
Bestry et al. Clinical Epigenetics           (2022) 14:12  
https://doi.org/10.1186/s13148-022-01231-9

REVIEW

Association of prenatal alcohol exposure 
with offspring DNA methylation in mammals: 
a systematic review of the evidence
Mitchell Bestry1, Martyn Symons1,2, Alexander Larcombe3,4, Evelyne Muggli5,6, Jeffrey M. Craig6,7,8, 
Delyse Hutchinson6,7,10,11,12, Jane Halliday6,9 and David Martino3,7*  

Abstract 

Background: Prenatal alcohol exposure (PAE) is associated with a range of adverse offspring neurodevelopmen-
tal outcomes. Several studies suggest that PAE modifies DNA methylation in offspring cells and tissues, providing 
evidence for a potential mechanistic link to Fetal Alcohol Spectrum Disorder (FASD). We systematically reviewed 
existing evidence on the extent to which maternal alcohol use during pregnancy is associated with offspring DNA 
methylation.

Methods: A systematic literature search was conducted across five online databases according to Preferred Report-
ing Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, Web of Science, EMBASE, Google 
Scholar and CINAHL Databases were searched for articles relating to PAE in placental mammals. Data were extracted 
from each study and the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) was used to assess the 
potential for bias in human studies.

Results: Forty-three articles were identified for inclusion. Twenty-six animal studies and 16 human studies measured 
offspring DNA methylation in various tissues using candidate gene analysis, methylome-wide association studies 
(MWAS), or total nuclear DNA methylation content. PAE dose and timing varied between studies. Risk of bias was 
deemed high in nearly all human studies. There was insufficient evidence in human and animal studies to support 
global disruption of DNA methylation from PAE. Inconclusive evidence was found for hypomethylation at IGF2/
H19 regions within somatic tissues. MWAS assessing PAE effects on offspring DNA methylation showed inconsistent 
evidence. There was some consistency in the relatively small number of MWAS conducted in populations with FASD. 
Meta-analyses could not be conducted due to significant heterogeneity between studies.

Conclusion: Considering heterogeneity in study design and potential for bias, evidence for an association between 
PAE and offspring DNA methylation was inconclusive. Some reproducible associations were observed in populations 
with FASD although the limited number of these studies warrants further research.

Trail Registration: This review is registered with PROSPERO (registration number: CRD42020167686).
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Background
Alcohol use during pregnancy is a preventable cause of 
offspring neurodevelopmental impairments. Alcohol 
exposure in utero has been associated with birth defects 
[1], as it passes freely across the placenta, and unlike 
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adults, the exposed fetus has minimal ability to metabo-
lise alcohol. The timing, dose and frequency of consump-
tion is associated with the severity of prenatal alcohol 
exposure (PAE) on fetal development [2]. PAE can cause 
Fetal Alcohol Spectrum Disorder (FASD), a diagnostic 
term that encompasses a spectrum of physical, cogni-
tive, behavioural and neurodevelopmental abnormalities 
with life-long health consequences [3]. FASD is a signifi-
cant health burden globally affecting approximately 7.7 
per 1000 individuals, with a significantly higher burden 
identified among specific disadvantaged and Indigenous 
communities, within corrective and psychiatric services, 
and children in foster care [4]. At moderate to low doses 
the evidence for harmful effects on child development is 
controversial [5–8]. PAE is necessary but not sufficient 
to cause FASD in all exposed individuals and research is 
needed to better understand disease etiology including 
the genetic and other environmental cofactors poten-
tially influencing the clinical manifestation of FASD [9]. 
Improvements in screening and diagnosis are research 
priorities [10] in order to facilitate timely and appropriate 
interventions, and for this to occur a clearer understand-
ing of mechanisms is required.

Recent evidence suggests epigenetic processes such 
as DNA methylation as a potential mediator of PAE on 
offspring neurodevelopment and FASD. Epigenetic pro-
cesses are reversible structural and functional modifica-
tions to the genome that play an important role in the 
regulation of fetal gene expression. Evidence from both 
human [11–13] and animal studies [14–16] suggests that 
PAE and FASD are associated with changes to global and 
gene-specific levels of DNA methylation. The addition of 
methyl groups to cytosine residues on DNA can modify 
the structural density of DNA, and its compaction within 
the nucleus, with consequences for regulation of fetal 
gene expression. Ethanol is readily able to cross the pla-
centa and accumulate in the fetal tissues at levels propor-
tional to the maternal blood alcohol concentrations [17]. 
Studies suggest this can affect the patterning of DNA 
methylation through either direct inhibition of DNA 
methyltransferase enzymes, or through antagonist effects 
on dietary methyl donors such as folate and choline, 
which are substrates for these enzymes [18]. Evidence 
to date has been inconsistent, with multiple different 
associations reported in murine models and in human 
populations with clinical FASD [19]. This is in contrast to 
evidence from multiple birth cohorts which suggest low 
to moderate PAE does not affect offspring DNA meth-
ylation [20]. Potential confounding factors represent a 
major challenge since multiple dietary and environmen-
tal exposures in pregnancy also influence offspring DNA 
methylation outcomes. Due to these inconsistencies and 
limitations in the literature, we conducted a systematic 

review of the extant research in this field to synthesise 
current evidence for DNA methylation as a mediator of 
PAE. Considering the problem of residual confounding 
in observational studies, we synthesized evidence for an 
association between PAE and offspring DNA methylation 
outcomes in placental mammals by examining evidence 
from both human studies and controlled animal models.

Methods
This systematic review was guided by the Preferred 
Reporting Items for Systematic reviews and Meta-Analy-
ses (PRISMA) 2020 guidelines [21]. The protocol for this 
systematic review was registered with the International 
Prospective Register of Ongoing Systematic Reviews 
(PROSPERO) on 05 July 2020 (registration number: 
CRD42020167686) [22].

Inclusion criteria
Studies of prenatal alcohol exposure in placental mam-
mals, in which DNA methylation was measured as an 
outcome were considered for inclusion.

Exclusion criteria
In vitro models or postnatal exposure studies were 
excluded as they do not reflect placental contribution to 
the exposure. Case reports, narrative reviews and studies 
without DNA methylation outcomes were also excluded.

Types of studies and participants
The review included cross-sectional studies, longitudinal 
cohorts and randomised control studies in humans and 
animals. Participants were placental mammals with con-
firmed PAE or diagnosis of FASD. Non-mammals, solely 
paternal, postnatal, or pre-conception exposure studies 
were excluded along with case reports and in vitro only 
studies.

Interventions and comparisons
The primary intervention among included studies was 
in utero exposure to ethanol, by any delivered method 
and dose, for any duration. To be eligible, studies were 
required to have a comparison group with no alcohol 
exposure at any time during pregnancy. We also included 
studies reporting on cohorts with a confirmed diagnosis 
of FASD with a comparison group of typically developing 
controls.

Outcome measures and timing
Studies were required to provide quantitative offspring 
DNA methylation outcomes, either in a CpG or non-
CpG context. DNA methylation was able to be reported 
across the entire methylome or within a specific locus or 
loci. The main outcome assessed was differences in DNA 
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methylation between the PAE case and non-PAE control 
groups, as indicated by use of a statistical test assessing 
differences in DNA methylation between the case and 
control groups.

Any tissue or cell type extracted from the mammal was 
considered. We also considered whether changes in the 
DNA methylation from PAE were dependent on the tis-
sue or cell type.

Search strategy
A literature search was conducted on 30 January 2020 to 
identify relevant articles across five databases: PubMed, 
Web of Science, EMBASE, Google Scholar and CINAHL 
Plus. The keyword search terms used for each database 
were: methylat* and (alcohol* or ethanol*) and (foetal* or 
fetal* or prenatal* or antenatal* or perinatal* or pregnan* 
or maternal* or utero* or foetus* or fetus* or intrauter-
ine* or alcohol-related birth disorder* or alcohol-related 
neurodevelopmental disorder*). Only English language 
articles were included in this review. There was no 
restriction on the publication period.

The literature search was repeated on 17 July 2021 
across the same databases to identify any additional arti-
cles that were published during the time period.

Synthesis of the data
References were imported into EndNote software to 
remove duplicates, non-original research articles and 
articles that were not in English. Titles and abstracts 
were double screened independently by two authors 
(MB and MS) using Covidence software. Disagreements 
were resolved through discussion with a third screener 
(DM). Following the same procedure as the title and 
abstract screening, Covidence was again used for full-text 
screening.

Due to the small number of articles in the updated 
search, articles underwent title and abstract screening 
followed by full-text screening.

Data extraction was conducted by two researchers (MB 
and MS) using a pre-designed form adapted from the 
James Cook University Data Extraction Form (Additional 
file  1: Fig.  1). Data extracted from each study included: 
study design, population studied (i.e., species), meth-
ods for recruitment, sample size and demographics, cell 
types (including heterogeneity) that underwent DNA 
methylation analysis, pattern of PAE, DNA methylation 
assay used, reported candidate loci and, DNA methyla-
tion measures. Participant demographics included age, 
sex, ethnicity, smoking status, diet, socio-economic sta-
tus, and rodent strain, where appropriate were extracted. 
Two researchers (MB and MS) each conducted 50% of 
the data extraction, after which they cross-checked the 
other’s data extraction. Discrepancies were resolved by 

consensus and reviewed by a third party (DM). Stud-
ies were grouped by species, cell or tissue type, whether 
they assessed the entire genome or only certain loci and 
method of DNA methylation analysis.

For human studies potential for bias was assessed using 
the Risk Of Bias In Non-randomized Studies of Inter-
ventions (ROBINS-I) approach by two researchers inde-
pendently (DM and MS) with disagreements resolved 
through discussion [23].

Results
Search results
Figure  1 shows the PRISMA flowchart outlining the 
study selection process across both searches. A total 
of 1373 articles were obtained from the original and 
updated searches. The number of articles obtained 
by database were: PubMed (n = 254), Web of Science 
(n = 426), EMBASE (n = 543), Google Scholar (n = 106) 
and CINAHL Plus (n = 42). After removal of duplicates 
(n = 550), non-English articles, books, theses and con-
ference abstracts, 442 references were imported into 
Covidence for title and abstract screening. A total of 344 
articles were removed in the title and abstract screening 
phase, resulting in 98 articles that underwent full-text 
screening. A total of 58 articles were excluded during 
full-text screening (Fig.  1). A total of 42 articles were 
included in the review.

Characteristics of included studies
Forty-two of the included articles were published 
between 1991 and 2020. There were 26 animal studies 
with approximately 1373 subjects, and 16 human studies 
with approximately 6788 participants. However, sample 
sizes are approximations as the information provided in 
some studies was unclear and only estimated from the 
articles. There were nine studies assessing total nuclear 
DNA methylation content, eleven MWAS and 24 stud-
ies that assessed DNA methylation within a specific locus 
or loci. This includes three studies that assessed total 
nuclear DNA methylation content and DNA methylation 
content within specific loci. Organism and number of 
participants, year published, study design, exposure pat-
tern, tissues studied and DNA methylation analysis plat-
form used are summarised in Table 1.

The repeat of the literature searches on 17 July 2021 
identified two new studies that were compliant with the 
inclusion and exclusion criteria of this review.

Study design and participants
Human studies comprised 38% of the studies included in 
this review (16/42). Among the human studies there was 
substantial heterogeneity in study design (56% case–con-
trol studies, 38% observational studies, 6% meta-analytic 
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studies); the tissue used (50% buccal swabs, 44% varying 
types of blood cells, including cord blood, 12% placental 
tissue, 6% brain tissue); and the platform used to meas-
ure DNA methylation outcomes (50% microarray, 31% 
sequencing, 19% mass spectrometry, 19% polymerase 
chain reaction, 12% enzyme digest/immunohistochemis-
try) (Table  1). Multiple platforms and tissue types were 
used in some studies. Most human studies were either 
targeted candidate gene analyses (6/16) or methylome-
wide association studies (MWAS) of PAE (4/16) or FASD 

(4/16). The remaining two human studies used a global 
measure of total nuclear DNA methylation content.

All of the animal studies employed an intervention 
case–control design with all but one model being a 
rodent species (58% mouse, 42% rat) and a single model 
using non-human primates. The majority of animal stud-
ies measured DNA in brain tissue (21/26, 81%). Other 
tissues analysed included placenta, heart, tail, liver, blood 
and embryonal tissue. Most animal studies were targeted 
candidate gene analyses (19/26, 73%) and/or used a global 

Fig. 1 PRISMA flowchart outlining the study selection process across both searches
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measure of total nuclear DNA methylation content (7/26, 
27%), with only three studies (12%) performed at methy-
lome-wide scale. The dosage of PAE varied between ani-
mal studies including light (1/26, 4%), moderate (10/26, 
38%), moderate-high (3/26, 12%), high (6/26, 23%), and 
unclear (6/26, 23%). The timing of PAE also varied in the 
animal studies including PAE across pregnancy (5/26, 
19%), the first trimester only (6/26, 23%), the second tri-
mester only (1/26, 4%), the third trimester only (2/26, 
8%), an alternative PAE pattern (9/26, 35%), or an unclear 
timing (3/26, 12%).

Risk of bias assessment
Risk of bias was only assessed for the human studies 
since bias is inherently more problematic in these types 
of study designs than in controlled animal models. Bias 
due to baseline confounding or effect modification was a 
major issue as many studies did not consider or appro-
priately control for the effects of maternal smoking, diet, 
ethnicity or cellular heterogeneity, all of which can influ-
ence DNA methylation results (Fig. 2). Exposure groups 
were generally clearly defined, although usually deter-
mined through self-reporting, which may underestimate 
true exposure [24]. Many studies provided inadequate 
information on whether the same criteria were used 
to define cases and controls, or on missing outcome or 
covariate data (Fig.  2). Individual study bias scores are 
provided in Additional file 1: Fig. 1.

Summary of outcomes
Global measures of DNA methylation
There were eleven studies that assessed total nuclear 
DNA methylation content including two human stud-
ies and nine animal models. Of the former, Loke et  al. 
reported no association between PAE and total placental 
DNA methylation, but reported hypermethylation (1.5%, 
p = 0.012) in stratified analysis of males exposed to any 
level of alcohol throughout pregnancy, after adjusting 
for confounders [25]. Jarmasz et al. reported hypometh-
ylation of nuclei from hippocampal CA1 region neurons 
(p = 0.02) in postmortem early fetal tissues (21–25 weeks 
post conception) with a history of alcohol abuse, although 
the analysis was not adjusted for multiple testing and no 
measure of effect size was given [11]. The authors did 
not reproduce this association in a non-human primate 
model of high dose exposure in CA1 neurons using the 
same techniques.

Among the animal studies, Chen et  al. reported that 
moderate-high alcohol doses (4% ethanol, Gestational 
Day (GD) 7–16) given to C57Bl/6 dams were associ-
ated with alterations in DNA methylation during fetal 
hippocampus development [15]. Immunostaining for 
DNA methylation and DNA hydroxy methylation were 

significantly lower in the neuroepithelial layer, but higher 
in the intermediate zone and CA1 neurons in affected 
embryos. At postpartum day seven, methylation levels 
were higher in the outer shell layer of the dentate gyrus, 
whilst hydroxy methylation levels were lower in both the 
inner and outer shell layers. Öztürk et al. replicated the 
study and reported hypermethylation within CP sub-
cortical regions in the exposed embryos, but no effect 
on other subcortical regions [26]. Abbott et al.  reported 
global hypomethylation in neocortex samples in CD1 
pups exposed to a high dose exposure regime across 
pregnancy (25% ethanol, GD0.5-GD19) [27]. Garro et al. 
also reported global DNA hypomethylation using a DNA 
methyl acceptor assay in unspecified fetal tissue from 
Swiss-Webster dams exposed to high levels of ethanol 
(3 g of 50% ethanol per kilogram body weight) by gavage 
in part of the second trimester of pregnancy (GD9-11) 
[28]. Govorko et al. found no evidence of global changes 
in DNA methylation in the arcuate nucleus brain region 
of offspring of Sprague–Dawley rats exposed to moder-
ate levels of ethanol during gestation (variable 1.7–5.0% 
ethanol ad libitum within liquid diet during GD7-10 fol-
lowed by 6.7% ethanol during GD11-21) [29]. Similarly, 
Kaminen-Ahola et  al. also found no evidence of global 
changes to DNA methylation in tail or forebrain samples 
from C57Bl/6 offspring mice of dams exposed to moder-
ate levels of alcohol for eight days after fertilization (10% 
ethanol, GD0.5–8.5) [30]. Murillo-Fuentes et  al. also 
reported no difference in global DNA methylation in liver 
tissue among Wistar pups exposed to moderate-high 
doses across pregnancy (5–15% ethanol) and then main-
tained at 20% for a further 5 weeks during lactation [31].

Taken together, human and animal study evidence of 
an effect of PAE on overall nuclear level of DNA meth-
ylation was inconsistent, and no correlations between the 
timing and dose of exposure and methylation outcomes 
were identified.

Candidate gene studies
Candidate gene studies assessed DNA methylation at 
imprinted genes (IGF2/H19 [13, 32–38], Snrpn [37], 
PEG3 [35, 37], KvDMR1 [13], ZAC1 [39], IG-DMR [13]), 
genes sensitive to nutritional programming  (Avy allele 
[30], Pomc [29, 40, 41]), neurological function (SLC17A6 
[42], OLFR110 [43], OLFR601 [43], VMN2R64-ps158 
[43], D2r [44], Bdnf [45], Pdyn [46, 47], Kor [46, 47], 
SLC6A4 [48], Nr3c1 [48], Gfap [49], Gad67 [14], DRD4 
[12], PER2 [50], SLC6A4 [48], SERT [51], MECP2 [51]), 
transcriptional regulation (Hist1h2ai [43]), and immune 
function (Vpreb2 [43]). Table 2 summarises all candidate 
gene studies in this review that assessed the Igf2/H19 
locus,.
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Among the imprinted genes, the IGF2/H19 locus was 
the most consistently studied candidate region in eight 
different articles (3 human studies [13, 32, 38], 5 mouse 
models [33–37]). This transcriptional unit plays a central 
role in placental and embryonic growth. The locus con-
tains several differentially methylated regions (DMRs) 
that are methylated in a parent of origin specific manner, 
and an imprinting control region (ICR) that modulates 
the transcription of IGF2 and H19 in an allele-specific 
manner [52].

Masemola et  al. reported on four imprinted genes 
(H19-ICR, IG-DMR, KvDMR1, PEG3) of the genome in 
a South African cohort of FASD cases and controls in 
blood and buccal tissues [13]. Locus-wide hypomethyla-
tion was reported PEG3 (average 7% lower in PAE cases), 
KvDMR1 (effect size 1.49% lower in PAE cases) and IG-
DMR1.B (average 0.84% lower in PAE cases), after adjust-
ing for age and sex. No differences were observed at the 
H19 ICR. The authors did not control for multiple testing 
in their analysis.

Marjonen et al. assessed DNA methylation at the H19-
ICR and H19-DMR loci in placental tissue with high 
levels of PAE compared with and unexposed controls 
[32]. Overall, there was no difference observed between 
groups. Hypomethylation was reported at multiple 
CpG sites across the H19 CTCF6 among carriers of the 

rs10732516 A/G genotype in the alcohol exposed group 
(effect size ~ 10–15% decrease), however this provided 
weak evidence for an association as it did not survive 
multiple testing correction.

Two mouse models of early exposure ranging from 
acute high to moderate dosages both examined effects 
on DNA methylation at IGF2/H19 in embryos and pla-
centas [33, 35]. Haycock et  al. reported allele-specific 
hypomethylation on the paternal allele of H19-ICR in 
alcohol exposed placentas (effect size ~ 12–22% decrease) 
of C57Bl/6 & CastEi Hybrid Mouse but no difference 
in mid-gestation embryos [33]. Marjonen et  al. did not 
report any significant differences in DNA methyla-
tion at the same regions in early embryos and placenta 
of C57Bl/6 mice with moderate PAE during the first tri-
mester (10% ethanol w/v in drinking water, GD0.5–8.5), 
although they did not examine allele specific effects [35].

Zhou et  al. reported hypomethylation at Igf2 DMR 
locus in fetal heart (Igf2-DMR1), brain (Igf2-DMR2) and 
at the H19 DMR locus in placental tissue from a C57Bl/6 
mouse model of high dose exposure over the first 15 days 
of gestation (0.025 ethanol, GD0.5–15.5), which was 
twice the duration of the two previous studies. Effect 
sizes were 2–5% lower in the ethanol exposed fetal tis-
sues. Tissue-specific effects of alcohol exposure were 
reported in this study, however allele specific effects were 

Fig. 2 Summary chart of risk of bias assessment for human studies. The Percentage of studies scored for each bias domain is shown

Table 2 Summary table of candidate gene studies assessing DNA methylation in the Igf2/H19 locus

Publication Locus Tissue Change in methylation from PAE

Marjonen (2017) H19 DMR (C6), H19 ICR Placenta Hypomethylation (nominal P-value only)

Masemola H19 ICR (C6) Blood, buccal Hypomethylation

Marjonen (2018) H19 ICR (C1 and C2), IGF2 DMR1 Placenta, embryo No change

Haycock H19 ICR (C1 and C2) Placenta, embryo Hypomethylation in placenta, no change in embryo

Zhou H19 DMR, IGF2 DMR0, 1,2 Heart, brain, placenta Hypomethylation at Igf2 DMR1, Igf2 DMR2, and H19, no change at 
Igf2 DMR0

Downing IGF2 DMR1 Placenta, embryo Hypomethylation

Stouder H19 ICR Sperm, brain, muscle, liver, tail Hypomethylation in CTCF12 (F1) and all six sites (F2) in sperm, no 
change in other tissues (F1)
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not examined. Downing et al. reported a small decrease 
in methylation at IGF2-DMR1 in embryonic tissue of 
C57Bl/6 mice following acute PAE (20% ethanol solution, 
GD0-8.5) but not in placental tissue (effect size ~ 7%) 
[34].

Stouder et al. examined trans-generation effects of low 
dose PAE in mid to late gestation (0.5 g/kg dam weight/
day of ethanol, GD10-18) on eight week old offspring 
imprinted genes in normal FVB/N mice [37]. Hypo-
methylation at H19-ICR was reported in the sperm of F1 
offspring, but not in somatic tissues (muscle, tail, brain, 
liver). Interestingly, this exposure-associated hypometh-
ylation was not observed in F2 germ cells but rather in 
somatic brain tissues. Effect sizes ranged from 3–5% 
decrease in methylation after adjustment for multiple 
testing.

Meta-analysis of IGF2/H19 regions was not feasible 
due to the lack of numerical reporting of methylation lev-
els in some studies and differences in quantitative assays 
used to measure DNA methylation. Overall, there was 
limited but suggestive evidence for a reduction in DNA 
methylation at IGF2/H19 regions in somatic tissues, but 
this was not entirely consistent, even among studies of 
the same tissue.

Methylome‑wide association studies of PAE
There were four methylome-wide association stud-
ies (MWAS) assessing PAE, including two human stud-
ies using population based cohorts of PAE spanning 
birth to school age [53, 54] and two mouse models [16, 
55]. All human studies employed the Infinium Human-
Methylation450k array, and the two murine studies 
both employed methylated DNA immunoprecipitation 
(MeDIP). Tissues examined included whole blood, buccal 
swabs and cord blood, except for the mouse study which 
examined brain tissue.

Frey et al. conducted MWAS on buccal cell DNA from 
156 primary school children with objectively measured 
PAE by ethyl glucuronide metabolite test (32 exposed, 
124 unexposed) [53]. They report weak evidence of 
an association with PAE at 193 differentially CpGs 
(P < 0.001), however the effect was no longer evident after 
correcting for multiple tests.

Timms et  al. conducted an MWAS on human cord 
blood samples from a UK based cohort of 253 newborns 
with PAE and 530 unexposed controls based on maternal 
self-report [54]. Their analysis reported on 192 genome-
wide CpG sites with significant differences (false discov-
ery rate < 0.05) associated with PAE.

Sharp et al. performed a meta-analysis from cord blood 
samples across six human cohorts (1147 PAE and 1928 
non-PAE controls), and reported no significant differ-
ences in DNA methylation associated with PAE [20]. 

Confounding factors that were controlled for in all mod-
els included maternal age, educational attainment and 
smoking status in pregnancy. The control cohort was 
defined by PAE before and during the first trimester of 
pregnancy, compared to the case cohort that was defined 
by PAE both before and across pregnancy. Consequently, 
the study lacked a suitable control cohort characterised 
by no PAE. Technically this article meets our exclusion 
criteria, but we describe it here due to the scale and 
robustness of the study.

In a C57Bl/6 mouse model of voluntary maternal drink-
ing (10% ethanol w/v in drinking water) in pregnancy 
(GD0-10), Laufer et  al. used genome-wide analysis by 
Methylated DNA Immunoprecipitation (MeDIP-chip) of 
CpG islands in adult offspring whole brain DNA extracts 
[16]. The study found weak evidence for 6660 differen-
tially methylated regions (un-adjusted P < 0.01) in alco-
hol-exposed mice. They also reported hypermethylation 
of imprinted regions H19/Igf2, as observed in placental 
tissue by Haycock [33], albeit in the opposite direction. 
There was no overlap in the aforementioned 3 MWAS 
studies of PAE with respect to CpG regions identified.

Alberry and Singh also adopted a C57Bl/6 mouse 
model with voluntary maternal drinking of 10% ethanol 
w/v in drinking water, but provided the ethanol through-
out pregnancy and alongside plain drinking water. MeDIP 
sequencing was performed on the promoter regions of 
genes that are known to be associated with PAE or early 
life stress in hippocampal tissue from male offspring on 
postnatal day 70. The total number of genes that had pro-
moters sequenced as part of the study is unclear, however 
the study identified 614 genes with hypomethylated pro-
moters, 630 genes with hypermethylated promoters and 
20 genes with both hypomethylated and hypermethyl-
ated promoters (unadjusted p < 0.01) before FDR correc-
tion. After FDR correction, no genes had promoters with 
a q-value below 0.01 which was defined as the statisti-
cal significance threshold in the study. If significance is 
defined as q < 0.05, three genes were identified as hypo-
methylated from PAE (Krtap5-3 q = 0.03, Hbegf q = 0.03, 
2310034C09Rik q = 0.04) and one gene was hypermethyl-
ated from PAE (Myo1a q = 0.03) [55].

In summary, the PAE MWAS provide inconsistent evi-
dence for any association between PAE and DNA meth-
ylation. Although each MWAS identified candidate DNA 
methylation loci that were significantly associated with 
PAE, there was a lack of replicated associations between 
studies.

Methylome‑wide association studies of FASD
There have been four MWAS on children with FASD, 
which all employed the Infinium HumanMethyla-
tion450k array. Laufer et  al. performed genome-wide 
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methylation array analysis of buccal samples from 12 
children (3–10  years) with FASD, and 11 age-matched 
controls of Northern European ancestry [56]. They report 
weak evidence of 269 differentially methylated regions 
(un-adjusted P < 0.005). Portales-Casamar et al. identified 
658 CpG sites across the genome that were associated 
(FDR < 0.05) with FASD in a Canadian cohort of child 
and adolescent human buccal samples (110 FASD and 96 
controls), including 41 CpG sites with a greater than 5% 
change in methylation [9]. Of the 658 CpGs identified as 
significant, 356 were hypermethylated in FASD cases and 
302 were hypomethylated relative to controls (effect sizes 
0.16–13.1%).

In a more recent study, Lussier et  al. validated 161 of 
the 658 CpG sites associated with FASD in human buc-
cal samples from an independent Canadian cohort of 48 
children, reporting a similar direction of effect and sta-
tistically significant effect size [57]. Overall, the MWAS 
suggested moderate evidence for an association between 
DNA methylation and FASD with replicated associations 
reported in two of four studies. However, there was risk 
of bias arising from these studies where control groups 
were commonly children who had attended a clinic for a 
FASD diagnosis and not received a diagnosis [9, 56, 57] or 
the method for recruiting control groups was unclear [13, 
58]. This suggests that control participants had develop-
mental difficulties that may have been partly caused by 
epigenetic modifications and therefore did not represent 
a “typically developing” population. Secondly, a group of 
studies [9, 57] had imbalanced ethnicities between con-
trol and FASD groups (disproportionate number of First 
Nations children within case cohorts) and this may have 
affected their results even after they attempted to correct 
for this via statistical methods.

Okazaki et  al. re-examined the cohorts from Lussier 
and Portales-Casamar studies to identify an association 
between FASD and five DNA methylation-based epi-
genetic clocks. The analysis was also performed on two 
peripheral blood cohorts, which included one Polish 
cohort and a second cohort from the Netherlands. The 
study identified one of the epigenetic clocks (GrimAge) 
was significantly associated with FASD in one buccal and 
both blood datasets, but no significant associations were 
reported with the other epigenetic clocks. Meta-analysis 
of datasets by tissue type also reported a significant asso-
ciation between FASD and the GrimAge epigenetic clock 
in peripheral blood, but no significant association was 
reported in buccal cells [59].

Conclusions
Alcohol consumption in pregnancy has been linked to 
changes in offspring DNA methylation, which may be 
mechanistically important in mediating the harmful 

effects of alcohol on neurodevelopment. We have under-
taken a systematic review of studies reporting associa-
tions between PAE and variations in DNA methylation. 
On balance, the results did not support a clear and con-
sistent effect of PAE on DNA methylation, underscoring 
methodological limitations including substantial hetero-
geneity in study design, tissues examined, and method-
ologies used to assess DNA methylation, in addition to 
the risk of potential bias due to cellular heterogeneity 
within the tissues examined and inadequate control for 
confounding factors such as maternal diet and smok-
ing, ancestry and cellular heterogeneity in tissues. Cur-
rent knowledge regarding the epigenetic mechanisms of 
PAE remain unclear and findings from previous studies 
have not been reproducible to date. In contrast, studies 
examining the epigenetic changes from prenatal cigarette 
smoking have been found to be very reproducible across 
multiple cohorts [60, 61]. Ongoing cigarette smoking is 
likely to be more frequent than heavy alcohol use, which 
may explain the difference. If we consider the FASD phe-
notype to reflect heavy exposure, then some reproducible 
effects were observed although future studies will need to 
confirm this. Thus the supposition that PAE has no effect 
on offspring DNA methylation could not be ruled out. 
Results are reviewed in the context of these limitations 
with directions for future research.

Studies at imprinted regions, in particular, IGF2/H19, 
were the easiest to compare since methylation in this 
region is germline encoded and does not vary substan-
tially across tissues and is less influenced by environ-
mental exposures. We might reasonably expect that if 
alcohol were to have a strong effect on DNA methyla-
tion, substantial variation would be observed at these 
regions. On the contrary however, small hypomethyla-
tion differences were observed that were not consist-
ent across studies with comparable exposure patterns. 
It is possible that compensatory mechanisms may exist, 
for example, the ZFP57 gene encodes a transcriptional 
regulator that functions to maintain gene imprinting 
[62] in response to extracellular stimuli [63]. Similarly, 
studies that employed a marker of total nuclear DNA 
methylation content suggested that overall methyla-
tion levels were reasonably conserved. It is also possible 
that ethanol may have non-specific inhibitory regional 
effects on DNA methylation that would increase over-
all variability in methylation outcomes, even within 
the same tissue. If this were the case, we might expect 
this to be reflected in repeat elements of the genome 
or in global methylation assays. Two studies identified 
differential DNA methylation associated with FASD 
within the same loci [9, 57]. Such methylation changes 
might accumulate over time either as a consequence 
of FASD or through a causal mechanism, however 
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further research is needed in other FASD populations. 
Given that the functional outcomes for those diagnosed 
with FASD can be completely different across a wide 
range of neurodevelopmental and physical domains, 
it could be hypothesised that the effects of PAE on 
DNA methylation are highly individualised. Potential 
contributing factors include the timing and dosage of 
alcohol exposure, characteristics of the parents includ-
ing diet and health status, genetic factors, and other 
as yet unknown factors. Large individual differences 
could potentially be overlooked in the typical statisti-
cal approaches examining mean differences between 
groups. Therefore, personalised approaches looking for 
significant differences in DNA methylation between 
individuals prenatally exposed to alcohol compared and 
non-exposed populations might need to be considered.

In summary, there is a need for studies to employ 
more uniform designs and analysis plans including 
pre-defined criteria for assessing alcohol exposure and 
adjustment for a wider range of confounding factors 
including, but not necessarily limited to, mother’s age, 
diet (including folate and choline supplementation), 
child parity and gender, weeks of gestation, and eth-
nicity. Effect modifiers such as cell composition within 
tissues examined are equally important. These issues 
could be addressed by employing a matched study 
design or through adjustment during data analysis. For 
studies investigating FASD, samples were generally col-
lected from 4 to 18 years after the exposure and birth. 
We know that children with FASD generally have addi-
tional life stressors compared with those who do not, 
such as increased adverse childhood experiences, and 
contact with the justice system (Lange et  al., 2017). 
These in turn may have effects on epigenetic profiles 
within target tissues.

Other areas of study design were identified during the 
bias analysis that could generally be improved. A consist-
ent issue in human studies was inclusion into the study 
criteria based on specimen availability. Given the stigma 
associated with alcohol use in pregnancy those who 
have used alcohol may be less likely to provide biologi-
cal specimens. It is therefore imperative that analysis is 
undertaken to determine any potential bias this might 
introduce. Additionally, the questions used to ascertain 
PAE status were rarely specified, often involved retro-
spective collection and, as with all PAE studies, did not 
have use of an objective PAE biomarker. We additionally 
recommend more consistent reporting of methylation 
group mean differences to enable future meta-analyses. 
Finally, to address current limitations of cell heterogene-
ity in biospecimens such as blood and buccal, analysis of 
purified cell populations or single cell studies are likely to 
be informative in future research.

Limitations of the review
This review focused exclusively on the association of 
offspring DNA methylation with maternal PAE. The 
advantage of including animal models in this review 
is that they are largely unaffected by confounding fac-
tors influencing DNA methylation in humans. Yet DNA 
methylation results from animal models may not be 
generalisable to humans due to differences between 
species. It is possible that some non-significant results 
were due to a lack of statistical power because of their 
small sample sizes and presence of residual confound-
ing. Ensuring sample sizes have sufficient power to 
detect true effects is essential. However, several of the 
human studies that returned null results were of a rea-
sonably large sample size. More research is warranted 
on DNA methylation from preconception alcohol 
exposure, including paternal alcohol use, and postna-
tal alcohol exposure transmitted through breastmilk, 
however these studies were outside the scope of this 
systematic review. Furthermore, studies such as those 
by Finegersh and Homanics suggest that paternal alco-
hol exposure can also affect the epigenetic outcomes 
for offspring. Whilst these studies were outside the 
scope of this review [64], this is an important area of 
future enquiry. Additionally, a meta-analysis could not 
be included in this review due to the differing tissues, 
species, sequencing methods and for targeted studies, 
loci, that were assessed between studies.

Prenatal alcohol exposure is a significant public health 
issue, and mechanistic understanding of the impact of 
this exposure on fetal development is urgently needed. 
This review summarises the current state of research 
and focus for future efforts to advance this area of sci-
ence. Currently the evidence was inconsistent and incon-
clusive regarding maternal PAE as a critical exposure on 
offspring DNA methylation. Future studies in well char-
acterized populations that focus on purified cells, or sin-
gle cell analyses, will likely be informative.
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