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DNA methylation-based profiling reveals 
distinct clusters with survival heterogeneity 
in high-grade serous ovarian cancer
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Abstract 

High-grade serous ovarian cancer (HGSOC) is the most common type of epigenetically heterogeneous ovarian 
cancer. Methylation typing has previously been used in many tumour types but not in HGSOC. Methylation typing in 
HGSOC may promote the development of personalized care. The present study used DNA methylation data from The 
Cancer Genome Atlas database and identified four unique methylation subtypes of HGSOC. With the poorest progno-
sis and high frequency of residual tumours, cluster 4 featured hypermethylation of a panel of genes, which indicates 
that demethylation agents may be tested in this group and that neoadjuvant chemotherapy may be used to reduce 
the possibility of residual lesions. Cluster 1 and cluster 2 were significantly associated with metastasis genes and meta-
bolic disorders, respectively. Two feature CpG sites, cg24673765 and cg25574024, were obtained through Cox propor-
tional hazards model analysis of the CpG sites. Based on the methylation level of the two CpG sites, the samples were 
classified into high- and low-risk groups to identify the prognostic information. Similar results were obtained in the 
validation set. Taken together, these results explain the epigenetic heterogeneity of HGSOC and provide guidance to 
clinicians for the prognosis of HGSOC based on DNA methylation sites.
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Background
Epithelial ovarian cancer (EOC) has the highest fatality 
rate of female reproductive cancers [1], primarily because 
more than 70% of EOCs are diagnosed at advanced stages 
and are associated with disseminated intraperitoneal dis-
ease [2]. EOC is a heterogeneous disease that includes 
several subtypes with different clinical and molecu-
lar features [3]. The most prevalent histotype of EOC is 
high-grade serous ovarian cancer (HGSOC), which is 
associated with a poor prognosis.

Epigenetic alterations have recently emerged as a com-
mon hallmark of human cancer [4–6]. DNA methylation 
is a core type of epigenetic alterations and a key epige-
netic regulator of gene expression associated with dif-
ferent tumour types [7]. DNA methylation also acts as 
a biomarker for the prognosis of cancer [8, 9]. Novel 
methods for tumour classification have been examined 
in recent years based on genome-wide DNA methylation 
data [10, 11]. Several DNA methylation pattern analy-
ses have been reported for many cancer types using The 
Cancer Genome Atlas (TCGA) data [12–16]. There is 
also increasing interest in the role of DNA methylation 
in defining molecular subtypes to assist in elucidating 
the clinical characteristics and prognosis of EOC [17–
19]. However, previous researches on the methylation 
of HGSOC are limited to appointed methylation sites or 
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are established based on the relationship between multi-
ple data integrations. A comprehensive and independent 
profile of the prognostic value of these aberrantly meth-
ylated biomarkers in the HGSOC subtype is not clear. 
Therefore, a comprehensive and independent assessment 
of DNA methylation is needed to better understand the 
methylation-based classification of HGSOC subtypes.

In the present population-based study, we aimed to 
investigate whether clinically relevant and different 
HGSOC subtypes could be distinguished using genome-
wide DNA methylation pattern evaluation. We examined 
HGSOC classification strategies based on DNA methyla-
tion profiles from the TCGA database. Our methylation-
based classification system improves the understanding 
of methylation heterogeneity and may lead to the identifi-
cation of prognostic signatures and provide good practice 
guidelines for the clinical treatment of HGSOC patients.

Methods
Methylation data downloading and processing
HGSOC methylation data and clinical follow-up data of 
HGSOC patients were downloaded from TCGA. These 
data were collected and analysed in accordance with the 
TCGA Human Subjects Protection and Data Access Poli-
cies. The methylation level of each probe was represented 
by the β-value, which ranges from 0 (unmethylated) to 1 
(fully methylated). To obtain more precise classification 
results, we deleted some methylation loci using the fol-
lowing exclusion criteria: (1) cytosines preceding guano-
sine sites (CpGs) in sex chromosomes and (2) missing 
data in more than 70% of the samples. The remaining 
missing probes were imputed using the k-nearest neigh-
bours [20]. DNA methylation in promoter regions (2 kb 
upstream to 0.5 kb downstream from transcription start 
sites) strongly influences gene expression. Therefore, we 
annotated these sites into promoter regions and reached 
a final matrix with 21,123 probes. By incorporating 
patient clinical information and integrating the DNA 
methylation array data, the ComBat algorithm in the 
sva R package was used to remove batch effects. From 
TCGA, we obtained clinical follow-up information for 
587 serous ovarian cancer patients and excluded sam-
ples that did not meet the following inclusion criteria: (1) 
pathology limited to serous ovarian cancer, (2) disease 
was grade 3, (3) available survival time data, (4) primary 
tumour sample type, (5) available stage information, and 
(6) available age information. A total of 479 patients were 
ultimately included. The samples were randomly divided 
into a training group (n = 240) and a validation group 
(n = 239). Survival times less than 30 days were generally 
due to operative complications, and these samples were 
deleted. Samples without methylation information were 
also excluded from our study. Finally, there were 233 

samples in the training group and 232 samples in the vali-
dation group (Fig. 1).

Determination of statistically significant methylation sites 
with Cox proportional risk regression models
Methylation sites associated with prognosis were 
regarded as classification characteristics. The methyla-
tion profiles and corresponding clinical characteristic 
data of the training set were used to construct the Cox 
regression model with the R package “survival”, and the 
methylation level of each site was analysed according 
to the following steps: (a) a univariate Cox proportional 
hazard regression model was constructed with p < 0.05; 
(b) the significant methylation sites obtained from uni-
variate Cox regression models were used to establish 
the multivariate Cox proportional risk regression model 
based on age and stage as the covariants in survival anal-
ysis; (c) statistically significant sites (p < 0.05) in multivar-
iate analyses were used as classification features, and the 
coxph function in survival package R was used.

Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis annotated by the CpG sites
The methylation sites that were statistically significant in 
multivariate analyses were annotated to the correspond-
ing genes. The “DOSE”, “clusterProfiler” and “enrich plot” 
R packages were used to complete the GO and KEGG 
analyses. A maximum p value of 0.05 was chosen to 
select only significantly enriched categories.

Consensus clustering analysis based on methylation 
profiles to obtain methylation subtypes associated 
with HGSOC prognosis
Consensus Clustering Plus [21, 22] is an appropriate 
method to examine new subclasses of cancer. The pre-
sent study performed clustering based on the previously 
obtained methylation sites that were significant in mul-
tivariate analyses with the Consensus Cluster Plus algo-
rithm [22] of R software to determine the methylation 
subgroups of HGSOC. The similarity distance between 
samples was calculated by the Euclidean distance method 
[23], and κ-means [24] was used as the clustering algo-
rithm to search for reliable and stable subgroup classifica-
tions. After executing Consensus Cluster Plus, consensus 
clustering results were obtained. The optimal cluster 
number was determined based on the following criteria: 
a relatively low-variation coefficient within the cluster, 
relatively high consistency, and no obviously increased 
area under the cumulative distribution function curve. 
The coefficient of variation was calculated with the fol-
lowing formula: CV = (SD/MN) * 100%, in which MN 
represents the mean of samples and SD represents the 
standard deviation.
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Survival and clinical characteristic analyses
The log-rank test and Kaplan–Meier plots were used 
to determine the overall survival and significant dif-
ferences between HGSOC methylation clusters. Asso-
ciations between clinical characteristics and HGSOC 
methylation clusters were analysed with the chi-square 
test. All tests were two-sided, and differences with 
p < 0.05 were considered significant.

Construction of the prognostic model and verification 
using fivefold cross‑validation and the validation data
The prognosis-related CpG sites were selected to estab-
lish the Cox proportional hazards model. Cox regres-
sion analysis was performed using multivariate Cox 
hazards regression model with stepwise method, which 

was implemented using survival package in R project. 
A risk score formula for predicting OS was developed 
based on a linear combination of the expression level 
multiplied regression coefficient derived from the cox 
regression model:

(where “Exp” denotes the methylation level of loci and 
“β” represents the regression coefficient from the mul-
tivariate Cox regression model [25, 26]). By utilizing the 
median risk score as the threshold, the HGSOC patients 
were stratified into high- and low-risk groups. Survival 
curves were estimated by the Kaplan–Meier and log-rank 

Risk score = Expmethy_loci1 × βmethy_loci1

+ Expmethy_loci2 × βmethy_loci2

+ · · ·Expmethy_locin × βmethy_locin

Fig. 1 Flow chart describing the cases analysed in the study
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method. Fivefold cross-validation (CV) was used on the 
patients. The same processes were performed on the vali-
dation data to verify the stability and applicability of the 
model. R/Bioconductor tools and R functions were used 
for all analyses in R version 3.6.1.

Results
Clinicopathological features and the initial screening 
of DNA methylation loci of HGSOC
Table  1 summarizes the clinicopathological characteris-
tics of the training group and validation group. The mean 
age of all patients was 59  years. A total of 436 patients 
(93.8%) had advanced disease, and 58.1% achieved com-
plete remission. 66.4% of the patients underwent optimal 
cytoreductive surgery. However, the integrity of informa-
tion for venous invasion and lymphatic invasion was not 
satisfactory. Clinicopathological parameters were well 
balanced between the training and the validation groups 

(Table 1, p > 0.05). A univariate Cox proportional hazard 
regression model was used to distinguish the 1434 meth-
ylation sites that significantly correlated with survival 
(p < 0.05). Age and stage are universally acknowledged 
factors associated with HGSOC prognosis. Therefore, 
age, stage, and 1434 methylation sites were added to the 
multivariate Cox proportional hazard regression model, 
which revealed 780 sites that were significantly related to 
survival (Additional file 2: Table S1).

Enrichment analysis of differentially methylated genes
It is important to understand the molecular mecha-
nisms of genes associated with methylation loci. To 
examine possible interactions between differentially 
methylated genes and their possible influence, we ana-
lysed the 780 sites that were significantly correlated 
with survival in the multivariate Cox proportional haz-
ard regression model and examined their co-expressed 

Table 1 The demographic and clinicopathological parameters between training group and validation group

N Training group Test group p Value

Total, n 465 233(50.1%) 232(49.9%)

Mean age, y 59.61 ± 11.03 59.84 ± 11.54 0.822

Stage 0.939

 I 12(2.6%) 7(3.0%) 5(2.2%)

 II 17(3.7%) 8(3.4%) 9(3.9%)

 III 369(79.4%) 185(79.4%) 184(79.3%)

 IV 67(14.4%) 33(14.2%) 34(14.7%)

Primary therapy outcome 0.773

 Complete remission 270(58.1%) 140(60.1%) 130(56.0%)

 Partial remission 51(11.0%) 25(10.7%) 26(11.2%)

 Progressive disease 32(6.9%) 14(6.0%) 18(7.8%)

 Stable disease 27(5.8%) 15(6.4%) 12(5.2%)

 Unknown 85(18.3%) 39(16.7%) 46(19.8%)

Tumour residual 0.894

 No macroscopic disease 100(21.5%) 50(21.5%) 50(21.6%)

 1–10 mm 209(44.9%) 100(42.9%) 109(47.0%)

 11–20 mm 28(6.0%) 15(6.4%) 13(5.6%)

 > 20 mm 89(19.1%) 48(20.6%) 41(17.7%)

 Unknown 39(8.4%) 20(8.6%) 19(8.2%)

Venous invasion 0.296

 No 53(11.4%) 29(12.4%) 24(10.3%)

 Yes 72(15.5%) 41(17.6%) 31(13.4%)

 Unknown 340(73.1%) 163(70.0%) 177(76.3%)

Survival status 0.365

 Alive 188(40.4%) 99(42.5%) 89(38.4%)

 Dead 277(59.6%) 134(57.5%) 143(61.6%)

Lymphatic invasion 0.795

 No 62(13.3%) 33(14.2%) 29(12.5%)

 Yes 117(25.2%) 60(25.8%) 57(24.6%)

 Unknown 286(61.5%) 140(60.1%) 146(62.9%)
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genes. We performed GO (Fig.  2A–D) and KEGG 
pathway analyses (Fig.  2E, F). Biological significance 
(Fig. 2A, B, Additional file 3: Table S2) revealed enrich-
ment in protein acylation, energy derivation by oxi-
dation, and G1/S transition of the mitotic cell cycle. 
We also performed molecular function analysis and 
found that mitogen-activated protein kinase (MAPK) 
activity, growth factor activity, histone binding, and 

oxidoreductase activity were involved in the network 
(Fig.  2C, D, Additional file  4: Table  S3). Pathways 
related to MAPK signalling, pyruvate metabolism, and 
glycolysis were enriched in the KEGG analysis (Fig. 2E, 
F, Additional file 5: Table S4). The methylation loci and 
corresponding genes involved in different pathways are 
shown in Additional file  6: Table  S5. The results sug-
gest that the methylation sites examined in this study 

Fig. 2 Gene ontology (GO) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses were based on corresponding genes derived 
from the differentially methylated probe (Additional file 2: Table S1). The GO terms included biological processes (A and B) and molecular functions 
(C and D). E and F show the related pathway analysed by KEGG. The results are shown as bar plots (A, C and E) and bubble plots (B, D and F) 
generated with the R package
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may affect HGSOC tumorigenesis and development via 
MAPK signalling, pyruvate metabolism, and glycolysis.

Consensus clustering revealed distinct methylation 
subtypes associated with HGSOC prognosis
The Consensus Cluster Plus R software package was used 
to analyse the consensus clustering of 233 samples. The 
delta area under the curve had an appreciable increase 
from k = 2 to k = 4, but the increase rate was not obvious 
for k > 4 (Fig. 3A, B). Therefore, 4 was selected as a suitable 
cluster number for further analysis in this study. When 
k = 4, we named the resulting subgroups C1 (28.8%; 67 
samples), C2 (22.7%; 53 samples), C3 (38.6%; 90 samples), 
and C4 (9.9%; 23 samples). By identifying DNA meth-
ylation panels that discriminated the four subgroups, we 
found that the methylation levels of the four subgroups 
were significantly related to different molecular fea-
tures (Fig. 3C). C4 was the poorest prognostic group and 
exhibited hypermethylation of 54 methylation loci, which 
corresponded to 51 genes (Additional file  7: Table  S6). 
Therefore, the 51 genes composed the hypermethylation 
panel, in which ANXA7, IGF2, and SLC5A8 harboured 
two hypermethylation sites in the samples from the C4 
subgroup. C1 featured hypomethylation of cg03848675, 
cg12493906, and cg13055001, which were annotated as 
FOXF2, MMP26, and PPP1CA, respectively. FOXF2 and 
MMP26 were primarily related to tumour metastasis 
and invasion. PPP1CA was associated with the MAPK 
pathway. C3 exhibited hypermethylation of cg03848675, 
which was opposite to the pattern observed in C1, and 
exhibited hypomethylation of cg14290451 (RPL10A). C2 
had the best prognosis and featured hypomethylation of 

cg13791131, cg25574024, cg24673765, and cg27239157, 
which were annotated as IGF2 (cg13791131, cg25574024), 
HSPB6 (cg24673765), and MCF2L2 (cg27239157). IGF2 
plays a key role in glucose metabolism, HSPB6 is associ-
ated with insulin resistance [27], and MCF2L2 is related 
to type 1 diabetes [28] and polycystic ovary syndrome 
[29]. All of these genes play a role in metabolic disorders. 
Therefore, the four subgroups classified based on the 
methylation levels may reflect changes in some molecular 
genetic features.

Survival and clinical characteristic analyses of methylation 
subtypes
We combined the four molecular subtypes with the clini-
cal parameters and performed Kaplan–Meier analysis, 
and the log-rank tests showed that survival curves of 
these four molecular subtypes were significantly differ-
ent (Table  2). C4 was obviously more malignant than 
the other clusters (Table 2) and exhibited hypermethyla-
tion at 54 methylation loci (Additional file  7: Table  S6). 
However, the median overall survival time was signifi-
cantly longer in C2 than the other clusters (64 months in 
C2 vs. 35 months in C1, 48 months in C3, 24 months in 
C4, p = 0.0001, Table 2). We also noted that the residual 
tumour and lymphatic invasion rates were significantly 
different between the four subgroups (p = 0.027 and 
0.031, respectively, Table  2). C4 was highly interrelated 
with larger residual tumours (≥ 11  mm), and the lym-
phatic invasion rate was the lowest in C2, which partially 
explains why C4 had the worst prognosis and C2 had 
the best prognosis (Table  2). Median age did not differ 
between the four clusters (p = 0.774, Table 2).

Fig. 3 Consensus clustering for DNA methylation of HGSOC. A Consensus cumulative distribution function (CDF) plot. The CDF plot shows the 
cumulative distribution functions of the consensus matrix for each k (indicated by colours). B Delta area plot. This graph shows the relative change 
in area under the CDF curve. In k = 4, the shape of the curve approaches the ideal step function, and the shape hardly changes as we increase K 
past 4. Therefore, four clusters were chosen as the optimal number. C Heat map generated using the pheatmap function with DNA methylation 
classification. The left bar represents the significantly different DNA methylation loci (Table 2)
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Construction of the prognosis model and verification 
in validation data
Based on the four subtype classifications, we established 
a prognosis prediction model (Fig.  4). To optimize this 
model to contain only the most predictive genes, a step-
wise Cox proportional hazards regression model was used, 
which identified two genes. Subsequently, a risk score 
was built: risk value = (1.207973 × cg25574024methyla-
tion value) − (1.35159 × cg24673765methylation value). 
The risk score for each patient was calculated using this 
formula. In the training cohort, patients were assigned 
into high-risk group and low-risk group based on the 

optimized risk value (Fig.  4A–C). Kaplan–Meier survival 
analyses showed that the rate of survival in the high-risk 
group was significantly higher than that in the low-risk 
group (Fig. 4D, p < 0.001). Furthermore, we used the vali-
dation cohort to validate the model. With the same for-
mula, patients were divided into a high-risk group and 
low-risk group by their risk score (Fig.  4E–G). Addition-
ally, results of OS showed that patients in the high-risk 
group had a significantly shorter survival than the coun-
terparts (Fig.  4H, p = 0.014). Furthermore, the results of 
fivefold cross-validation show that the model established 
by the method in this paper has good performance in 

Table 2 Clinicopathologic features of training group stratified by methylation clusters

Bold fonts represent p < 0.05

N C1 C2 C3 C4 p Value

Total, n 233 67(28.8%) 53(22.7%) 90(38.6%) 23(9.9%)

Mean age, y 60.1 ± 11.21 62.34 ± 11.84 57.03 ± 10.12 61.96 ± 10.45

Stage 0.471

 I 7(3.0%) 2(3.0%) 2(3.8%) 3(3.3%) 0

 II 8(3.4%) 1(1.5%) 2(3.8%) 4(4.4%) 1(4.3%)

 III 185(79.4%) 53(79.1%) 47(88.7%) 66(73.3%) 19(82.6%)

 IV 33(14.2%) 11(16.4%) 2(3.8%) 17(18.9%) 3(13.0%)

Primary therapy outcome 0.227

 Complete remission 140(60.1%) 36(53.7%) 32(60.4%) 62(68.9%) 10(43.5%)

 Partial remission 25(10.7%) 6(9.0%) 4(7.5%) 10(11.1%) 5(21.7%)

 Progressive disease 14(6.0%) 7(10.4%) 2(3.8%) 3(3.3%) 2(8.7%)

 Stable disease 15(6.4%) 4(6.0%) 5(9.4%) 3(3.3%) 3(13.0%)

 Unknown 39(16.7%) 14(20.9%) 10(18.9%) 12(13.3%) 3(13.0%)

Tumour residual 0.027
 No macroscopic disease 50(21.5%) 12(17.9%) 19(35.8%) 17(18.9%) 2(8.7%)

 1–10 mm 100(42.9%) 36(53.7%) 13(24.5%) 40(44.4%) 11(47.8%)

 11–20 mm 15(6.4%) 3(4.5%) 7(13.2%) 3(3.3%) 2(8.7%)

 > 20 mm 48(20.6%) 10(14.9%) 9(17.0%) 22(24.4%) 7(30.4%)

 Unknown 20(8.6%) 6(9.0%) 5(9.4%) 8(8.9%) 1(4.3%)

Venous invasion 0.270

 No 29(12.4%) 8(11.9%) 12(22.6%) 8(8.9%) 1(4.3%)

 Yes 41(17.6%) 12(17.9%) 8(15.1%) 17(18.9%) 4(17.4%)

 Unknown 163(70.0%) 47(70.1%) 33(62.3%) 65(72.2%) 18(78.3%)

Lymphatic invasion 0.031
 No 33(14.2%) 8(11.9%) 13(24.5%) 10(11.1%) 2(8.7%)

 Yes 60(25.8%) 23(34.3%) 5(9.4%) 25(27.8%) 7(30.4%)

 Unknown 140(60.1%) 36(53.7%) 35(66.0%) 55(61.1%) 14(60.9%)

Survival status 0.0001
 5y OS 34.8% 17.7% 57.4% 40.1% 6.8%

 10y OS 16.3% 7.9% 21.7% 22.3% 6.8%

 Median OS (months) 46 35 64 48 24

 Median 95%CI (months) 38.3–53.7 32.2–37.8 48.3–81.7 40.1–59.9 17.2–32.7
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the prediction of prognosis, and the survival rate has sig-
nificant differences between high-risk group and low-risk 
group in the fivefold cross-validation (Additional file 1: Fig. 
S1).

Discussion
Classifications that are based solely on the pathological 
features of tissues have limitations. Remodelling of the 
epigenome is a fundamental factor in tumour progno-
sis prediction or risk stratification. DNA methylation 
is one of the most common epigenetic phenomena. It 
is universally acknowledged that DNA methylation 

alterations are potential molecular markers for cancer 
progression [30–33]. Several studies of ovarian cancer 
have reported that DNA methylation signatures play 
a pivotal role in the molecular classification, survival 
status, and adjuvant chemotherapy response [34–41]. 
Despite increasing knowledge of the most common 
type of ovarian cancer, HGSOC, there are no effective 
methylation-based molecular signatures [42]. There-
fore, we performed the present study to better under-
stand the extent and heterogeneity of aberrant DNA 
methylation in HGSOC.

Fig. 4 Construction and validation of the methylation-driven prognosis prediction model in HGSOC. A Consensus clustering of the two CpG sites 
in the training set. B Risk score distribution of HGSOC patients in the training data set. C Survival status of each HGSOC patient in the training data 
set. The risk score distribution is consistent with B. D Survival curves of two clusters predicted from the training set using the prognosis model. The 
log-rank test was used to assess the statistical significance of the difference (p < 0.01). E Consensus clustering of the two CpG sites in the validation 
set. F Risk score distribution of HGSOC patients in the validation data set. G Survival status of each HGSOC patient in the validation data set. The risk 
score distribution is consistent with F. H Survival curves of two clusters verified in the validation set using the prognosis model. The log-rank test 
was used to assess the statistical significance of the difference (p = 0.014)
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The present study analysed prognosis-related meth-
ylation sites and obtained the corresponding signal-
ling pathways, which provided the research directions 
for the methylation of HGSOC in future. We identified 
four methylation subgroups with different prognoses. 
There were divergent biological characteristics in the four 
methylation subgroups, which confirmed the heteroge-
neity of HGSOC and the necessity of cautious classifica-
tion. Molecular-targeted therapy is gaining traction, and 
we may identify the underlying mechanisms in different 
methylation subgroups to help design new strategies in 
future. We further established a prognosis prediction 
model based on the significantly methylated sites using 
multivariate Cox analysis for the convenience of clinical 
application. Validation was performed to illustrate the 
reliability of this prediction model. This study identified 
stable classification with methylation patterns and clini-
cal meaning, which is informative for HGSOC biological 
characteristics and prognosis.

Molecular mechanistic studies based on bioinformatics 
analyses are highly significant to cancer research. Previ-
ous studies used methylated DNA Immunoprecipitation 
in A2780 and CaOV3 ovarian cancer cell lines to confirm 
a panel of six gene promoters that differentiated serous 
EOC from normal ovarian surface epithelial cells [43]. 
Zeller et  al. [44] identified loci at 4092 genes that were 
hypermethylated in chemoresistant A2780/cp70 cells 
compared to the parental-sensitive A2780 cell line. Fur-
ther high-throughput DNA methylation profiling of 27 
primary epithelial ovarian tumours and 15 ovarian can-
cer cell lines revealed significant differences in the DNA 
methylation profiles between ovarian cancer cell lines 
and tumours, which underscores the need for caution 
in the use of cell lines as tumour models for epigenetic 
molecular studies.

Based on the difference between ovarian tumours 
and cancer cell lines, preference is given to studies that 
directly examine the methylation profiles of cancer tis-
sues. Notably, ovarian cancer is a heterogeneous disease 
that includes five major epithelial ovarian tumour sub-
types (high- and low-grade serous, endometrioid, muci-
nous, and clear cell). Previous studies demonstrated that 
ovarian tumours of different histological types have dis-
tinct methylation profiles [45], which reinforces the need 
to treat different histotypes of ovarian cancer as separate 
diseases. For serous EOC, Keita et  al. [34] found that 
widespread DNA hypermethylation occurs in tumours 
with low malignant potential (borderline) and signifi-
cant DNA hypomethylation was observed only in grade 3 
serous EOC tumours.

Although it is the most common histological type of 
EOC, the methylation status of HGSOC has not been 
studied in detail. Keita et al. [34] only included 10 cases 

of HGSOC, which could not be further studied as a sepa-
rate group. Bodelon et  al. [35] found three methylation 
subgroups in 61 HGSOCs. However, the small sample 
size is a limitation of the quality of data generated from 
these experiments, and the characteristics of methyla-
tion subgroups, which are a matter of cardinal impor-
tance for targeted therapy, were not elaborated in detail. 
Reyes et al. [46] focused on the difference in methylation 
between HGSOC and normal fallopian tube tissue and 
between primary and recurrent ovarian cancer. Mon-
tavon et al. [38] examined and compared the methylation 
patterns of 10 genes in a cohort of 80 primary HGSOC 
and 12 benign ovarian surface epithelium samples. Dai 
et  al. [37] primarily profiled DNA methylation of genes 
in four pathways. Baranova et al. [39] identified the meth-
ylation of the CDH13, HNF1B, PCDH17, and GATA4 
genes to distinguish HGSOC from normal samples. In 
summary, research on the methylation of HGSOC is lim-
ited to appointed methylation sites, differences between 
HGSOC and normal tissue, and differences between 
recurrent cancer and primary cancer. Previous TCGA 
studies [19] established a four-cluster system. However, 
the classification system was established based on mul-
tiple data integrations (mRNA and miRNA expression 
and DNA methylation) rather than single methylation 
data. The present study emphasized the importance of 
DNA methylation and considered DNA methylation as 
an independent system, which is different from TCGA 
articles.

Based on TCGA data, our study primarily focused on 
comprehensive methylation analyses of HGSOC. The 
corresponding genes of differentially methylated sites 
that were significant in the multivariate Cox analysis 
were analysed. Pathway enrichment analyses suggested 
that differentially methylated genes were primarily 
enriched in the MAPK signalling pathway, including the 
CACNB3, MAP3K12, PGF, MAPK13, and CSF1R genes. 
The MAPK signalling pathway plays a role in the regula-
tion of gene expression, cellular growth, and survival, and 
it is implicated in most cancers. However, little research 
focused on the interaction between methylation modi-
fication and MAPK signalling pathway proteins. The 
glycolysis/gluconeogenesis pathway and pyruvate metab-
olism pathway were also enriched in KEGG analyses, and 
these pathways play a vital role in cancer progression 
[47–49]. However, the relationship between these meta-
bolic pathways and DNA methylation is not known. DNA 
methylation may also be a direction in the study of prote-
oglycan pathways, including the VAV2, CCND1, DDX5, 
and ITPR2 genes.

The subtypes identified from the methylation profil-
ing data classified HGSOC into four groups. Notably, the 
methylation levels of the different subgroups reflected 
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different molecular features. C1 was associated with 
the hypomethylation of cg03848675, cg12493906, and 
cg13055001, which were annotated as FOXF2, MMP26, 
and PPP1CA, respectively. FOXF2 is a critical tumour 
suppressor in gastric carcinogenesis that mediates upreg-
ulation of the E3 ligase IRF2BPL to drive ubiquitylation 
and degradation of β-catenin, which blunts Wnt signal-
ling and suppresses carcinogenesis [50]. The function of 
FOXC2 in breast cancer is inconsistent. Some research-
ers reported that FOXC2 suppressed epithelial–mesen-
chymal transition and multidrug resistance in basal-like 
breast cancer [51]. However, another study found that 
FOXF2 promoted the bone metastasis of breast cancer 
cells [52]. lncRNA ADAMTS9-AS2 decreased tumour 
progression in ovarian cancer by regulating the miR-
182-5p/FOXF2 axis [53]. Matrix metalloproteases 
(MMPs) play a vital role in cancer metastasis. The immu-
nostaining intensity of MMP-26 increased with ovarian 
tumour stage [54], which suggests a role for MMP-26 in 
ovarian cancer biological function. PPP1CA was associ-
ated with activation of the MAPK signalling pathway [55, 
56]. Because the hypomethylation loci of the C1 subtype 
were closely related to tumour metastasis, C1 was defined 
as the metastasis subgroup. Targeted therapy inhibits 
metastasis may be more effective in this subgroup than 
the other subgroups.

The C2 subtype had the best prognosis and showed 
relative hypomethylation of cg13791131, cg25574024, 
cg24673765, and cg27239157, which were annotated as 
IGF2 (cg13791131, cg25574024), HSPB6 (cg24673765), 
and MCF2L2 (cg27239157), respectively. IGF2 plays a key 
role in glucose metabolism, HSPB6 might be associated 
with insulin resistance [27], and MCF2L2 might be one 
of the most important marker genes contributing to type 
1 diabetes [28] and polycystic ovary syndrome [29]. All 
of these diseases are metabolic disorders, and these three 
genes are associated with metabolism. Therefore, C2 was 
defined as the metabolism subtype. Future studies will 
investigate whether this subtype is related to metabolic 
disorders and examine the application value of metabolic 
drugs in this subtype.

C3 presented with hypermethylation associated 
with cg03848675, which was opposite to the pat-
terns observed in C1, and featured hypomethylation of 
cg14290451(RPL10A). RpL10A stimulates cell prolifera-
tion via the insulin signalling pathway [57]. C4 was the 
poorest prognostic group and exhibited hypermeth-
ylation at 54 methylation loci. The hypermethylation of 
tumour suppressor genes contributes to a more aggres-
sive phenotype. Therefore, C4 was defined as the hyper-
methylation subtype, which suggests that demethylation 
agents could be preclinically tested for this group. It will 
be of great interest to clarify the underlying reasons for 

these unique subtypes and elucidate the relationship 
between different subtypes and their level of sensitivity 
to specific targeted agents. However, care must be taken. 
Intervening therapeutically to reverse a pattern seen in a 
cluster may have adverse effects. The adverse effects of 
therapeutic drugs require structural transformation by 
pharmaceutics, but this process is a long way off.

Clinical features, including survival outcome, residual 
tumours, and lymphatic invasion, were markedly differ-
ent between the four subgroups. The metabolism subtype 
was associated with no macroscopic residual tumour and 
a high probability of negative lymphatic invasion status, 
which could explain the favourable prognosis. Notably, 
the frequency of residual tumours in the hypermethyla-
tion subtype was higher than that in the other subtypes, 
which indicates that this group could be treated with 
neoadjuvant chemotherapy to improve the quality of sur-
gery and reduce the possibility of residual lesions.

We further developed a prediction model for prognos-
tication and clinical application. The prognostic model 
distinguished the training data sets and the validation 
sets into different prognosis clusters. This clinically 
promising model may be used to predict the prognosis of 
HGSOC patients, and follow-up may be strengthened for 
high-risk patients.

Conclusion
The results of this exploratory study suggest four dis-
tinct HGSOC clusters that are distinguishable with DNA 
methylation profiling and highlight several important 
genetic characteristics. We showed that the metabo-
lism subtype had a favourable prognosis and that the 
hypermethylation subtype had the worst prognosis. This 
result provides a more detailed explanation of HGSOC 
heterogeneity. Due to the high rates of residual sites, 
hypermethylation subtype tumours may be treated with 
neoadjuvant chemotherapy to improve the quality of sur-
gery and reduce the residual rate. The sensitivity to dem-
ethylation agents in this subtype should be examined and 
elucidated. Agents regulating metabolism may be effec-
tive for the metabolism subtype, and agents disrupting 
tumour metastasis may have value for further exploration 
in the metastasis subtype. Our prediction model provides 
guidance for clinicians in decisions related to prognosis. 
Our findings lay the groundwork for an improved under-
standing of the methylation-based subtypes of HGSOC 
and provide a useful resource with clinical implications 
for further studies.
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