 
the HMC4 patterns with an AUC of 0.98 according to 
ROC curve analysis (Additional file  6: Fig. S5C, right). 
Furthermore, HM_score was also significantly higher in 
the fluorouracil-nonresponse and CMS4 subtype groups 

than in other groups (Fig. 7I), and there were strong posi-
tive associations between HM_score and stroma-relevant 
signatures (Fig.  7J) and stroma cell infiltration (Fig.  7K) 
in the SYSUCC cohort. The above results revealed that 
HM_score was a useful biomarker that could effectively 
predict survival and chemotherapy benefit in colon can-
cer patients and may offer potential clinical application 
value.

Whole‑genome CRISPR screen reveals ZEB2 
as the candidate driver gene for fluorouracil resistance 
in patients within HMC4 cluster
To identify critical genes driving fluorouracil resist-
ance in patients of the HMC4 cluster, we performed 
CRISPR-based genome-wide loss-of-function screen-
ing in SW480 cells, using 2 μg/mL of fluorouracil as an 
effective selection pressure (Fig.  8A). From this screen, 
we discovered a subset of sgRNAs targeting 166 genes 
were significantly enriched in the fluorouracil-treated 
cells when compared to the vehicle control. These genes 
were identified as potential drivers for fluorouracil 
resistance (Fig. 8B). Moreover, among these genes, eight 
were highly expressed in patients in the HMC4 cluster 
(Fig. 8B, C). ZEB2, whose sgRNA was decreased the most 
in fluorouracil-treated populations, gained our atten-
tion. Subsequent analyses confirmed that patients in the 
HMC4 cluster in both the meta-GEO and TCGA-COAD 
cohorts had the highest ZEB2 mRNA expression distri-
bution (Fig.  8D). There was also a strong positive cor-
relation between ZEB2 transcriptional expression and 
HM_score in the SYSUCC cohort (Fig.  8E). A clinical 
relevance analysis has suggested that ZEB2 expression 
reflected the prognostic value of both RFS and OS, espe-
cially in patients who underwent adjuvant chemotherapy 
(Fig.  8G). The analysis also revealed that only patients 
in the low-ZEB2 group could significantly benefit from 
adjuvant chemotherapy (GSE39582: HR 0.53, 95%CI 
0.32–0.88; TCGA-COAD: HR 0.29, 95%CI 0.08–0.98, 

Fig. 8  Screening of driver genes and candidate targets or compounds. A Experimental outline of screening and analysis. B Volcano plots to 
compare differences in sgRNA abundance between fluorouracil- and vehicle-treated cells. C Heatmap showing the counts of sgRNAs representing 
genes mediating fluorouracil resistance in patients in the HMC4 cluster. D Boxplot of ZEB2 expression in the four studied histone modifier 
expression patterns in the meta-GEO (left) and TCGA-COAD (right) cohorts. E Scatter plots show the correlation between ZEB2 expression and HM_
score value in the SYSUCC cohort. F Boxplot of ZEB2 expression among patients with different fluorouracil responses in the meta-GEO, TCGA-COAD, 
and SYSUCC cohorts. G Forest plots of the association between ZEB2 expression and overall survival in subgroups stratified by adjuvant 
chemotherapy conduction (upper) and the benefit of adjuvant chemotherapy in the low- and high-ZEB2 expression groups in the meta-GEO and 
TCGA-COAD cohorts (down). H Heatmaps of the correlation between ZEB2 expression, tumor microenvironment cell infiltration (left), and pathway 
activation (right) in the meta-GEO, TCGA-COAD, and SYSUCC cohorts. I Boxplot of ZEB2 expression in different CMS molecular subgroups in the 
meta-GEO, TCGA-COAD, and SYSUCC cohorts. J Volcano plots to compare differences in the gene expression of histone modification regulators 
between the low- and high-ZEB2 expression groups in the integrated meta-GEO and TCGA-COAD cohort. K Dose–response curves of SW480 (left) 
and HCT116 cells (right) transfected with empty vectors or ZEB2 siRNA after fluorouracil treatment for 24 h. The mean ± standard deviation of the 
three replicates of each time point is shown. L Heatmaps showing the enrichment score of each molecular target (upper) and compound (down) 
in the Connectivity Map analysis. M Heatmap showing the mechanisms of the action (rows) of each compound in the Connectivity Map analysis. 
*p < 0.05, **p < 0.01, ***p < 0.001; RFS, relapse-free survival; OS, overall survival; CI, confidence interval; CMS, consensus molecular subtypes; R, 
response; NR, nonresponse; ADJC, adjuvant chemotherapy; and FC, fold change

(See figure on next page.)

https://cloud.genepattern.org
https://cloud.genepattern.org
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Fig. 8  (See legend on previous page.)
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Fig. 8G). The boxplots in Fig. 8F and I showed that ZEB2 
mRNA expression was significantly elevated in the fluo-
rouracil-nonresponse and CMS4 subtype groups. Path-
way and immune analyses confirmed that the activation 
level of stroma pathways and stromal cell infiltration 
significantly increased as ZEB2 expressions increased 
(Fig. 8H).

To validate the CRISPR/Cas9 library screening 
results, we transfected siRNAs targeting ZEB2 and the 
ZEB2 overexpression plasmid in  vitro into SW480 and 
HCT116, respectively, and performed a methyl-thiazolyl-
tetrazolium (MTT) assay. As shown in Fig. 8K and Addi-
tional file 7: Fig. S6, the cell viability of the ZEB2 silencing 
group was significantly inhibited, while the cell viabil-
ity of the ZEB2 overexpression group was significantly 
enhanced compared with the control group in each fluo-
rouracil concentration gradient we tested. These data 
suggested that the cytotoxicity of fluorouracil to tumor 
cells was influenced by the transcriptional abundance 
of ZEB2. Interestingly, we uncovered several potential 
histone modification regulators of ZEB2 by differential 
expression analysis between the high- and low-ZEB2 
groups (Fig. 8J), such as HDAC10, HDAC9, and KAT2B, 
indicating that these regulators might regulate ZEB2 
expression in patients with HMC4. Collectively, based on 
the results from the analysis of these real-world cohorts, 
we are confident that the ZEB2 found by CRISPR library 
screening was indeed the core gene mediating chemore-
sistance in HMC4 patients.

The Connectivity Map analysis identifies potential 
molecular targets and compounds capable of reversing 
transcriptional characteristics in patients with HMC4
To identify candidate molecular targets and compounds 
that may be options to achieve chemosensitization in 
patients with HMC4, we analyzed the Connectivity Map 
project. Briefly, 147 significantly enriched molecular 
targets (Additional file  1: Table  S9) and 91 compounds 
(Additional file  1: Table  S10) were identified, and those 
identified in at least two cohorts were presented in the 
heatmap (Fig. 8L). Among these candidate molecular tar-
gets, nine were significantly enriched in all three cohorts, 
and five of them (TP53BP1 [25], RIPK2 [26], EHMT2 
[27], IGFBP3 [28], and HMOX1 [29]) have been reported 
to have cancer- and chemoresistance-promoting activi-
ties simultaneously. Particularly, although EHMT2, a 
member of the histone methyltransferase family, was 
identified in all three cohorts, the transcription level of 
EHMT2 was significantly higher in the fluorouracil-
response group (Fig. 2E). Of the 91 compounds, 13 were 
significantly enriched in all three cohorts. A mode-of-
action analysis of these 13 compounds revealed 11 shared 
action mechanisms (Fig. 8M). Additionally, 2 compounds 

(SJ-172550 and RITA) shared the mode-of-action as the 
MDM inhibitor (Fig.  8M). The mode-of-action of the 
PKC inhibitor was also found in two other compounds 
(Fig. 8M). These findings provided a new perspective for 
developing effective chemosensitizing treatment strate-
gies in HMC4 patients.

Discussion
Histone modifications serve as regulatory markers that 
are essential to control transcription and architecture. 
Although histone modification deregulation (particularly 
the well-studied deregulation of acetylation and methyla-
tion modifications) has been widely reported to be vital 
epigenetic mechanisms underlying cancer progression 
[4], the correlation between the global profiling of his-
tone modification regulator patterns and tumor hetero-
geneity due to pathway activation or TME infiltration has 
not been comprehensively recognized.

In this study, by the consensus clustering and analysis 
of the transcriptome data of 88 histone acetylation and 
methylation regulators, we, for the first time, identified 
four distinct different histone modifier expression pat-
terns that were associated with different clinical out-
comes, biological pathways, and TME characteristics. 
Each cluster was enriched by multiple regulators involved 
in acetylation or methylation processes, implying that 
these histone modification regulators contribute to the 
heterogeneous progression of colon cancer in a highly 
coordinated manner. Among the four clusters provided 
in this study, HMC4 gained our attention the most as it 
had the worst prognosis and lowest fluorouracil-response 
rate. Based on the functional and TME analyses, we 
observed that patients in the HMC4 cluster had the high-
est activation levels of EMT, TGFβ signals, and hypoxia 
pathways and the highest infiltration of stromal cells and 
immunosuppressive innate immune cells. HMC4 collec-
tively harbored stromal/mesenchymal properties, which 
can explain the poor prognosis of patients in this cluster. 
This result is consistent with that of our previous studies, 
which stated that the stromal pathway activation level is a 
core determinant of negative chemotherapy outcomes in 
patients with colon cancer [18, 19]. Intriguingly, patients 
in the HMC4 cluster demonstrated higher KRAS muta-
tion and KRAS signaling enrichment incidences than 
patients in other clusters. Since growing evidence has 
acknowledged the association between KRAS mutation 
and the adverse prognostic impacts on patients with 
colon cancer treated with fluorouracil-based chemother-
apy [30, 31], we can conclude that the diminished bene-
fits of chemotherapy in patients within the HMC4 cluster 
also resulted in the combined effects of KRAS mutation 
and KRAS signaling dysregulation.
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Considering the special clinical features of patients 
in the HMC4 cluster, there is a need to develop a scor-
ing scheme that can individually quantify the histone 
modification status to distinguish HMC4 from other his-
tone modification subtypes. By applying the dimension 
reduction method, we successfully established a tran-
scriptome-based quantification system named the “HM_
score” to define HMC4 patterns with high accuracy. 
This finding validated that the abnormal transcriptional 
activation of oncogenes or, conversely, the repression 
of tumor suppressors is the main histone modification 
mechanism underlying tumor heterogeneity progres-
sion [4, 32]. Clinical analyses further highlighted that 
HM_score is an independent prognostic factor for colon 
cancer and associated with chemotherapeutic responses. 
This finding also verified our hypothesis that histone 
modifier expression patterns could be applied in clinical 
practice to guide therapeutic strategies more precisely for 
individual patients.

In addition to exploring the implications of the histone 
modification pattern on colon cancer treatment strate-
gies, we also performed a genome-wide CRISPR screen 
and identified that ZEB2 is a potential driver gene con-
tributing to the drug resistance in the background of 
histone modification alterations. ZEB2 is a known EMT 
regulator whose promoter experiences dynamic histone 
mark changes during cell transition toward mesenchy-
mal features in response to EMT inducers, such as TGFβ 
[33–36]. Currently, several histone modification regula-
tors, including DOT1L [34], DNMT1 [36], EZH2 [33], 
and KDM5B [35], have been reported to play a role in the 
TGFβ-stimulated ZEB2 transcriptional upregulation of 
many cancers. To the best of our knowledge, this study 
is the first to report an association between ZEB2 expres-
sion and global histone modifier expression patterns. 
Future studies to further elucidate the exact mechanism 
underlying the ZEB2-related histone modification pro-
cess may be helpful to develop novel cancer therapies. 
However, PKC activation is involved in histone modifi-
cation-dependent ZEB2 expression and EMT processes. 
Additionally, pan-PKC inhibitors suppress EMT by pro-
moting the DNMT1-induced histone methylation of 
ZEB2 [36]. Coincidentally, through a Connectivity Map 
analysis, two types of PKC inhibitors were significantly 
enriched and consequently considered as compounds for 
the chemosensitization of patients in the HMC4 cluster. 
Accordingly, systematic preclinical studies investigating 
the efficiency of PKC inhibitors as combined targeted 
therapies for patients in the HMC4 cluster are warranted.

Although our study is the first to establish molecular 
subtypes based on histone modification regulators, pro-
viding new insights on the epigenetic mechanisms under-
lying colon cancer heterogeneity, this study has some 

limitations. First, we only collected and analyzed regu-
lators involved in histone acetylation and methylation. 
Some less prevalent or newly reported histone modifi-
cation types, such as crotonylation [37], propionylation 
[38], butyrylation [38], and β-hydroxybutyrylation [39], 
are also reported to be linked with cancer. Second, we 
only focused on the transcriptional levels of histone acet-
ylation and methylation regulators and did not integrate 
other omics data affecting gene expression to classify 
patients, such as copy number variations, gene muta-
tions, and DNA methylation, meaning that the subtypes 
analyzed in this study are biased. Third, the various his-
tone modification residues, which were also determi-
nants of the biological functions of histone modifications 
[4], were not included in this study. Fourth, the method 
of interpreting the HM_score and the appropriate cutoff 
values need to be standardized to ensure that the role of 
this scoring model can be validated in future prospective 
studies. Last but not least, since the acquisition of ZEB2 
comes from CRISPR screening of cell lines in  vitro, its 
role in vivo still needs to be further verified through pro-
spective clinical trials.

Conclusion
In conclusion, this study comprehensively evaluated the 
clinical behavior, molecular, and genetic factors associ-
ated with histone modifier expression patterns and con-
sequently demonstrated several important insights on 
how tumor heterogeneity is generated and enhanced 
by mechanisms underlying epigenetic disorders, as well 
as proposed promising and effective opportunities for 
therapeutic intervention. In addition, the HM_score we 
developed was a clinically valuable tool for identifying 
patients in the HMC4 cluster precisely by individually 
quantifying histone modification status and predicting 
patient survival and chemotherapeutic benefit, thus pro-
viding more precise therapeutic guidance in colon cancer 
in the future.

Methods
Public data preparation
The procedure for data analysis was compiled into a 
flowchart (Additional file  8: Fig. S7). Public transcrip-
tome data on colon cancer samples were retrospectively 
collected from the GEO (http://​www.​ncbi.​nlm.​nih.​gov/​
geo/) and TCGA-COAD (https://​cance​rgeno​me.​nih.​
gov/) datasets. The demographic and clinical information 
were retrieved using the “GEOquery” package for GEO 
datasets or downloaded from the University of California 
Santa Cruz Xena database (https://​xenab​rowser.​net). The 
following clinical information was collected: patients’ age, 
sex, TNM stage, primary tumor site, and chemotherapy 
performance. The endpoint analyzed in this study was 

http://www.ncbi.nlm.nih.gov/geo/
http://www.ncbi.nlm.nih.gov/geo/
https://cancergenome.nih.gov/
https://cancergenome.nih.gov/
https://xenabrowser.net
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RFS, defined as the interval between the date of diagnosis 
and date of tumor relapse, and OS, defined as the interval 
between the date of diagnosis and death. Besides tran-
scriptome data, we also downloaded the somatic muta-
tion data (MAF files, MuTect2 Variant Aggregation and 
Masking) of patients specimens from ten different tumor 
types using “TCGAbiolinks” packages to explore the 
genetic mutation landscape of histone modification regu-
lators. Patient selection criteria for establishing patient 
cohorts of molecular typing and scoring model devel-
opment and transcriptome data processing methods are 
described in Additional file 9: Materials and Methods.

RNA sequencing of samples from the Sun Yat‑sen 
University Cancer Center cohort
This study was approved by the Nanfang Hospital Ethics 
Review Board. Thirty fresh samples histologically diag-
nosed with nonmetastatic colon cancer at the SYSUCC 
(Guangzhou, China) were included, and RNA extrac-
tion and sequencing were performed as described pre-
viously [40]. The count values of RNA-sequencing data 
were transformed using the “voom” algorithm after gene 
symbol transformation (based on Ensembl ID) in order 
to convert count data to values similar to those resulting 
from microarrays [41].

Identification of histone modifier expression patterns 
by consensus clustering
The unsupervised clustering (K-means) method was used 
to identify different histone modifier expression patterns 
and classify patients for further analysis. A consensus 
clustering algorithm was used to evaluate clustering sta-
bility and select the optimal cluster number using the R 
package “ConsensusClusterPlus” with the following set-
tings: maxK = 10, reps = 1000, pItem = 0.95, and pFea-
ture = 1 [42].

Histone modification score generation
To develop a histone modification score to individually 
quantify the histone modification status, we first analyzed 
the differential expressed genes (DEGs) among distinct 
histone modifier expression patterns in the integrated 
meta-GEO and TCGA-COAD transcriptional profiling 
using the “limma” package. The adjusted p value for mul-
tiple testing was calculated using the Benjamini–Hoch-
berg correction. The significance criterion for DEGs was 
set as an absolute “Log2FC” value > 0.5 and an adjusted 
p value < 0.01. Specifically, the DEGs that up- or down-
regulated in the HMC4 cluster were selected and termed 
as gene cluster A (801 DEGs upregulated in the HMC4) 
and cluster B (202 DEGs downregulated in the HMC4), 
respectively. The Boruta algorithm was employed for 
the dimension reduction of the gene cluster A and gene 

cluster B, respectively, using the “Boruta” package (set-
tings: doTrace = 2, maxRuns = 100, ntree = 500) to screen 
out the most informative genes. The final score was 
defined as: HM_score = the average expression of final 
determined gene cluster A—the average expression of 
final determined gene cluster B.

Fluorouracil‑response prediction
The fluorouracil response of clinical samples was assessed 
using the R package “pRRophetic,” which implemented 
a built-in ridge regression model [43] and was qualified 
as the area under the dose–response curve (AUC), with 
lower AUC values indicating higher sensitivity to fluoro-
uracil. Further details are provided in Additional file  9: 
Materials and Methods.

Biological process and tumor microenvironment 
characteristics analysis
The biological process and tumor microenvironment 
characteristics analysis were performed as previously 
described [19]. Briefly, we utilized GSVA analysis com-
prising the gene set files of “hallmark gene sets” with the 
R package “GSVA” to measure biological process activity. 
An ssGSEA implemented in the “GSVA” R package was 
used to generate the infiltration scores of the TME cells. 
The special feature gene panels for marking immune 
cells [44], stromal cells [45], exhausted T cells [22], and 
tertiary lymphoid structure [23] were curated from the 
published literature. The abundance of each cell type 
was represented by an enrichment score of the gene set 
in a sample outputted by ssGSEA analysis based on gene 
expression profiles.

Cell culture, cell transfection, and MTT assay
Cell culture, cell transfection, and MTT assay were per-
formed as described previously [46]. Further details are 
provided in Additional file 9: Materials and Methods.

Genome‑wide CRISPR/Cas9 knockout library screen.
The human GeCKO v2 CRISPR library A and library 
B were used to generate a mutant cell pool for high 
throughput screening. The criteria for screening candi-
date sgRNAs were: (1) The average count values of can-
didate sgRNA in both the fluorouracil-treated group and 
the vehicle group were greater than 1000; (2) the abso-
lute “Log2FC” value calculated by difference analysis of 
sgRNA level between the vehicle group and fluorouracil-
treated group was more than 0.5. Further details on this 
matter are provided in Additional file  9: Materials and 
Methods.
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Connectivity Map analysis
A Connectivity Map analysis was performed to explore 
the potential molecular targets and specific compounds 
that could be used for chemosensitization of patients 
with HMC4 via an online tool (https://​clue.​io/). A total 
of 300 DEGs with the most significant fold changes (150 
DEGs upregulated and 150 DEGs downregulated in the 
HMC4 cluster) were entered into the Connectivity Map 
database following the instructions provided by the web-
site. In this study, the enrichment score generated by 
Connectivity Map analysis was set to < − 97 and < − 95 
for the significant threshold of molecular targets and 
chemical compounds, respectively.

Statistical analysis
Statistical analysis was performed using R software ver-
sion 3.6.0 or SPSS version 25.0 (IBM Corp., Armonk, 
N.Y., USA). The two-tailed Student’s t test, Mann–Whit-
ney U test, Kruskal–Wallis test, one-way ANOVA test, 
Fisher’s exact test, Pearson’s correlation test, Spearman’s 
rank correlation test, Cox regression hazard model, and 
Kaplan–Meier method with the log-rank test were used 
where necessary. All p values were two-tailed, and statis-
tical significance was set to p < 0.05 unless noted other-
wise. Details are provided in Additional file 9: Materials 
and Methods.
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Additional file 1: Supplementary tables.

Additional file 2: Fig. S1. Mutations of the “Complex of Proteins Associ‑
ated with Set1” gene family. A–D Lollipop diagrams of the landscape of 
KMT2D (A), KMT2C (B), KMT2B (C), and SETD1B (D) mutation positions. 
(E) Boxplot of immune cell infiltration of “Complex of Proteins Associated 
with Set1” mutation and non mutation groups in the TCGA-COAD cohort. 
Boxes represent 25–75% of values, lines in boxes represent median values, 
whiskers represent 1.5 interquartile ranges, and black dots represent 
outliers. (F) Sankey diagram of “Complex of Proteins Associated with Set1” 
mutations in groups with different molecular subtypes in the TCGA-COAD 
cohort. MT, mutant type; WT, wild type; CMS, consensus molecular sub‑
types; MSI, microsatellite instability; MSS, microsatellite stability.

Additional file 3: Fig. S2. Alterations of histone modification regula‑
tors in the TCGA pan-cancer cohort. A–D Detailed heatmap of alteration 

frequencies (left) and mutation rates (right) in members of histone acetyl‑
transferases (A), histone deacetylases (B), histone methyltransferases (C), 
and histone demethylases regulators (D) across solid tumors in the TCGA 
pan-cancer cohort.

Additional file 4: Fig. S3. The optimal cluster number as determined 
by the consensus clustering algorithm. A–C Consensus matrixes (left) 
of patients with colon cancer for k = 4 and line graphs (right) of relative 
changes in the area under the CDF curve according to the cluster number 
in the meta-GEO (A), TCGA-COAD (B), and integrated GEO and TCGA-
COAD cohorts (C). D Heatmaps of the enrichment of histone modifica‑
tion regulators in different histone modifier expression patterns in the 
meta-GEO (left), TCGA-COAD cohort (middle), and integrated GEO and 
TCGA-COAD cohorts (right). (E–F) Boxplot of distribution of histone modi‑
fier expressions among different histone modifier expression patterns in 
the meta-GEO (E) and TCGA-COAD cohorts (F). Boxes represent 25–75% 
of values, lines in boxes represent median values, whiskers represent 1.5 
interquartile ranges, and black dots represent outliers. *p < 0.05, **p < 0.01, 
***p < 0.001; ns, not significant.

Additional file 5: Fig. S4. Distribution of SIIS value among HMC clusters. 
Boxplot of SIIS value in the four studied histone modifier expression 
patterns in the meta-GEO (left) and TCGA-COAD (right) cohorts. Boxes 
represent 25–75% of values, lines in boxes represent median values, 
whiskers represent 1.5 interquartile ranges, and black dots represent outli‑
ers. *p < 0.05, **p < 0.01, ***p < 0.001.

Additional file 6: Fig. S5. Association between HM_score and histone 
modifier expression patterns. A–C (left) Boxplot of the HM_score values of 
the different modification clusters in the meta-GEO (A), TCGA-COAD (B), 
and SYSUCC (C) cohorts. Boxes represent 25–75% of values, lines in boxes 
represent median values, whiskers represent 1.5 interquartile ranges, and 
black dots represent outliers. A–C (right) receiver operating characteristics 
curve of the HM_score model for distinguishing patients in the HMC4 
cluster from those who are not in the meta-GEO (A), TCGA (B), and SYS‑
UCC cohorts (C). Ref, reference; AUC, area under curve.

Additional file 7: Fig. S6. ZEB2 overexpression experiment. Dose–
response curves of SW480 (left) and HCT116 cells (right) transfected with 
empty vectors or ZEB2 plasmid after fluorouracil treatment for 24 h. The 
mean ± standard deviation of the three replicates of each time point is 
shown. *p < 0.05, **p < 0.01, ***p < 0.001.

Additional file 8: Fig. S7. The flowchart of data analysis procedure.

Additional file 9: Supplementary Materials and Methods.
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