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Abstract 

Background:  One of the fundamental assumptions of DNA methylation in clinical epigenetics is that DNA methyla‑
tion status can change over time with or without interplay with environmental and clinical conditions. However, little 
is known about how DNA methylation status changes over time under ordinary environmental and clinical condi‑
tions. In this study, we revisited the high frequency longitudinal DNA methylation data of two Japanese males (24 
time-points within three months) and characterized the longitudinal dynamics.

Results:  The results showed that the majority of CpGs on Illumina HumanMethylation450 BeadChip probe set were 
longitudinally stable over the time period of three months. Focusing on dynamic and stable CpGs extracted from 
datasets, dynamic CpGs were more likely to be reported as epigenome-wide association study (EWAS) markers of vari‑
ous traits, especially those of immune- and inflammatory-related traits; meanwhile, the stable CpGs were enriched in 
metabolism-related genes and were less likely to be EWAS markers, indicating that the stable CpGs are stable both in 
the short-term within individuals and under various environmental and clinical conditions.

Conclusions:  This study indicates that CpGs with different stabilities are involved in different functions and traits, 
and thus, they are potential indicators that can be applied for clinical epigenetic studies to outline underlying 
mechanisms.
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Background
DNA methylation is the most widely studied form of 
epigenetic modification. The DNA methylation sta-
tus of cytosine phosphate guanine (CpG) dinucleotides 
especially has been attracting attention in clinical epi-
genetic studies [1]. DNA methylation of CpG modulates 
transcriptional regulation, including gene silencing and 
alternative splicing, and plays a role in genome stabil-
ity [1]. DNA methylation status can change in response 
to external factors, such as lifestyle and stress, and is 

involved in disease onset and development. Owing to 
the development of cost-effective techniques for deter-
mination of genome-wide DNA methylation, such as 
Illumina HumanMethylation450 BeadChip (HM450k) 
and Illumina MethylationEPIC (EPIC) microarray kits, 
large-scale epigenome-wide association studies (EWAS) 
have been conducted to explore the underlying epige-
netic mechanisms of a variety of diseases, environmental 
stresses, and other measurable traits. As a result, numer-
ous CpGs have been identified as epigenetic markers of 
various traits [2]. More recently, DNA methylation status 
has been used to evaluate the biological age (epigenetic 
age) of individuals [3], and a reversal of epigenetic aging 
could be induced by artificial stimuli [4].

One of the fundamental assumptions in these epige-
netic studies is that DNA methylation varies within each 
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individual with time. Thus, in order to properly interpret 
the clinical implications of the observed DNA methyla-
tion change—for example, before and after disease onset, 
stress exposure, and therapeutic intervention—we need 
to understand whether and how DNA methylation usu-
ally changes under ordinary environmental and clini-
cal conditions. A small number of studies have reported 
on how many and which regions of the genome are 
susceptible to changes in DNA methylation with time 
using HM450k and EPIC: CpGs in the human genome 
are largely stable longitudinally [5, 6], CpGs with inter-
mediate DNA methylation level or present within CpG-
poor regions are likely to be stable [7], and the temporal 
changes in the DNA methylation status are largely caused 
by a change in the type of cell components [8]. Due to 
poor reproducibility, it has been proposed that highly 
variable CpGs that vary temporally within an individual, 
relative to those that vary between individuals, should be 
excluded prior to analyses [5]. While these studies pro-
vided significant insights into the stability of DNA meth-
ylation, which can contribute to the EWAS design and its 
interpretation, these studies largely observed only a few 
specific genes or only compared two time points several 
months apart. Moreover, no studies have delved into 
unstable CpGs that, potentially, have significant biologi-
cal roles, but were treated as noise on statistical analy-
ses. Thus, a more comprehensive study based on densely 
measured DNA methylation data is needed to under-
stand the global nature of DNA methylation dynamics.

The study by Furukawa et al. [9], which, to our knowl-
edge, provides the densest longitudinal data to date, 
analyzed the temporal DNA methylation and gene 
expression changes obtained from blood samples col-
lected 24 times over three months from two different 
men. They evaluated the contribution of DNA methyla-
tion to gene expression dynamics (expression quantita-
tive trait methylation; eQTM) and suggested that DNA 
methylation is stable and barely explains the gene expres-
sion dynamics.

In this study, we reanalyzed the longitudinal DNA 
methylation data obtained from Furukawa et  al. and 
characterized the overall dynamics of DNA methyla-
tion—not only eQTM—at a finer-scale. We aimed to 
provide an insight into the dynamics and interpretations 
of DNA methylation that are applicable to clinical epige-
netic analysis.

Materials and methods
DNA methylation data
The DNA methylation data was obtained from Furu-
kawa et  al. [9]. Briefly, blood samples were collected 24 
times over a period of 84 d from two apparently healthy 
men. The PBMCs and monocytes were extracted, their 

genomic DNA was isolated, and the DNA methyla-
tion levels of genome-wide CpGs were measured using 
HM450k. Thus, 96 datasets were generated (2 individu-
als × 2 sample types × 24 time points). Samples were 
not randomly loaded but were ordered by the blood 
collection date on the microarrays. Probe-type bias in 
each dataset was corrected using beta-mixture quantile 
(BMIQ) normalization method that was implemented in 
the R package “wateRmelon” [10]. DNA methylation lev-
els were then converted into percentages. Furukawa et.al. 
further estimated blood cell-type composition (CD4+ 
and CD8+ T cells, natural killer cells, monocytes, granu-
locytes, and B-cells, Additional file  1: Fig. S1); this data 
was also used in the current study. Blood samples were 
also subjected to serological tests, the results of which are 
summarized in Additional file 2: Table S1.

In the current study, CpGs that had missing data on 
DNA methylation in any of the 96 datasets or those over-
lapping with SNPs found in Japanese populations with 
MAF ≥ 5% were excluded [11] (Fig. 1). Furthermore, the 
apparent DNA methylation level can be influenced by 
changes in cell-type composition [12]. Thus, to accurately 
evaluate the stability/dynamics of the DNA methylation 
status of CpG sites, CpGs showing DNA methylation 
changes synchronized with cell-type component changes 
were excluded. To identify CpGs associated with cell-
type components, analysis of variance (ANOVA) was 
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Fig. 1  Study design. There are two sources of datasets analyzed 
in this study: longitudinal datasets from Furukawa et al. [9] and 
cross-sectional datasets from the iMETHYL database
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performed as in Furukawa et  al. [9] whereby the fits of 
two regression models were compared. The two models 
compared were as follows: (1) a simple linear regression 
with DNA methylation level as a dependent variable and 
a fixed value of 1 as an explanatory variable; (2) a mul-
tiple linear regression with the estimated proportion of 
each six cell types specified as explanatory variables. If 
the multiple regression model fit was significantly better 
(p value < 0.05), the CpG was considered to be associated 
with the cell-type composition.

Fluctuation evaluation
To evaluate the magnitude of change in the differential 
longitudinal DNA methylation between individuals (sam-
ples A and B) and sample types (PBMC and monocytes), 
we first performed principal component analysis (PCA) 
using all 96 datasets.

As an indicator of longitudinal DNA methylation 
change, we applied reference intervals (RI) that were 
originally proposed to evaluate the difference in DNA 
methylation between individuals [13]. RI is defined as the 
difference between the 95th and 5th percentiles of DNA 
methylation levels across individuals (between-individual 
RI, Additional file  1: Fig. S2) [13]. In this study, within-
individual RI was calculated as the difference between 
the 95th and 5th percentiles across 24 time points in the 
same individual (Additional file  1: Fig. S2). Intraclass 
correlation coefficients have been used to evaluate the 
DNA methylation dynamics within individuals [5, 7, 8, 
14]; however, it is calculated based on both within- and 
between-individual variation, and thus, is not applicable 
to the datasets used in this study, which consist of data 
from only two individuals.

To characterize the pattern of the longitudinal DNA 
methylation change, within-individual RI and mean DNA 
methylation level of each CpG were compared across 24 
time points. In addition, since variation in within-indi-
vidual DNA methylation can contribute to an apparent 
variation in between-individual methylation patterns, 
the within- and between-individual RIs were further 
compared. Between-individual RI, which was calculated 
based on whole genome bisulfite sequencing of ~ 100 Jap-
anese individuals, was downloaded from the iMETHYL 
database [15]. Since between-individual RI for PBMC was 
unavailable in iMETHYL, only the within- and between-
individual RIs for monocytes were compared. Further-
more, only CpGs that overlapped between the present 
datasets and that from iMETHYL were considered.

For the downstream analyses, we extracted stable, 
dynamic, and hyperdynamic CpGs from each of the 
four samples (2 individuals × 2 sample types). CpGs that 
exhibited within-individual RI < 1% and 10–50%, which 
are approximately the 1st and 99th percentiles across all 

CpGs, are defined as stable and dynamic CpGs, respec-
tively. CpGs with RI ≥ 50% were defined as hyperdynamic 
CpGs.

To consider between-individual RI in addition to 
within-individual RI in the downstream analyses, 
between-individual RIs for CD4+ T lymphocytes (CD4T) 
and neutrophils as well as monocytes were considered 
from the iMETHYL database. As suggested by Hachiya 
et  al. [13], CpGs with between-individual RI > 30% were 
regarded as between-individual variable (common DNA 
methylation variation; CDMV) CpGs.

CpG site annotations and enrichment analyses
The CpG and genic annotations for each CpG category 
were performed using the R package “annotatr” [16]. 
Because some CpGs have multiple neighboring genes, a 
single CpG may be assigned multiple genic annotations. 
To account for this possible bias, fractional counting 
was employed, where each genic annotation count was 
divided by the total number of annotations of the given 
CpGs: i.e., if a CpG is mapped to a promoter region of 
gene A and an exon of gene B, annotation counts will be 
1/2 and 1/2.

Furthermore, enrichment analyses were performed 
since the CpGs present in the genic or upstream regions 
can especially affect the transcriptional pattern of neigh-
boring genes [17]. Genes with stable, dynamic, and 
CDMV CpGs in their genic and upstream regions were 
considered separately. In total, 11 enrichment analy-
ses were performed that included those for stable and 
dynamic CpGs in each of the four samples (2 individu-
als × 2 sample types), and CDMV CpGs in each of the 
additional three cell types (CD4T, monocytes, and neu-
trophils). In the analyses, four frameworks, including 
Gene Ontology (GO) annotations [18, 19] of biological 
process (BP), cellular component (CC), and molecu-
lar function (MF) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways [20] were applied. The 
analyses were carried out using the gometh() function in 
the R package “missMethyl” [21]. This function can con-
trol the bias arising from multiple genes being annotated 
on a single CpG or from the difference in the number 
of probes designed for each gene. In the analyses, only 
CpGs located in gene bodies and upstream regions were 
considered. Terms and pathways with a false discovery 
rate (FDR)-adjusted p value < 0.05 from the Wallenius’ 
noncentral hypergeometric test were considered to be 
significantly enriched. Enrichment analysis for hyperdy-
namic CpGs was not performed because of their limited 
number. Instead, we focused on two genes annotated 
for four CpGs, which were hyperdynamic across all four 
samples.
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In the HM450k, two types of assays were employed: 
Infinium I and II. Infinium I assay uses two types of 
probes, whereas Infinium II uses a single type of probes 
per CpG locus. To characterize the differences in DNA 
methylation stability attributed to the microarray design, 
the ratio of both Infinium I and II assays in each CpG cat-
egory was estimated. In addition, GC contents of micro-
array probes were calculated in each CpG category.

Overlap evaluation with EWAS markers
To infer the relationships between the stability of DNA 
methylation and various traits, including those for dis-
eases and environmental exposures, the overlap between 
CpGs in each category (stable, dynamic, hyperdynamic, 
and CDMV) or annotation (CpG island, shore, shelf, 
and open sea) and EWAS markers was evaluated. EWAS 
marker list was downloaded from EWAS Atlas [2] on 
July 1st, 2020. The EWAS marker likelihood for each 
CpG category was calculated by dividing the number of 
CpGs overlapped with EWAS marker by the number of 
non-overlapped CpGs in the category. By comparing the 
likelihoods of all HM450k probes (background) using 
Fisher’s exact test, we estimated the odds ratio of each 
CpG category.

In the EWAS Atlas dataset, various kinds of traits 
were listed, which must have different underlying epige-
netic mechanisms and different causes for DNA meth-
ylation change. Therefore, EWAS marker likelihood for 
each CpG category was further evaluated by focusing 
on each EWAS trait separately. The EWAS traits with 
five or more published studies and 100 or more identi-
fied CpG markers were selected and the EWAS marker 
likelihood was calculated with the same method as that 
used for the entire EWAS Atlas dataset. The EWAS Atlas 
is based on manually curated data [2]; however, we can-
not rule out the presence of studies without controlling 
confounders in the dataset that could distort the EWAS 
marker likelihood. To reduce the possible bias, trait-level 
meta-analyses were performed. First, the odds ratio was 
calculated for each study of each trait, and then random-
effect meta-analyses were conducted for odds ratios per 
trait using the R package “metafor” [22] with DerSimo-
nian Laird estimator. The between-study heterogeneity 
was assessed by Cochran’s Q test using “metafor” with 
a significant threshold P value of 0.05. As the number of 
hyperdynamic CpGs was small and not applicable to the 
trait-specific analysis, the category was excluded from 
the analyses.

Results
Characteristics of DNA methylation fluctuation
Originally, the longitudinal dataset obtained from 
two males contained 484,376 CpGs from which 791 

with missing values and 16,058 associated with cell-
type components were removed. From the resultant 
467,527 CpGs, 436,147 CpGs that overlapped with 
iMETHYL WGBS data but did not overlap with known 
SNPs were extracted and analyzed in this study. PCA 
showed that global DNA methylation patterns of the 
same individual and the same sample type were simi-
lar to each other (Fig.  2a). Indeed, ~ 80% of all CpGs 
exhibited within-individual RI < 5%, approximately 
20% of CpGs exhibited RI 5–10%, and a small fraction 
of CpGs exhibited larger within-individual RI (Fig. 2b 
and Additional file  1: Fig. S3). Majority of CpGs ana-
lyzed in this study exhibited DNA methylation levels 
close to 0 or 100% (Additional file 1: Fig. S3).

CpGs with intermediate mean DNA methylation lev-
els tended to exhibit larger within-individual RI rather 
than those with extreme levels that approximated to 
either 0 or 100% (Fig. 2c). In monocytes, furthermore, 
CpGs with intermediate between-individual RI tended 
to exhibit larger within-individual RI (Fig.  2d). The 
trends that were consistent across samples, however, 
differ from a previous study [5]. This difference may 
have resulted from the fact that the previous study has 
normalized DNA methylation levels and adjusted the 
longitudinal variation for between-individual variation. 
CpGs with extreme within-individual RI (RI > 50%) 
tended to exhibit lower between-individual RI (Fig. 2d).

The number of CpGs assigned to stable, 
dynamic, and hyperdynamic categories were 
24,754/7,733/19,039/7,950 (PBMC (sample A)/mono-
cyte (sample A)/PBMC (sample B)/monocyte (sam-
ple B)), 4,514/7,157/8,500/6,324, and 47/46/13/16, 
respectively (Fig.  2e and Additional file  2: Table  S2). 
Stable, dynamic, and hyperdynamic CpGs showed 
distinct patterns of longitudinal DNA methylation 
changes (Fig.  3a). As expected from their definitions, 
stable CpGs had a stable DNA methylation status, and 
dynamic CpGs exhibited considerable DNA methyla-
tion fluctuation that approximately ranged within 20%. 
Hyperdynamic CpGs showed a binary state of DNA 
methylation close to either 0 or 100%. The patterns 
of longitudinal DNA methylation change in dynamic 
and hyperdynamic CpGs were synchronized between 
PBMCs and monocytes within individuals.

Among dynamic CpGs identified in any four samples, 
26–51% overlapped with between-individual variable 
(CDMV) CpGs, whereas only 3–7% of CDMV CpGs 
overlapped with dynamic CpGs (Additional file  1: Fig. 
S4). Hyperdynamic CpGs also exhibited notable over-
lap with CDMV CpGs (12–26%). Nearly no stable CpGs 
were found to overlap with CDMV CpGs.
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Annotations and enriched functions
CpG annotations showed that CDMV CpGs were poor 
in CpG islands and abundant in open sea, while stable 
CpGs were abundant in CpG islands and poor in shelves 
and open sea. Meanwhile, dynamic CpGs were abundant 
in open sea and poor in islands, and hyperdynamic CpGs 
were abundant in islands, compared to the entire CpGs 
covered by HM450k (Fig. 3b). These trends were consist-
ent across four samples or three cell-types (Fig.  3b and 
Additional file 1: Fig. S5) and are largely consistent with 
previous studies although the index of variation is differ-
ent [5, 8].

The genic annotation component was also consistent 
across samples or cell types: CDMV CpGs were abun-
dant in intergenic regions and poor in exon and pro-
moter regions; stable CpGs were abundant in exons, 
intron–exon boundaries, promoters, and 5’UTRs and 
poor in introns, 1 to 5  kb-upstream regions of TSS, 
and intergenic regions; dynamic CpGs were abun-
dant in introns, 1–5  kb upstream of genes, and inter-
genic regions and poor in exon, promoter, and 5’ UTR 
regions; and hyperdynamic CpGs were abundant in 
exon and intergenic regions (Fig. 3b).

Fig. 2  Global longitudinal DNA methylation change in four samples. a PCA plot based on 96 DNA methylation datasets. b Distribution of 
within-individual reference interval (RI) of each sample. Data for RI ≥ 30 is not represented as the bars were not visible at the present scale. c Box 
plots showing the relationship between mean and variation of DNA methylation level within three months. d Box plots showing the relationship of 
between- and within-individual reference intervals in monocytes. Between-individual RI was downloaded from the iMETHYL database which was 
calculated based on ~ 100 individuals. In each box plot, outliers were depicted as points. e Number of CpG in each category and overlaps between 
them
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Enrichment analyses showed that metabolism-related 
functions were overrepresented among genes with stable 
CpGs, whereas only six GO:BP and GO:CC terms that 
were not common across samples were overrepresented 
among genes with dynamic CpGs (Additional file 1: Figs. 
S6–S9 and Additional file  2: Tables S3–S6). Except for 
dynamic CpGs, enriched terms and pathways for each 
CpG category were largely consistent across three cell 
types and four samples (Additional file 1: Fig. S10).

Among the four hyperdynamic CpGs that were com-
mon across the four samples, two CpGs were in inter-
genic regions and the other two (cg07376282 and 
cg22588144) were located in an exon of GPR37 and an 
upstream region of ISM1, respectively. ISM1 is an angio-
genesis inhibitor, and two GO terms were associated with 
the gene (extracellular region and negative regulation of 
angiogenesis). GPR37 is a G protein-coupled transmem-
brane receptor with suggested roles in the brain and is 
related to the pathogenesis of neurological disorders, 
including Parkinson’s disease and autism spectrum dis-
orders [23–25]. Twenty-nine GO terms were associated 
with this gene (e.g., ubiquitin protein ligase binding, G 
protein-coupled receptor activity, neuropeptide signal-
ing pathway, and heat shock protein binding) (Additional 
file 2: Table S7).

Characteristics of probes were different among CpG 
categories (Additional file  1: Fig. S11). The stable CpG 
category exhibited a higher ratio for Infinium I assay 
and a significantly greater GC content compared to the 
HM450k background. Enrichment analyses separately 
performed for Infinium I and II CpGs in the stable cat-
egory showed that the enriched terms and pathways in 
Infinium I CpGs mostly overlapped with those in Inifium 

II CpGs (Additional file  1: Fig. S11). The dynamic CpG 
category exhibited a comparable assay ratio and a sig-
nificantly smaller GC content. The hyperdynamic CpG 
category exhibited a higher assay ratio, but no significant 
difference in GC content was observed except for a single 
sample (Additional file 1: Fig. S11).

EWAS markers and DNAm fluctuations
When all EWAS markers included in the EWAS Atlas 
dataset were considered, CpGs in CpG shores and open-
sea exhibited slightly higher likelihoods (ORs = 1.035 
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(shore), 1.095 (open-sea)) rather than those of islands and 
shelves (ORs = 0.905 (island), 0.910 (shelf )) (Fig.  4 and 
Additional file 1: Fig. S12). However, a much larger mag-
nitude of likelihood was shown in dynamic and CDMV 
CpGs. Odds ratios of CDMV CpGs were almost consist-
ent across three blood cell types, meanwhile, those of 
dynamic CpGs were relatively different among four sam-
ples. The number of hyperdynamic CpG was small and 
that resulted in broader confidence intervals; however, 
odds ratios of hyperdynamic CpGs tended to be higher 
than 1. Meanwhile, the odds ratios of stable CpGs were 
lower than 1 across all four samples.

EWAS trait-specific analyses also showed that dynamic 
and CDMV CpGs generally exhibit higher marker likeli-
hoods while stable CpGs exhibit lower likelihoods (Addi-
tional file 1: Fig. S13). EWAS trait-specific meta-analyses 
showed similar patterns of likelihoods (Fig. 5). The meta-
analyses indicated the presence of between-study 

heterogeneity of odds ratio in a majority of traits. Con-
sidering the results consistent across the three cell types 
or four samples, likelihoods of CDMV were significantly 
high in traits related to aging, alcohol consumption, BMI, 
obesity, preeclampsia, smoking, and type 2 diabetes, 
while likelihoods of stable CpGs were high in traits asso-
ciated with major depression disorder and metabolic syn-
drome. Additionally, likelihoods of dynamic CpGs were 
high in traits related to air pollution and exercise. Both 
CDMV and dynamic CpG categories exhibited signifi-
cantly high likelihoods for traits related to infertility, lung 
function, maternal smoking, systemic lupus erythemato-
sus, and waist circumference.

All four hyperdynamic CpGs common across the 
four samples (cg04955116, cg07376282, cg22588144, 
cg27326062) were reported as EWAS markers of air pol-
lution (PM 2.5) [26], rheumatoid arthritis [27], infertil-
ity (studies on sperm) [28–31], exercise [32], and Kabuki 
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syndrome [33]. A single hyperdynamic CpG in GPR37 
(cg07376282) was reported as an epigenetic marker 
for infertility. It is notable that this dynamic CpG was 
reported as the marker in four studies [28–31]. How-
ever, it is unclear whether the hyperdynamic DNA meth-
ylation change observed in blood also occurs in testes 
beyond the blood-testis barrier.

Discussion
Dynamics of DNA methylation profile
In PCA analysis, the 96 blood DNA methylation datasets 
were clearly segregated into four groups correspond-
ing to the four samples (2 individuals × 2 sample types), 
demonstrating a minor longitudinal change in the global 
DNA methylation profile across 24 time-points. Sup-
portive evidence was obtained from the distribution of 
within-individual RI; the majority (~ 80%) of CpGs in 
HM450k were relatively stable, exhibiting within-indi-
vidual RI < 5%. These results are consistent with previ-
ous studies [5, 6]. However, according to the EWAS Atlas 
database, ~ 10% of EWAS markers showed < 5% of DNA 
methylation difference between the case and control 
groups. Our results suggest that the degree of differen-
tial DNA methylation observed between groups in previ-
ous studies can occur within the individual during several 
months, and thus, we should be more cautious about the 
higher possibility of false positives, especially in longitu-
dinal studies.

Characteristics of CpGs with different stabilities
Assignments of CpGs into stable, dynamic, and hyperdy-
namic categories were similar between the four samples. 
In addition, based on CpG and genic annotations, the 
annotation components of each category were also simi-
lar between the four samples. Moreover, the patterns of 
change in longitudinal DNA methylation were synchro-
nous between PBMCs and monocytes within individuals. 
These results strongly indicate that the observed DNA 
methylation dynamics are not from an experimental 
error, but rather, arise from biological consequences.

Since stable CpGs are relatively abundant in the genic 
and upstream regions, they probably ensure stable gene 
transcription. Dynamic CpGs are abundant in introns 
and non-genic regions. It is unclear whether and what 
functions the dynamic CpGs in these regions have in 
relation to transcription regulation. However, although a 
minor fraction, dynamic CpGs were also found in genic 
and upstream regions, and these are more likely to have 
functions in transcriptional regulation. Among genes 
with stable CpGs in their genic and promoter regions, 
gene ontology terms related to metabolic processes were 
highly enriched. Metabolism is a life-sustaining process 

which occurs in all living organisms, and thus, its regu-
lation should not be disrupted in order to maintain a 
healthy condition [34]. Therefore, it is reasonable that the 
DNA methylation status of metabolism-related genes is 
stable.

It should be noted that differences in probe design 
may also have contributed to the observed longitudinal 
dynamics. The Infinium type II assay uses a single bead 
to measure DNA methylation status of CpGs and is more 
susceptible to technical noise than the Infinium type I 
assay that uses two beads. With the greater noise, type II 
CpGs may have a lower probability of meeting the defi-
nition of a stable CpG (RI < 1%). In addition, it has been 
reported that noise reduces the dynamic range of DNA 
methylation levels [35], and thus, hyperdynamic change 
(RI ≥ 50%) in type II CpGs may have been less detectable. 
However, because results of enrichment analyses inde-
pendently performed for types I and II largely overlapped, 
the major findings of this study appear to be less biased 
by the differences in the probe. The higher GC contents 
in the stable CpG category and the lower GC content in 
the dynamic CpG category may be related to the larger 
and smaller proportions of CpG islands, respectively.

Relationships with traits
As they are associated with specific GO terms and path-
ways, CpGs with different stability should also be corre-
lated with different traits. Our study indicates that CpGs 
with different stability exhibit different degrees of EWAS 
marker likelihoods; stable CpGs exhibited lower likeli-
hoods while dynamic and hyperdynamic CpGs exhib-
ited higher likelihoods. Moreover, the higher likelihood 
observed for CDMV CpGs is consistent with a previous 
study [13].

Stable CpGs
Low likelihoods observed for stable CpGs indicate that 
the DNA methylation status of a stable CpG is not only 
longitudinally stable within various cells of the individ-
ual but is also relatively unchanged between groups of 
individuals with different conditions, such as between 
patients and healthy groups and environmentally stressed 
and not-stressed groups. A low likelihood of age-EWAS 
marker in stable CpGs further indicates that CpGs stable 
for three months might also be stable for a longer period. 
These stable CpGs were overrepresented in the genic and 
upstream regions. Moreover, metabolism-related func-
tions were enriched among the genes with stable CpGs. 
Thus, stable CpGs probably ensure the stability of metab-
olism, which could be the fundamental basis of living 
organisms. Conversely, disruption of these CpGs, which 
should be stable both longitudinally and cross-section-
ally, may be linked to major physical or mental disorders, 
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and this was supported by trait-specific EWAS marker 
likelihood analyses of stable CpGs.

The likelihoods of EWAS markers for major depression 
disorder and metabolic syndrome were significantly high 
in stable CpGs without significant heterogeneity between 
studies. Since the co-occurrence of major depression dis-
order and metabolic syndrome (or its risk factors) is well 
recognized [36, 37], it should be carefully considered that 
epigenetic characteristics of patients with major depres-
sion disorder can indirectly represent those of with the 
onset of metabolic syndrome. There are four possible 
explanations proposed for the comorbidity [38–41]; first, 
the unhealthy lifestyle of psychiatric patients, including 
habitual smoking, alcohol consumption, and irregulari-
ties in diet, sleep, and physical activity may increase their 
risk of metabolic syndrome; second, medical treatments 
for patients with major depression disorder, such as anti-
depressants, are known to cause metabolic dysregula-
tion; third, there are shared pathophysiological features 
in immunometabolic and endocrine systems have been 
reported that interplay with both psychiatric disorders 
and metabolic syndrome; fourth, shared genetic archi-
tectures between psychiatric disorders and cardio-met-
abolic traits have been reported based on genome-wide 
association studies, twin genetic studies, and polygenic 
risk-score analyses. In terms of DNA methylation, mean-
while, there were no stable CpGs common between the 
EWAS markers of major depression disorder (69 stable 
CpGs) and metabolic syndrome (102 stable CpGs). This 
result indicates that although a similar pattern of EWAS 
marker likelihood was observed for both metabolic syn-
drome and major depression disorder, there is no similar-
ity between both the disorders at the CpG level, making 
it likely that the underlying epigenetic mechanisms for 
both are independent from each other.

A high likelihood of the metabolic syndrome EWAS 
markers for stable CpGs is consistent with the fact that 
the metabolism-related functions were enriched among 
genes with stable CpGs. It is highly possible that DNA 
methylation changes in these CpGs, which are sup-
posed to be stable over time, are linked with metabolic 
disorders. However, other traits connected to metabolic 
abnormalities such as BMI, obesity, type 2 diabetes, and 
waist circumference, exhibited different patterns of likeli-
hood in which CDMV and dynamic CpGs were signifi-
cantly high. The difference of complexity and severity of 
these traits compared to metabolic syndrome may par-
tially explain the observed difference in EWAS marker 
likelihoods. Metabolic syndrome is a complex disorder 
comprising of cardiovascular disease risk factors [42–44]. 
There is no single cause for the syndrome, but several 
related or unrelated factors cause metabolic syndrome. 
For diagnosis of metabolic syndrome, although several 

criteria have been proposed, multiple conditions are gen-
erally considered, including insulin resistance, obesity 
(e.g., waist circumference and body mass index), lipid 
abnormalities (e.g., high triglyceride levels and low high-
density lipoprotein cholesterol levels), high blood pres-
sure, and impaired fasting blood glucose [42–44]. Thus, 
metabolic syndrome is a more complex condition and 
is a more severe risk factor for cardiovascular diseases 
and type 2 diabetes [42–44]. Physical conditions that 
meet the criteria for metabolic syndrome, which implies 
that there are more serious risks, may be linked to DNA 
methylation disruption enriched in metabolism-related 
genes that are supposed to be stable in healthy individu-
als. The EWAS marker likelihood for CDMV was high 
in type 2 diabetes, which we cannot explain conclusively 
based on the current evidence. Whether the same trend 
is observed in diabetic patients with metabolic syndrome, 
and how stable CpGs are disrupted during the devel-
opment of metabolic syndrome via obesity, may be an 
important stepping stone to understanding the underly-
ing epigenetic mechanisms of metabolic disorders. Waist 
circumference and BMI are not clinical conditions but 
are measurements, which can vary among healthy indi-
viduals. This may explain the higher observed likelihoods 
in CDMV.

Dynamic CpGs
Dynamic CpGs showed high likelihoods of being EWAS 
markers of seven traits. Some of these traits can be linked 
to inflammatory and immune responses. For example, 
respiratory infection and air pollution are major factors 
affecting lung function [45, 46], air pollution has inflam-
matory effects [47], systemic lupus erythematosus is an 
autoimmune disease [48], and exercise has anti-inflam-
matory effects [49]. Although it was not statistically sig-
nificant, rheumatoid arthritis, which is an autoimmune 
disease, also showed a similar pattern of likelihoods. 
Because of this consistency across multiple immune- 
and inflammatory-related EWAS traits, it is expected 
that dynamic CpGs may be associated with immune and 
inflammatory responses. Immune and inflammatory 
responses can occur in healthy individuals owing to vari-
ous environmental stimuli, which is probably reflected 
by longitudinal DNA methylation changes in dynamic 
CpGs.

Being reported as EWAS markers indicates that these 
CpGs exhibit different DNA methylation status between 
exposed/patient groups and control groups, despite the 
nature of the instability even within healthy individu-
als. This indicates that DNA methylation of these CpGs, 
which are supposed to be dynamic in healthy individuals, 
are fixed at specific levels in individuals with autoimmune 
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diseases or exposure, implying an epigenetic state of 
chronic immune activation or inflammation.

This study indicated the biological importance of 
dynamic CpGs as it showed certain relationships with 
physiological traits. However, as mentioned in a previous 
study [5], unstable DNA methylation status within indi-
viduals can be considered as noise in statistical analyses. 
For example, exercise EWASs listed in the EWAS Atlas 
dataset measured short-term epigenetic changes before 
and after interventions (intervention study period ranged 
from minutes to 6 months) [32, 50–53]. The CpGs which 
were reported to exhibit short-term DNA methyla-
tion change after the intervention can also dynamically 
change in a short period of time without intervention. 
Although these were not intervention studies, air pollu-
tion EWASs listed in the database also mainly focused on 
a short-term measure of air pollution (e.g., for 24 h [54]). 
In such studies focusing on short-term DNA methylation 
changes, the possibility of a mixture of true epigenetic 
markers and false findings should be carefully noted. In 
the present study, broader odds ratios of dynamic CpGs 
and significant between-study heterogeneity in these 
traits were observed among all four samples, also imply-
ing the higher possibility of false findings.

Hyperdynamic CpGs
Hyperdynamic CpGs were scarce in the human genome, 
and thus, their statistically robust characterization could 
not be achieved. However, the longitudinal pattern of 
DNA methylation change characterized by obvious 
switching-on and -off in epigenetic status implies that 
these hyperdynamic CpGs mediate or reflect system-
atic molecular regulations. For instance, a single hyper-
dynamic CpG was identified in ISM1, which encodes an 
angiogenesis inhibitor. Vascular system has a fundamen-
tal role in the delivery of gases and nutrients, and exces-
sive or insufficient angiogenesis can cause a considerable 
problem [55]. Thus, angiogenesis must be strictly con-
trolled to ensure physiological homeostasis, and indeed, 
is regulated by a dynamic balance between activators 
and inhibitors [56]. The epigenetic dynamics of ISM1 
upstream region detected by HM450k probes may play a 
part of the dynamic regulation.

Other three hyperdynamic CpGs common across 
four samples, as well as that in ISM1, were reported as 
EWAS markers of several traits of air-pollution (PM 
2.5) [26], rheumatoid arthritis [27], infertility (studies 
on sperm) [28, 29, 31], exercise [32], and Kabuki syn-
drome [33]. Except for infertility, these traits can be 
closely linked to immune or (anti-)inflammatory func-
tions, and these CpGs are potentially highly sensitive 
markers that provide a detailed reflection of immune 
or inflammatory responses. These potentials could be 

assessed by comparing DNA methylation status with 
immune and inflammatory status at the time of blood 
sampling.

Limitations and implications for future studies
First, we note that this study was based on data from 
only two Japanese males, and thus, it remains necessary 
to verify the reproducibility of these results by increasing 
the sample size or using different populations.

Another limitation of this study is that it is based on 
DNA methylation data obtained from blood samples, 
specifically, PBMCs and monocytes. Although most of 
the EWAS studies listed in the EWAS Atlas used blood 
samples, DNA methylation patterns can be different 
between blood cell types. To reduce the possible effects 
of different cell types, the CpGs whose longitudinal DNA 
methylation changes were associated with cell types were 
excluded. However, only six major cell types were con-
sidered in this study, and we cannot account for subtypes 
of blood cells, which can change along with the onset of 
immune disorders [57]. Therefore, the individual results 
obtained from each PBMC and monocyte sample were 
not discussed.

In addition, it is currently not possible to plausibly 
explain the results of every EWAS trait considered in 
this study. To clarify the functional relationships between 
individual traits and the longitudinal dynamics of DNA 
methylation status, further studies based on data from 
individuals are required that focus on each trait. How-
ever, we suggest that the longitudinal dynamics of DNA 
methylation are associated with specific biological func-
tions, and thus, are an important clinical indicator. The 
longitudinal dynamics of within-individual and between-
individuals DNA methylation of each CpG calculated in 
this study are publicly available in the iMETHYL data-
base. We believe that this will provide a new perspective 
on the interpretations of published and future EWAS 
findings.
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