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Genome‑wide methylation and expression 
analyses reveal the epigenetic landscape 
of immune‑related diseases for tobacco 
smoking
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Abstract 

Background:  Smoking is a major causal risk factor for lung cancer, chronic obstructive pulmonary disease (COPD), 
cardiovascular disease (CVD), and is the main preventable cause of deaths in the world. The components of cigarette 
smoke are involved in immune and inflammatory processes, which may increase the prevalence of cigarette smoke-
related diseases. However, the underlying molecular mechanisms linking smoking and diseases have not been well 
explored. This study was aimed to depict a global map of DNA methylation and gene expression changes induced by 
tobacco smoking and to explore the molecular mechanisms between smoking and human diseases through whole-
genome bisulfite sequencing (WGBS) and RNA-sequencing (RNA-seq).

Results:  We performed WGBS on 72 samples (36 smokers and 36 nonsmokers) and RNA-seq on 75 samples (38 
smokers and 37 nonsmokers), and cytokine immunoassay on plasma from 22 males (9 smokers and 13 nonsmokers) 
who were recruited from the city of Jincheng in China. By comparing the data of the two groups, we discovered a 
genome-wide methylation landscape of differentially methylated regions (DMRs) associated with smoking. Functional 
enrichment analyses revealed that both smoking-related hyper-DMR genes (DMGs) and hypo-DMGs were related to 
synapse-related pathways, whereas the hypo-DMGs were specifically related to cancer and addiction. The differen-
tially expressed genes (DEGs) revealed by RNA-seq analysis were significantly enriched in the “immunosuppression” 
pathway. Correlation analysis of DMRs with their corresponding gene expression showed that genes affected by 
tobacco smoking were mostly related to immune system diseases. Finally, by comparing cytokine concentrations  
between smokers and nonsmokers, we found that vascular endothelial growth factor (VEGF) was significantly upregu-
lated in smokers.

Conclusions:  In sum, we found that smoking-induced DMRs have different distribution patterns in hypermethylated 
and hypomethylated areas between smokers and nonsmokers. We further identified and verified smoking-related 
DMGs and DEGs through multi-omics integration analysis of DNA methylome and transcriptome data. These findings 
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Background
Tobacco smoking is a major causal risk factor for various 
diseases, including cancers, respiratory problems, cardio-
vascular disorders, and others [1]. There are more than 
one billion tobacco users in the world, about 1/3 of them 
in China [2]. Although smoking cessation campaigns and 
legislative actions led to a reduction of 6 million in the 
number of tobacco users, smoking is still a leading pre-
ventable cause of death, killing more than 8 million peo-
ple each year, most of them in developing countries [2].

More than 4,000 compounds have been identified in 
the particulate and vapor phase of tobacco, which include 
about 60 known carcinogens, such as nitrosamines, poly-
cyclic aromatic hydrocarbons, and aromatic amines [3]. 
Some of these components are reported to involve in 
innate and adaptive immune responses and inflammatory 
processes, thereby increasing the prevalence of smoking-
related diseases such as COPD and lung cancer [4, 5]. 
Cigarette smoke induces alveolar macrophages (AMs) 
to express more lysosomal enzymes and secrete elastase, 
which may damage the connective tissue and parenchy-
mal cells of the lung and may play a key role in chronic 
bronchitis and emphysema effect [5, 6]. It is known that 
one-third of cancers can be attributed to smoking, espe-
cially lung cancer, oral cancer, pancreatic cancer, esopha-
geal cancer, and kidney cancer [7]. Lung cancer is the 
most frequent one in the world and the leading cause 
of cancer deaths    [8]. However, the underlying molecu-
lar mechanisms linking smoking and related diseases 
have not been well explored, especially at  the level of 
epigenomics that is greatly influenced by human living 
environment.

DNA methylation (DNAm) is a highly dynamic epige-
netic change that attaches methyl groups to nucleotides 
and is one of major mechanisms underlying the effects 
of tobacco smoking [9]. Studies based on Illumina 450 K 
and 850  K methylation arrays have shown that numer-
ous CpG sites are significantly associated with smoking 
[10–15]. The hypomethylated genes probably as a result 
of tobacco smoking are linked to immune diseases, lung 
cancer, and death [14, 16, 17]. At the level of the tran-
scriptome, RNA expression changes are commonly quan-
tified using microarrays with peripheral whole blood 
and alveolar macrophages. Recent studies have reported 
that DNAm that is abnormal in the regulatory elements 
modulates the expression of smoking susceptibility genes 
and is associated with a higher risk of various cancers 

[11, 18–20]. However, array-based targeting gene studies, 
whether at the level of epigenomics or the transcriptome, 
can reveal only limited molecular changes induced by 
tobacco smoking.

With the emergence of high-throughput next-gen-
eration sequencing, whole-genome bisulfite sequenc-
ing (WGBS) has greatly enriched our understanding of 
changes in methylation across the genome [21, 22]. RNA 
sequencing (RNA-seq) can interrogate not only existing 
annotated transcripts, but also new sequences and splice 
variants; and it can achieve a much higher resolution 
with low limits compared with standard whole-genome 
microarrays [23]. To the best of our knowledge, there 
have been few studies on the systematic analysis of the 
molecular effect of tobacco smoking on human beings 
by integrating DNA methylation and RNA-seq data at 
the genome level in Chinese samples [24]. By analyzing 
WGBS and RNA-seq data in both smokers and nonsmok-
ers, in this study, we intended to: (1) depict the effects of 
tobacco exposure on genome-wide DNA methylation 
changes in Chinese adult male smokers; (2) explore the 
relations between smoking-related methylation and the 
corresponding RNA expression; and (3) integrate results 
from DNA methylation, RNA expression, and cytokine 
concentrations with the goal of revealing the molecular 
mechanism underlying the effects of tobacco smoking on 
smokers at multiple levels and exploring the relationship 
between smoking and related diseases (Fig. 1).

Results
Correlation of tobacco smoking with DNA methylation 
changes throughout the whole genome
After WGBS analysis of all samples, we obtained an aver-
age of about 700 million (± 75 million; SD) paired-end 
reads of 150 bp for each sample. Table 1 lists the detailed 
demographic characteristics of the samples included in 
the study. For the captured 25 million autosomal CpG 
sites from each of 72 subjects, we acquired the single 
base resolution methylation ratio with an average cov-
erage of 88.21% (± 1.19%; SD) and conversion rate of 
79.31% (± 3.25%; SD). After removal of rare SNPs with 
MAF < 0.05, a total of 24,479,261 CpG sites with an aver-
age depth of 12.53 × (± 1.45; SD) were included in the 
study.

About 20% of the CpG sites were located in CpG-rich 
areas, while the rest mapped to regions with lower CpG 
density (Fig. 2A). Relative to genomic background, more 

provide us a comprehensive genomic map of the molecular changes induced by smoking which would enhance our 
understanding of the harms of smoking and its relationship with diseases.
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than half of the total CpGs were annotated to genes 
based on Human Genome Reference GRCH37, and the 
rest were located in intergenic regions (Fig. 2B).

The raw methylation status distribution of genome-
wide CpG sites revealed the presence of two obvious 
peaks (Fig. 2C), with the one concentrated in low meth-
ylation sites (0–0.1) and the other in high methyla-
tion sites (0.9–1.0). In addition, the landscape of 2,440 
smoking-associated DMRs at a significance level of 

Stouffer–Liptak P value of ≤ 1.00 × 10–4 was identified, 
with an average methylation difference of 3.4% (0.3 ~ 20%) 
in these regions, among which 74.59% were highly meth-
ylated and 25.41% were low methylated compared with 
nonsmokers. The ratio between DMRs in each direction 
was approximately 3:1. Figure 3A shows the overall effect 
of tobacco smoking on methylation in the whole genome.

DMR enrichment analysis
Figure  3B shows that hypermethylated DMRs were sig-
nificantly depleted in the promoter regions, 5′-UTRs, 
3′-UTRs, exons, introns, CpG shores, and islands and 
were enriched in intergenic regions and open seas com-
pared with background regions. Hypomethylated DMRs 
were significantly enriched in the CpG shores and CpG 
shelves and depleted in promoter regions and CpG 
islands compared with background regions. From the 
results of chromatin state enrichment analysis, we found 
that hypermethylated smoking-related DMRs were fre-
quently depleted in the active TSS, flanking active TSS, 
and bivalent enhancer but were significantly enriched in 
quiescent/low areas (defined as inactive chromatin states 
with closed chromatin, very low signals for all available 
histone marks and varying levels of DNA methylation), 
whereas hypomethylated SM-DMRs were significantly 
enriched in predicted enhancers areas based on the data 
from 20 blood cell types and two lung tissues (Fig. 3C).

Biological functions of DMR‑related genes
We found a total of 1205 hypermethylated genes and 
534 hypomethylated genes through the gene annotation 
of DMRs (see Additional file 1: Table S4). To determine 
the biological functions of these genes, we performed 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis (Fig.  3D, Additional file  1: Tables 
S5 and S6). The top three pathways of hypermethylated 
genes were axon guidance (has04360; P = 1.72 × 10–5), 
glutamatergic synapse (hsa04724; P = 1.56 × 10–4), and 
estrogen signaling pathway (hsa04915; P = 4.18 × 10–4), 
respectively. On the other hand, we identified 30 path-
ways for hypomethylated genes (P value < 0.05), with the 
first one being cancer-related pathways, the second syn-
apse-related pathways (i.e., cholinergic synapse), and the 
third related to morphine addiction.

Identification of differentially expressed genes (DEGs)
Our RNA-Seq analysis revealed 18,651 transcripts, of 
which 17,566 were annotated to the human genome, 
with 13,838 protein-coding genes, 695 lincRNAs, and 
1,348 pseudogenes and other RNAs. Statistical analy-
sis revealed 55 DEGs between smokers and nonsmok-
ers after correction for multiple testing (Fig.  4A; see 
Additional file  1: Table  S7, for details), which included 

Table 1  Sample characteristics

BMI Body Mass Index, CPD, cigarettes per day, FTND Fagerstrom test for nicotine 
dependence

Characteristics WGBS RNA-seq

Smokers Nonsmokers Smokers Nonsmokers

Sample size 36 36 38 37

Average age 
(SD)

41.0 (2.08) 41.3 (2.51) 42.84 
(5.55)

42.86 (5.48)

BMI (SD) 24.3 (3.33) 25.1 (3.55) 24.17 
(2.75)

25.89 (3.03)

CPD (SD) 21.58 
(3.33)

0 23.55 
(8.70)

0

FTND (SD) 5.42 (2.12) 0 6.34 (1.61) 0

Miner (Non-
miners)

18 (18) 18 (18) 29 (9) 21 (16)

Extract DNA & RNA from blood of subjects

DNA methylation Gene expression

Remove SNPs

Common genes pathway enrichment analysis

Cytokine immunoassay

Tobacco smoking has a comprehensive effect on human immune system

RNA-seq

Human cytokine 27-Plex immunoassay kit

WGBS

WGS

Fig. 1  Discovery strategy. To overcome the limitation of commonly 
used in DNA methylation arrays, which  capture only a limited 
number of CpG sites throughout the whole genome, we performed 
whole genome bisulfite sequencing (WGBS) on 72 males in the 
city of Jincheng in China. Rare variants (MAF < 0.05) were removed 
according to our whole genome sequencing (WGS) dataset. We 
also performed RNA sequencing analysis (RNA-seq) on 75 local male 
individuals with the goal of finding differentially expressed genes 
between smokers and nonsmokers at the genomic level
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51 protein-coding RNAs, two long non-coding RNAs 
(i.e., AC009299.3 and FAM225B), one sense intronic, 
and one pseudogene. The top two protein-coding genes 
were GPR15 (log2FC = 2.25; P = 2.54 × 10–14) and LRRN3 
(log2FC = 1.10; P = 7.92 × 10–8).

In addition, we analyzed gene–disease associations 
using the DisGeNET database (Fig.  4B). The results 
showed that the most significant gene–disease sets were 
significantly enriched in “immunosuppression” (GO: 
C4048329; P = 2.00 × 10–6).

Correlation analysis of DMRs’ methylation and gene 
expression
Next, we determined whether genes differentially 
expressed in smokers and nonsmokers were correlated 
with smoking-induced epigenetic changes. We ana-
lyzed correlations between 1,746 significant DMGs (See 
Additional file  1: Table  S8) and 1,646 significant DEGs 
(see Additional file  1: Table  S9) and found 148 overlap-
ping genes between the DMG and DEG sets (defined 
as DMR–DEG pairs; Fig.  4C; see Additional file  1: 
Table  S10). These 148 common genes were classified 

into four categories according to the directions of DNA 
methylation and gene expression relative to nonsmokers: 
34 “Hyper-Up” for the hypermethylated and upregulated 
genes; 57 “Hyper-Down” for the hypermethylated and 
downregulated genes; 26 “Hypo-Up” for the hypometh-
ylated and upregulated genes and 31 “Hypo-Down” for 
the hypomethylated and downregulated genes (Table 3). 
Pathway analysis showed that these 148 smoking-
related genes were enriched primarily in immune sys-
tem diseases (P = 7.94 × 10–7; Table  2; Fig.  4D). We also 
performed KEGG pathway enrichment analysis and 
obtained similar results (see Additional file 1: Table S11, 
for details).

Considering that hypermethylated DMRs were sig-
nificantly depleted in the promoter regions, and the 
hypomethylated DMRs were enriched in the enhancer 
regions, we decided to focus on the DMRs located in 
genomic regulatory elements and performed correlation 
analysis between significant DMR methylation and their 
predicted target gene expression.

Of the 196 DMRs located in the promoter regions, only 
chemerin chemokine-like receptor 1 (CMKLR1) showed 

Rate
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Smokers
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Fig. 2  Genome distribution of CpGs captured by WGBS. The distributions of CpGs summarized based on CpG densities (A) and genomic locations 
(B). C Distribution of methylation level density of each site in the whole genome. Note: X = degree of methylation; Y = the CpG site density 
corresponding to the level of methylation; WGBS = whole genome bisulfite sequencing
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a significant negative correlation between its hypermeth-
ylation and down-regulation of gene expression (Table 3). 
Among the 254 DMRs located in the enhancer regions 
(defined as differentially methylated enhancers; DMEs), 
correlation analysis showed that 22 enhancer-associated 
DMRs correlated significantly with target gene expres-
sion (Table  3), with 70% of them negatively correlated. 
These DMEs were divided into two categories, one act-
ing on its host genes, and the other “commuting enhanc-
ers,” which was located in a gene but acted on other distal 
gene(s). These findings indicated that smoking-related 
differential methylation sites target mainly enhancers 
other than promoters. About 1% (22/254) of all differen-
tially methylated regions in enhancers had a significant 
correlation with the expression of target genes (Fig. 5).

Association between circulating cytokines and tobacco 
smoking
The above-mentioned results indicated that overlap-
ping genes were significantly enriched in immune 
system-related diseases. Thus, we analyzed differences 

in 27 cytokines between smokers and nonsmokers. 
After comparing cytokine concentrations in the two 
groups, we found that vascular endothelial growth 
factor (VEGF; P = 0.03; 95% confidence interval [CI] 
0.02–0.50) and FGF basic (P = 0.04; 95% CI − 0.01 to 
0.34) level were significantly upregulated in smok-
ers compared with nonsmokers (see Additional file  1: 
Table S12).

Relation between smoking‑associated hypomethylation 
and up‑regulated expression of FLT1
The cytokine results showed that VEGF was signifi-
cantly increased in smokers. We also detected DNA 
methylation and RNA of VEGF but failed to find any 
significant differences in them. However, we found that 
its receptor, FLT1/VEGFR1, was hypomethylated in its 
enhancer region (Δ methylation = 9.2%; P = 7.02 × 10–5) 
and significantly up-regulated in smokers (FC = 1.39; 
P = 8.7 × 10–3) (Fig. 6).

Hypermethylated DMRs
Hypomethylated DMRs
Δ 10 % Methylation difference

A C Hypermethylated DMRs

Lung
Fetal Lung

Primary mononuclear cells from PB
Primary hematopoietic stem cells G-CSF-mobilized Male

Primary hematopoietic stem cells G-CSF-mobilized Female
Primary T CD8+ memory cells from PB

Primary T CD8+ naive cells from PB
Primary Natural Killer cells from PB

Primary T cells effector/memory enriched from PB
Primary T regulatory cells from PB

Primary T helper cells from PB
Primary T helper 17 cells PMA-I stimulated

Primary T helper cells PMA-I stimulated
Primary T helper memory cells from PB 1

Primary T helper naive cells from PB
Primary T helper memory cells from PB 2

Primary hematopoietic stem cells short term culture
Primary hematopoietic stem cells

Primary T cells from PB
Primary B cells from PB

Primary neutrophils from PB
Primary monocytes from PB

Log2(Fold Change)
0 ~ 1
-1 ~ 0
-2 ~ 1
< -2

Significance
< 0.001
0.001 ~ 0.005
0.005 ~ 0.01
0.01 ~ 0.05
> 0.05

Lung
Fetal Lung

Primary mononuclear cells from PB
Primary hematopoietic stem cells G-CSF-mobilized

Male
Primary hematopoietic stem cells G-CSF-mobilized

Female
Primary T CD8+ memory cells from PB

Primary T CD8+ naive cells from PB
Primary Natural Killer cells from PB

Primary T cells effector/memory enriched from PB
Primary T regulatory cells from PB

Primary T helper cells from PB
Primary T helper 17 cells PMA-I stimulated

Primary T helper cells PMA-I stimulated
Primary T helper memory cells from PB 1

Primary T helper naive cells from PB
Primary T helper memory cells from PB 2

Primary hematopoietic stem cells short term culture
Primary hematopoietic stem cells

Primary T cells from PB
Primary B cells from PB

Primary neutrophils from PB
Primary monocytes from PB

Hypomethylated DMRs

Log2(Fold Change)
> 2
1 ~ 2
0 ~ 1
-1 ~ 0
-2 ~ 1
< -2

Significance
< 0.001
0.001 ~ 0.005
0.005 ~ 0.01
0.01 ~ 0.05
> 0.05
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Fig. 3  Distribution of SM-DMRs across the whole genome. A Tobacco smoking is associated with DNA methylation changes across the whole 
genome. Circles represent DNA methylation levels for hypermethylation (outer circle, red) and hypomethylation (inner circle, blue). The height 
of each bar indicates the methylation change between smokers and nonsmokers. B The distribution ratio and enrichment results of DMRs 
summarized based on genomic locations. Red and blue bars in the figure represent the SM-DMRs and each grey bar is the average proportion 
of the 1000 groups of control regions  for each genome feature. The significance level and standard deviation are shown in the figure (*P < 0.05, 
**P < 0.01). C SM-DMRs enrichment results of epigenomic annotations in different cell types and tissues based on Roadmap Epigenomics Project. A 
node represents enrichment results of SM-DMRs in a certain chromatin state in a specific cell type or tissue. The node color refers to the direction 
of enrichment (log2Fold Change), and the size indicates the level of significance. Empirical P value was generated by simulating null distribution 
of 1000 groups of control areas in the genome. D KEGG pathway enrichment analysis of hypermethylated and hypomethylated DMGs (Top 15 
pathways). SM smoking associated, DMR differentially methylated region, DMGs differentially methylated genes, TssA Active TSS, TssAFlnk Flanking 
Active TSS, TxFlnk Transcr.at gene 5’ and 3’, Tx Strong transcription, TxWk Weak transcription, EnhG Genic enhancers, Enh Enhancers, ZNF/Rpts ZNF 
genes & repeats, Het Heterochromatin, TssBiv Bivalent/Poised TSS, BivFlnk Flanking Bivalent TSS/Enh, EnhBiv Bivalent Enhancer, ReprPC Repressed 
PolyComb, ReprPCWk Weak Repressed PolyComb, Quies Quiescent/Low
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Discussion
Smoking causes changes in human immune function and 
increases the risk of various cancers, but there are still 
few studies that can explain the molecular mechanism 
of the relationship between the two. In this study, we 
carried out genome-wide DNA methylation, RNA, and 
human cytokine analysis with the goal of finding molecu-
lar changes in blood linked to tobacco smoking exposure. 
We conclude that tobacco smoke has a significant effect 
on epigenetic modification and transcription regulation 
and is significantly associated with human immune sys-
tem diseases, cancers, and synapse-related pathways.

Regular smokers have a lifetime risk of smoking-related 
cancer as high as 25%. Low methylation of specific CpG 
sites in AHRR (aryl-hydrocarbon receptor repressor) 
and F2RL3 (factor II receptor-like 3)  has been  asso-
ciated with an increased risk of chronic diseases and 
lung cancer, as well as with the total mortality rate [11, 
16, 19, 25], and could be used as biological markers for 
tobacco smoking [26, 27]. We replicated the low methyla-
tion on these two genes (AHRR, P = 4.194 × 10–7; F2RL3, 

P = 3.34 × 10–6) in Chinese male smokers. By examining 
the genes identified in the gene expression response to 
methylation changes (Table 3), we also identified a num-
ber of new smoking-related important genes. PLEKHF1 
(Pleckstrin Homology And FYVE Domain Containing 
1, chr19:30158120–30158513, Δ methylation = 8.02%, 
P = 6.91E-06), a gene  was  reported to induce apopto-
sis through the lysosomal–mitochondrial pathway [28]; 
SLAMF7 (SLAM Family Member 7, chr1:161513847–
161514197, Δ methylation = 5.84%, P = 6.85E-05), a 
self-ligand and has both activating and inhibitory func-
tions in natural killer cells, which involves in the regula-
tion and interconnection of innate and adaptive immune 
responses [29]. In addition, the hypomethylation on 
JAG2 gene (chr14:105619745–105620094, Δ methyla-
tion = 10.05%, P = 4.23E-07) deserves our attention  as 
well. It is a key ligand of the Notch signaling pathway and 
involved in the respiratory system process [30]. However, 
whether these methylation changes caused by smoking 
could be detected in Chinese female smokers remains to 
be investigated.
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Fig. 4  Genes detected in both methylation and RNA expression. A Volcano plot shows the differentially expressed genes between smokers 
and nonsmokers. Each dot corresponds to a gene and color corresponds to the direction. B Pathway enrichment analysis of DEGs by DisGeNET. 
C Overlapping genes between DMGs and DEGs. D Pathway enrichment analysis of overlapping genes in methylation and mRNA datasets by 
DisGeNET. The 20 most significantly enriched pathways are illustrated in dot plots. Gene ratio refers to the proportion of DEGs belonging to a 
specific term. Node size (count) refers to the number of DEGs within each term and the color indicates the level of significance (− log10 P value). 
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Compared with other studies, this research had the 
following strengths [24, 31, 32]. Firstly, the male sub-
jects in our study came from the same area (Jincheng, 
Shanxi) and were mainly engaged in coal mining-related 
industry. Therefore, their living styles were relatively 
more uniform, which made the study population less 
variable and easy to control other potential variables. 
Second, our larger sample in WGBS (whole-genome 
bisulfite sequencing) on smoking was able to reveal 
more smoking-associated CpG loci at single-base reso-
lution throughout the whole genome [21]. In spite of its 
higher cost, WGBS is capable of capturing significantly 
more human CpG sites (~ 90%) and providing true meth-
ylation amounts with a higher resolution relative to the 
commonly used array approach. Other than TSS areas, 
we acquired a more comprehensive DNA methylation 
map of gene body and intergenic areas. Our chromatin 
state annotation indicated that hypermethylated DMRs 
were depleted primarily in TSS, whereas hypomethylated 
DMRs were enriched in flanking regions of active TSS 
and enhancers. DNA methylation in the promoter region 
generally suppresses transcription or acts as a marker of 
a silenced gene [33, 34] because of hard binding of tran-
scription factors or recruitment of transcription repres-
sors [35, 36]. As for DNA methylation in the gene body 
region, the situation appears to be complex, although 

it was reported that there exists a positive correlation 
between DNA methylation and expression in some cell 
types [37, 38]. Dynamic DNA methylation in a gene body 
might lead to alternative splicing [39].

In addition, by combing genome-wide RNA expression 
data, we were also able to explore the response of gene 
expression to DNA methylation alterations induced by 
tobacco smoking. RNA-seq analysis indicated that RNA 
expression changes caused by smoking were associated 
mainly with immunosuppression and lymphocyte-related 
pathways, which is consistent with previous report [40]. 
It was proposed that tobacco smoking increases the num-
ber of alveolar macrophages (AMs) by several fold and 
induces cells to express more lysosomal enzymes and 
secrete elastase, which may damage the connective tis-
sue and parenchymal cells of the lung, leading to chronic 
obstructive pulmonary disease (COPD) [5]. Ferson et al. 
pointed that natural killer (NK) cell activity against cul-
tured melanoma and other cancer cells was significantly 
reduced in smokers compared with nonsmokers [4, 41]. 
In our study, the cytokine concentration comparison 
results showed that VEGF concentrations increased sig-
nificantly in smokers compared with nonsmokers, which 
is consistent with  a previous report [42]. In addition, 
nicotine can promote the secretion of VEGF in human 
trophoblast cells by reducing sFlt1 secretion, up-regulat-
ing VEGF transcription, and improving the proliferation 
and tube formation of HUVEC cells under hypoxic con-
ditions [43]. Roybal et al. reported that cancer-associated 
fibroblasts (CAF) isolated from murine lung adenocarci-
noma secreted rich amounts of VEGF to enhance tumor 
cell invasion [44]. All these findings suggest that smok-
ers’ increased risk of lung disease and cancer may be 
attributable partly to the effects of cigarette smoke on the 
immune system.

The potential limitations of this study deserve some 
attentions. First, although we had a relatively large sam-
ple of male Chinese Han smokers for the WGBS and 
RNA-seq analysis, it was still of limited sample size. 
Our power analysis indicated that, with a sample size 
of 36 per group, we would have at least 85% power to 
detect a significant difference for both DNA methyla-
tion and RNA-seq analysis using a two-sided two-sam-
ple t test at the 5% level of significance. Second, the 
difference in DNAm distribution between cell types is 
greater than the difference between individuals [45]. 
We acknowledge that whole blood DNA represents 
a mixture of DNA from different cell populations and 
different cells may show different methylation patterns. 
However, methylation patterns still could be used as 
biomarkers for tobacco smoking exposure [27]. We did 
adjust the variation in cellular composition by using 

Table 2  A list of top 20 pathways revealed by pathway 
enrichment analysis of common genes in both DNA methylation 
and RNA-Seq datasets by using Metascape

GO term Description P value

C0021053 Immune system diseases 7.94E−07

C0445347 Thickening of glomerular basement membrane 5.01E−06

C0007785 Cerebral infarction 1.58E−05

C0020676 Hypothyroidism 2.00E−05

C1860247 Prominent glabella 5.01E−05

C2316810 Chronic kidney disease stage 5 5.01E−05

C0014457 Eosinophilia 5.01E−05

C0018939 Hematological disease 6.31E−05

C0162871 Aortic aneurysm, abdominal 6.31E−05

C0002880 Autoimmune hemolytic anemia 6.31E−05

C0524587 Mean corpuscular volume (result) 1.00E−04

C1840380 Persistent cavum septum pellucidum 1.00E−04

C0042834 Vital capacity 1.00E−04

C0024131 Lupus vulgaris 1.00E−04

C0017168 Gastroesophageal reflux disease 1.26E−04

C2237660 Exudative macular degeneration 1.26E−04

C0024138 Lupus erythematosus, discoid 1.58E−04

C0002878 Anemia, hemolytic 1.58E−04

C0035078 Kidney failure 1.58E−04

C0409974 Lupus erythematosus 1.58E−04
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the algorithm developed by Houseman et al. [46] in our 
study. Further research will use methylation patterns 
of purified cells to identify subjects with clinically rel-
evant reactions to smoke or other respiratory toxicants, 
thereby identifying patients at risk of development or in 
early stages of diseases. Third, genome methylation is 
also affected by external and internal factors. Although 
we could not eliminate these confounding factors from 
the analysis, we did try to minimize the effects of these 
potential confounding factors, such as  recruiting sub-
jects with almost same lifestyle and lived in the same 
area. Finally, it should be noted that, as for the cell line-
derived maps, we could obtain cell-line-derived epige-
netic markers and target genes of enhancers only from 
consortia such as NIH Roadmap Epigenomics Mapping 
Consortium. Although DNA epigenetic modification 
may also be controlled by genotype [47], this research 
focused primarily on DNA methylation changes with-
out considering equally important changes at the gen-
otype level. In future studies, we will further explore 

the effect of genotype on smoking-associated DNA 
methylation.

Conclusions
In conclusion, we profiled the whole blood DNA methy-
lome and whole-transcriptome sequencing in humans 
with the goal of identifying molecular changes potentially 
associated with tobacco smoking. By comparing smokers 
and nonsmokers, we found that smoking-induced DMRs 
have   different distribution patterns in the hypermeth-
ylation and hypomethylation regions. Further, our func-
tional and correlation analyses of integrated epigenetic 
and transcriptomic data revealed that the completion of 
genome-wide maps in the field offered a refinement of 
our understanding of the molecular mechanisms under-
lying the response to tobacco smoking and its harmful 
effect.

Table 3  Methylation and expression correlation analysis

Regulatory element DMR DEG Correlation 
analysis

Region Genehancer ID Direction 
(smokers–
nonsmokers)

Target gene Direction 
(smokers–
nonsmokers)

P value

Promoter chr12:108733790–108734067 GH12J108336 Hyper CMKLR1 Down 0.0108

Promoter/enhancer chr2:222312663–222313620 GH02J221447 Hyper EPHA4 Up 0.0130

chr2:74375246–74375595 GH02J074146 Hyper AUP1 Down 0.0433

chr12:108733790–108734067 GH12J108336 Hyper CMKLR1 Down 0.0108

chr12:48289327–48289770 GH12J047896 Hyper DDX23 Down 0.0122

chr11:126030937–126031289 GH11J126157 Hyper FAM118B Down 0.0181

chr2:74375246–74375595 GH02J074146 Hyper HTRA2 Down 0.0433

chr22:22128415–22128928 GH22J021772 Hyper IGLV5-52 Down 0.0424

chr19:30158120–30158513 GH19J029660 Hyper PLEKHF1 Down 0.0241

chr11:116699588–116699946 GH11J116825 Hyper SIDT2 Down 0.0159

chr1:161513847–161514197 GH01J161539 Hyper SLAMF7 Down 0.0324

chr11:116699588–116699946 GH11J116825 Hyper TAGLN Down 0.0116

chr1:92291397–92291719 GH01J091825 Hyper TGFBR3 Down 0.0376

chr5:372991–373651 GH05J000367 Hypo AHRR Up 0.0324

chr3:98239609–98240661 GH03J098521 Hypo CLDND1 Up 0.0220

chr3:169757128–169757597 GH03J170037 Hypo GPR160 Up 0.0131

chr19:19928614–19928997 GH19J019816 Hypo ZNF506 Up 0.0348

chr19:38186831–38187042 GH19J037695 Hypo ZNF793 Up 0.0194

chr17:73684198–73684529 GH17J075683 Hypo LLGL2 Down 0.0316

chr11:67024748–67025170 GH11J067257 Hypo RAD9A Down 0.0420

chr9:116164296–116164796 GH09J113396 Hypo RGS3 Down 0.0001

chr22:46442102–46442610 GH22J046040 Hypo TTC38 Down 0.0179

chr7:148723197–148723699 GH07J149026 Hypo ZNF282 Down 0.0220
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Materials and methods
Description of samples
A large-scale study of the prevalence of cigarette smok-
ing and nicotine dependence was conducted in Shanxi 
Province of China by our laboratory from June 2012 
to January 2014 [48]. All subjects were recruited from 
local community hospitals when they visited those hos-
pitals for their annual health examinations in the city of 
Jincheng. Within this city, coal mining is one of the major 
industries and many people engaged in the coal mining-
related industry   were males and smoke. Furthermore, 
their living styles were relatively more uniform, which 
made this study population less variable and easy to con-
trol other potential variables. Participants were excluded 
if they had a clinical diagnosis of a mental disorder such 
as Alzheimer’s disease, major depression, or schizophre-
nia [49]. For each participant, we collected personal 
information such as age, sex, education, marital status, 
annual family income, smoking status, lifestyle features, 
and medical history. For details, please refer to our pre-
vious reports [48, 50, 51]. After providing a detailed 
explanation of the research project and process, written 
informed consent was obtained from each participant. 
The study and all questionnaires used in the study were 
approved by the Ethics Committee of the First Affiliated 
Hospital of Zhejiang University.

From these subjects, we selected 36 smokers and 36 
nonsmokers for WGBS, and all participants were males. 

The criteria were as follows: (1) smokers were those who 
smoked at least 20 cigarettes per day. Nonsmokers were 
those who had smoked fewer than 100 cigarettes in their 
lifetimes [52, 53]; (2) there was no significant difference in 
age or Body Mass Index (BMI) between the smoker and 
nonsmoker groups; and (3) half of the subjects in each 
group were local miners, as Jincheng is a well-known coal 
mining area in China. In addition, we performed RNA-
seq analysis on 38 smokers and 37 nonsmokers. Finally, 
we collected fresh plasma samples from 9 smokers and 13 
healthy individuals for cytokine measurement from the 
sample of WGBS. Tables 1 and Additional file 1: Table S3 
list the detailed demographic characteristics of the sam-
ples included in this study.

Whole‑genome bisulfite sequencing
Genomic DNA (gDNA) was prepared from whole blood 
samples using a Gentra Puregene Blood Kit (Qiagen) 
according to the manufacturer’s instructions and was 
stored at -80  °C until used. For library construction, we 
first mixed 200 ng of gDNA with 1 ng of unmethylated λ 
phage DNA and then used Ultrasound Generator Cova-
ris S220 to shear the DNA into small fragments. After 
purification, adenosine was added to the 3′ ends of the 
fragmented DNA with a size of approximately 300 bp for 
end-repairing and connected with TruSeq adaptors (Illu-
mina). Adapter-ligated DNA fragments were then treated 
with bisulfite using the EZ DNA methylation kit (Zymo 
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Research) and PCR amplified. The PCR conditions were 
as follows: 45 s at 98 °C, then 10 cycles at 98 °C for 15 s, 
65 °C for 30 s, and 72 °C for 30 s, and ending with 72 °C 
for 1 min. KAPA HiFi HotStart Uracil + DNA polymerase 
(Kapa Biosystems) was used to enrich the bisulfite-con-
verted DNA through several PCR cycles. The quality of 
each library was quantified by Qubit 2.0 (Life Technol-
ogy) and Agilent 2100 Bioanalyzer. DNA sequencing was 
conducted on the HiSeq X Ten platform using standard 
Illumina protocols.

Data processing and differential DNA methylation analysis
Read mapping: For raw reads, Cutadapt (v. 1.18) [54] was 
used to delete adaptor sequences, and Trimmomatic (v. 
0.33) [55] was employed to remove low-quality bases 
and adapter-less reads. Briefly, bases with a quality score 
of < 3 bp were pruned. Then, we used a 4-bp sliding win-
dow to scan the reads from the 5′ end to the 3′ end. Once 
the average quality score in the sliding window was < 15, 

all the reads from 5′ → 3′ were removed. After quality 
trimming, read sizes < 36  bp were excluded. Bismark (v. 
0.16.1) [56] was used to map the generated pure sequenc-
ing reads with default parameter settings against the 
bisulfite-converted hg19 reference genome and remove 
all duplicate reads.

We first combined the CpG methylation informa-
tion from DNA double strands. Because of the mix-
ture of whole blood cells, we defined the methylation 
level as the number of methylated C reads divided by 
the total number of C reads at this site under the mCG 
sequence context [57]:

where Nmc is the number of methylated C reads, and 
Nnmc is the number of unmethylated C reads at this spe-
cific site.

Rmaverage =
Nmc

Nmc+Nnmc
∗100%
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In addition, because the extent of CpG methylation 
might be affected by the SNP overlapping with the CpG 
site of interest, we excluded those CpGs overlapped 
with the SNPs at a minor allele frequency (MAF) > 5%.

DMR identification
In order to identify candidate DMRs, we first smoothed 
each CpG site by using bsseq (v 0.10) in the Bsmooth 
package [58], then calculated the significance for each of 
them and merged all adjacent significant CpG sites into 
DMRs. Each CpG site was smoothed in a window of min-
imum width of 1000 bp with at least 11 CpGs included; 
if a gap between two CpGs exceeded 2000  bp, smooth-
ing was discontinued [21]. The relation between smoking 
and the extent of methylation of each CpG was examined 
using linear regression in R (v 3.4.0), with adjustment for 
potential confounders such as age, BMI, smoking sta-
tus, working conditions, and blood cell composition. We 
used reference data in EpiDISH [59] to estimate the pro-
portions of six blood cell subtypes (B cells, natural killer 
cells, CD4 + T cells, CD8 + T cells, monocytes, and gran-
ulocytes) in the whole blood samples. Next, the Comb-p 
software was used to discover candidate DMRs with a P 
value < 0.05 for all adjacent CpG sites included through 
the whole genome [60]. Each DMR to be included in the 
analysis had to meet the following two conditions: (1) it 
contained at least 5 CpG sites with each P value < 0.05 
and (2) the distance between two adjacent CpG sites 
was ≤ 200 bp. We calculated the Stouffer–Liptak–Kechris 
(slk) corrected P value [61] for each DMR by Comb-p and 
then determined the hypermethylated and hypomethyl-
ated DMRs.

Enrichment analysis and roadmap epigenomics annotation 
of DMRs
In order to determine whether smoking-associated 
DMRs were significantly enriched or depleted in specific 
regions of the genome, we adopted a random shuffling 
approach to calculate the significance of DMR enrich-
ment in the regions of interest (ROI). All gene struc-
tures and CpG island annotations were downloaded 
from UCSC Hg19 Genome Browser tracks (https://​www.​
genome.​ucsc.​edu/​cgi-​bin/​hgTab​les). The ROIs were 
defined as follows: (1) gene body included 5′-UTR, exon, 
intron, and 3′-UTR. If the areas were not located in the 
above regions, they were defined as intergenic; (2) the rel-
evant areas of CpG islands were defined as CpG islands 
(CGIs), CpG shores (2-kb regions adjacent upstream and 
downstream to CGIs), and CpG shelves (2-kb regions 
adjacent upstream and downstream of CpG shores or 
4-kb regions adjacent upstream and downstream to 
CGIs). Any areas not belonging to the above regions 
were defined as open seas; (3) promoters were defined 

as the region of 1.5 kb upstream to 500 bp downstream 
of all gene transcription start sites (TSSs) based on the 
Human Genome Reference GRCH37. To define the epi-
genomic characteristics of smoking-DMRs (SM-DMRs), 
we downloaded the histone modification ChIP-seq peaks 
and chromatin state information of the reference 15-state 
epigenome model for 20 blood cells and two lung tissues 
from the NIH Roadmap Epigenomics Mapping Consor-
tium (https://​egg2.​wustl.​edu/​roadm​ap/​data/​byFil​eType/​
chrom​hmmSe​gment​ations/​ChmmM​odels/​coreM​arks/​
joint​Model/​final/) [62] and used them for enrichment 
analysis.

For each DMR, 1000 matching regions were selected 
randomly from the whole genome (same CpG numbers 
and ± 5% difference region length as DMRs). Then, BED-
Tools was used to calculate the number of overlaps of 
these randomly generated matching background region 
sets with the ROIs [63]. An empirical null distribution 
was determined by repeating this process 1000 times. 
Finally, the empirical P value was calculated as (r + 1)/
(n + 1), where n is the number of replicated samples that 
were simulated, and r is the number of these replicates 
that produces a test statistic greater than or equal to that 
calculated for the actual data [64]. The number of DMRs 
overlapped with target features divided by the average 
number of overlaps resulting from the randomizations 
1000 times was defined as the fold change [21].

Pathway enrichment analysis of DMR‑related genes
To annotate the biological function of each DMR, we 
defined a DMR-related gene as a potential one if its 
upstream 2000 bp to downstream 1000 bp overlapped a 
known gene. We annotated the DMR genes (DMGs) and 
performed Kyoto Encyclopedia of Genes and Genomes 
(KEGG) by clusterProfiler [65]. The hypergeometric dis-
tribution was used to test the significance of functional 
categories in DMGs, and the pathway/Gene Ontology 
(GO) term satisfying a P value ≤ 0.05 was defined as sig-
nificant in the pathway/GO term enriched by DMGs.

RNA sequencing
To determine whether the differential methylation sites 
or regions in smokers vs. nonsmokers were related to 
potential biological effects on gene expression, we per-
formed RNA-seq analysis on 75 males, among which 30 
participants (12 smokers and 18 nonsmokers) already 
had WGBS data collected. Total RNA was extracted from 
the whole blood by RNeasy micro kit with Trizol. For the 
RNA-seq libraries, the RIN of each sample was required 
to be > 7. RNA quality was verified using Agilent 2100 
Bioanalyzer (Agilent Technologies) and Nanodrop 2000. 
Sequencing was performed on Illumina HiSeqX (150 bp 

https://www.genome.ucsc.edu/cgi-bin/hgTables
https://www.genome.ucsc.edu/cgi-bin/hgTables
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/ChmmModels/coreMarks/jointModel/final/
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read pairs) using the standard parameters and 200 cycles 
of TruSeq SBS kit.

RNA data processing and differential expression analysis
FastQC (v 0.11.9) was used for quality control and 
removal of adaptors (http://​www.​bioin​forma​tics.​bbsrc.​
ac.​uk/​proje​cts/​fastqc). We used HISAT2 (v 2.1.0) and 
StringTie (v 2.1.3) to align and map the paired-end reads 
to Human Genome Reference GRCH37 [66–68]. Tran-
scripts expressed at ≥ 1 count per million reads in our 
samples were included for analysis. We used the Voom 
method in the limma package to normalize the raw 
counts (v 3.44.3) [69]. Differentially expressed genes 
(DEGs) in smokers and nonsmokers were detected with a 
linear regression model by including age, BMI, and work-
ing conditions as covariates.

Correlation analysis between DMRs’ methylation 
and target gene expression
To determine whether the differential transcriptions in 
smokers and nonsmokers reflect smoking-induced epige-
netic changes, we not only analyzed the gene where the 
DMR was located but also its distal regulated regions. In 
addition, we defined the DMR directly adjacent to a pro-
moter (1.5-kb upstream to 500-bp downstream of TSS in 
Human Reference Genome GRCH37) as a “promoter-
associated DMR.” To identify the enhancer and its target 
genes, we downloaded files from Genehancer database 
[70] and identified all significant DMRs that overlapped 
with these “enhancer associated DMR.” To better cap-
ture the subtle changes in gene expression related to 
SM-DMRs, all differentially expressed transcripts with P 
value < 0.05 and DMRs with P value ≤  1.00 × 10–4 were 
included for next analysis. For the extent of methylation 
of each DMR, because it contains at least 5 CpG sites, we 
calculated the average methylation of all CpG sites within 
the region.

To determine the correlation between methylation and 
expression, we calculated DMR methylation and log2-
transformed target gene expression as DMR-DEG pairs 
for each individual participant in 30 subjects with both 
WGBS and RNA-seq data (12 smokers and 18 nonsmok-
ers). For each pair, the significance of the correlation was 
calculated by the Spearman correlation test, and the cut-
off P value was set to 0.05. Smoking-related gene–disease 
correlations were analyzed by DisGeNET database in 
Metascape [71].

Multiple cytokine immunoassay
For cytokine measurement, we collected fresh plasma 
from 22 male WGBS subjects (see Additional file  1: 
Table  S3) using the Bio-Plex Pro Human Cytokine 
27-Plex Immunoassay kit. The Bio-Plex Manager 

software 6.0 (Bio-Rad) was used to quantify 27 blood 
cytokines on the Bio-Plex 200 Instrument. Finally, the 
log2-transformed cytokine fluorescence intensity was 
used to perform difference analysis between smokers and 
nonsmokers by linear regression in R with age, BMI, and 
working condition as covariates.

Statistical analysis
The free opensource statistical tools for the R software 
version 3.4 were used for all statistical analyses. Differ-
ences in age and BMI were analyzed using Wilcoxon 
rank sum test. A difference in working condition dis-
tribution was tested using Chi-squared test. The dif-
ferential methylation (DM) detection procedure was 
implemented by linear regression, with adjustment for 
potential confounders such as age, BMI, working con-
ditions, and blood cell compositions. Candidate DMRs 
contained at least 5 CpG sites (P value < 0.05) and with 
a distance ≤ 200 bp between two adjacent CpG sites. To 
better capture the subtle changes in gene expression 
related to smoking DMRs, all DMRs with a Stouffer–
Liptak–Kechris (slk) corrected P value ≤ 1.00 × 10–4 
and all differentially expressed transcripts with P 
value < 0.05 were included for all analyses reported 
here. For each DMR-DEG pair, the correlation was cal-
culated by the Spearman correlation test. P < 0.05 was 
considered statistically significant.
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