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Abstract 

Background:  Racial/ethnic disparities in health reflect a combination of genetic and environmental causes, and DNA 
methylation may be an important mediator. We compared in an exploratory manner the blood DNA methylome of 
Japanese Americans (JPA) versus European Americans (EUA).

Methods:  Genome-wide buffy coat DNA methylation was profiled among healthy Multiethnic Cohort participant 
women who were Japanese (JPA; n = 30) or European (EUA; n = 28) Americans aged 60–65. Differentially methylated 
CpGs by race/ethnicity (DM-CpGs) were identified by linear regression (Bonferroni-corrected P < 0.1) and analyzed 
in relation to corresponding gene expression, a priori selected single nucleotide polymorphisms (SNPs), and blood 
biomarkers of inflammation and metabolism using Pearson or Spearman correlations (FDR < 0.1).

Results:  We identified 174 DM-CpGs with the majority of hypermethylated in JPA compared to EUA (n = 133), often 
in promoter regions (n = 48). Half (51%) of the genes corresponding to the DM-CpGs were involved in liver function 
and liver disease, and the methylation in nine genes was significantly correlated with gene expression for DM-CpGs. 
A total of 156 DM-CpGs were associated with rs7489665 (SH2B1). Methylation of DM-CpGs was correlated with blood 
levels of the cytokine MIP1B (n = 146). We confirmed some of the DM-CpGs in the TCGA adjacent non-tumor liver tis‑
sue of Asians versus EUA.

Conclusion:  We found a number of differentially methylated CpGs in blood DNA between JPA and EUA women with 
a potential link to liver disease, specific SNPs, and systemic inflammation. These findings may support further research 
on the role of DNA methylation in mediating some of the higher risk of liver disease among JPA.
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Introduction
Racial/ethnic disparities in health are phenotype-spe-
cific [1]. While Asian Americans have the longest life 
expectancy among racial/ethnic populations in the 
USA based on lower mortality from cardiovascular dis-
ease and cancer [2], they are known to have a higher 
susceptibility to obesity-related metabolic diseases [3]. 
In the Multiethnic Cohort (MEC) based on five race/
ethnic populations in Hawaii and Southern California 
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[4], we have observed that Asian Americans tend to 
develop metabolic syndrome and related diseases, such 
as type 2 diabetes, starting at a lower level of body mass 
index (BMI) compared to other racial/ethnic groups 
[5]. Also, we observed in a magnetic resonance imag-
ing study in a subset of the MEC that Asian Americans 
have been observed to accumulate disproportionately 
higher amounts of visceral fat and liver fat across a 
wide range of BMI or total body fat mass [6]. Consist-
ently, we and others have reported the highest BMI- or 
total fat mass-adjusted prevalence of non-alcoholic 
fatty liver disease (NAFLD) and NAFLD-associated 
hepatocellular carcinoma among Asian Americans 
[7–9]. Some of these disparities have been attributed to 
genetic differences, such as the PNPLA3 risk variant for 
NAFLD (rs738409), which is more common in Asians 
and Latinos [10]. Still, underlying biological mecha-
nisms on racial/ethnic disparities in health are poorly 
understood [11].

Epigenetics may be key to elucidate the mechanisms 
underlying the racial/ethnic differences in health and dis-
ease [12, 13]. DNA methylation is an epigenetic regula-
tor not determined by the DNA sequence. Unlike DNA 
sequences, the DNA methylome composition is dynamic 
and influenced by both genetic and environmental fac-
tors [14]. For example, altered blood DNA methylation 
has been observed to be associated with various cardio-
metabolic diseases and correlated with changes in tar-
get tissue DNA methylation, implicating related cellular 
processes [15]. However, most studies to date for disease 
associations have been conducted in European descent 
individuals, and data comparing blood DNA methyla-
tion patterns by race/ethnicity are limited [12]. Global 
blood DNA methylation, as determined by (3H)-methyl 
acceptance or LINE-1 repeat element methylation, was 
described to be lower [16, 17] or higher [18] in non-Euro-
pean compared to European descent individuals. Recent 
genome-wide methylation array analyses reported dif-
ferentially methylated CpGs in African Americans versus 
European Americans [19].

Considering the potentially important role of DNA 
methylation in mediating the racial/ethnic health dis-
parities as reviewed above, and based on our previous 
findings of distinct metabolic disparities among Asian 
Americans for NAFLD and related liver disease in the 
MEC [5–8, 11], we examined the blood DNA methylome 
between heathy Japanese American and European Amer-
ican women in the current study. Specifically, we identi-
fied differentially methylated CpGs between Japanese 
Americans and European Americans. Further, we exam-
ined how they are associated with corresponding gene 
expression, related genetic variants, and blood biomark-
ers of metabolism.

Materials and methods
Study participants
Participants for this study were recruited from the Multi-
ethnic Cohort Study (MEC; 1993-current) [4]. As detailed 
previously [20, 21], in 2009–2019, 60 overall healthy, 
postmenopausal women aged 60–65 were recruited 
among the MEC participants in Oahu, Hawaii, including 
self-identified 30 European Americans (EUA) and 30 Jap-
anese Americans (JPA) selected after stratification on age 
and BMI. This ancillary study within the MEC was a pilot 
study to explore imaging-based body composition of 
JPA, who were observed to have higher risks for obesity-
related diseases and cancers in the MEC [5, 7, 8] despite 
their lower mean BMI compared to EUA among gener-
ally healthy individuals. The small pilot study included 
only women due to limited resources and was designed 
to compare the body composition of generally healthy 
JPA versus EUA women with comparable BMIs using 
BMI-stratified recruitment. The participants underwent 
a detailed body composition assessment, involving a 
whole-body dual-energy X-ray absorptiometry (DXA) 
and an abdominal magnetic resonance imaging (MRI) 
scan, and provided fasting blood and responses to health-
related questionnaires.

Genome‑wide DNA methylation assay and data processing
The Illumina Infinium HumanMethylation450K Bead-
Chips array (Illumina, San Diego, CA) (HM450) was used 
to profile DNA methylation. Fifty-eight samples (28 EUA 
and 30 JPA) were available for methylation assays. The 
QIAamp DNA Mini Kit (Qiagen, Valencia, CA) was used 
to extract DNA from a fasting blood buffy coat that was 
stored at − 80  °C. For each sample, 500  ng of DNA was 
bisulfite converted per the manufacturer’s specifications 
for the HM450 using the EZ DNA Kit (Zymo Research, 
Irvine, CA). The bisulfite-converted DNA was then 
hybridized onto the HM450 according to the Illumina 
Infinium HD Methylation protocol. Images were gener-
ated on the Illumina iScan SQ scanner. GenomeStudio 
(v.2011.1) Methylation module (v.1.9.0) software was 
used to extract image intensities.

Raw intensity data from the HM450 (.idat files) were 
read into R version 3.5.2 [22] using the Bioconductor [23] 
package minfi [24]. Using the probe intensities, β-values 
were determined. We used the M-values (logit-trans-
formed β) in our analyses for reduced heteroscedasticity 
[25]. We started with 485,512 CpGs, and Subset-quantile 
Within Array Normalization (SWAN) was used to nor-
malize the data [26]. Before further analysis, the data 
were filtered to remove problematic CpGs. Specifically, 
Illumina annotation was used to identify CpGs that over-
lap with single nucleotide polymorphisms (SNPs) or 
are within 10 base pairs (bp) of SNPs, which were then 



Page 3 of 13Song et al. Clin Epigenet          (2021) 13:188 	

removed (n = 89,678). We also excluded probes that were 
in the Y-chromosome, off-target (n = 31,554) [27, 28], or 
had a detection P-value > 0.05. Additionally, CpGs with 
extremely high methylation (β ≥ 0.9) or low methylation 
values (β ≤ 0.1) were removed (n = 77,715) for all samples 
[29] as these CpGs can be considered to be fully meth-
ylated or fully unmethylated, respectively [29, 30]. After 
filtering, 285,457 CpGs remained for analysis. The refer-
ence genome for this study was GRCh37/hg19 (Human 
Genome version 19).

Because the methylation assays were performed in two 
batches (mixed-race/ethnicity per batch), batch effects 
were adjusted for using the ComBat function [31] (R, sva 
[32]). We further adjusted for whole blood cell composi-
tion to minimize potential confounding [33, 34]. The pro-
portions of six major cell types in blood DNA (CD8 + T 
cells, CD4 + T cells, natural killer cells, B cells, monocyte, 
and granulocyte) were estimated using the estimateCell-
Counts function (Bioconductor, minfi) [35]. The isomet-
ric log-ratio transformation was applied to the matrix of 
cell compositions, and the transformed values were used 
as additional covariates in statistical models for associa-
tions [36].

Genome‑wide transcriptome
RNA was extracted from the participants’ stored whole 
blood using the PAXgene Kit (Qiagen), and the qual-
ity of the RNA was checked on the Agilent Bioanalyzer 
(Agilent Technologies, Santa Clara, CA), indicating high 
integrity, with an average RIN of 8.2 (range 7–9). 100 ng 
of RNA was used for gene expression analysis by the 
Affymetrix GeneChip Human Transcriptome Array 2.0 
(HTA 2.0; Affymetrix Inc., Santa Clara, CA). An Affy-
metrix GeneChip scanner 3000 with AGCC Software 
(Affymetrix GeneChip® Command Console®) was used 
to scan the arrays. Transcriptome Analysis Console 4.0 
(TAC 4.0; Thermo Fisher Scientific, Waltham, MA) was 
used to assess sample quality, and 2 samples with poor 
quality were removed, leaving 56 samples for the CpG-
expression analysis. The CEL files generated by the arrays 
were imported into R using the Bioconductor oligo pack-
age [37]. The Robust Multi-Array Average procedure was 
used to normalize the data and obtain probe set expres-
sion summaries [38–40]. The data was annotated using 
the hta20transcriptcluster.db package [41].

Pairs of expression (transcripts) with cis methylation 
(probes) were identified for each of the 56 participants 
(28 JPA, 28 EUA). The HM450 annotation was used 
to assign gene names to the CpGs, which were then 
matched to Affymetrix transcripts using Gene Symbol 
from the hta20transciprtcluster.db annotation. To match 
gene names listed with different aliases between two 
data sets, alternative gene names were searched on the 

National Center for Biotechnology Information (NCBI) 
Gene Database (https://​www.​ncbi.​nlm.​nih.​gov/​gene).

Genotyping
We utilized the Illumina MEGAEX  array. After exclud-
ing poor quality SNPs, all SNPs had a call rate ≥ 0.95 
and a replicate concordance 1.00 based on 39 QC repli-
cate samples [11]. Eight well-studied SNPs in metabolic 
disease-related genes (Additional file  1: Table  1) were 
selected a priori to be tested for association with identi-
fied differentiated CpGs methylation by race/ethnicity.

Blood biomarkers
In the current analysis, we focused on fasting blood lev-
els of 28 a priori selected biomarkers of lipid metabo-
lism, insulin resistance, liver function and inflammation: 
specifically, lipid metabolism (high-density lipoprotein 
(HDL) and total cholesterol, triglycerides (TG)), insu-
lin resistance (homeostatic model assessment for insu-
lin resistance (HOMA-IR)), liver function (alanine and 
aspartate aminotransferases (ALT, AST), gamma-glu-
tamyl transferase (GGT), cytokeratin 18 (CK18 M30 
and M65), and sex hormone-binding globulin (SHBG)), 
and inflammation (component 3 (C3), high-sensitivity 
C-reactive protein (CRP), interleukinds and receptors 
(IL1R α, IL-6, IL6R, IL-10, IL-1β, IL-2, IL-4, IL-8, IL-5), 
tumor necrosis factor and receptors (TNFα, TNFR1, 
TNFR2), macrophage inflammatory protein 1 beta 
(MIP1B), monocyte chemoattractant protein 1 (MCP1), 
and tissue inhibitor of metalloproteinase 1 (TIMP1)). The 
priority for these biomarkers were based on their a priori 
importance for some (e.g., lipid and insulin markers that 
are used to define the metabolic syndrome) and based 
on their relevance after finding that a large proportion 
of differentially methylated CpGs was implicated in liver 
function and disease (e.g., liver-specific markers, SHBG 
that we found to be strongly inversely correlated with 
liver fat and NAFLD [42], and inflammation markers for 
their relevance in NAFLD and NASH). Analytical meth-
ods were reported previously [42]. All assays were per-
formed in one or two batches on the same day, and the 
included blind duplicate quality control samples showed 
good reproducibility (coefficient of variation for all assays 
2–20% [42]).

Targeted replication of differentially methylated CpGs 
between JPA and EUA in the cancer genome atlas (TCGA) 
liver hepatocellular carcinoma (LIHC) data
We used the publicly available TCGA-LIHC database 
(https://​portal.​gdc.​cancer.​gov/​proje​cts/​TCGA-​LIHC) 
to examine the consistency with our differentially 
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methylated CpGs between JPA and EUA. The Level 1 
genome-wide DNA methylation data for the adjacent 
non-tumor tissues (24 samples from men, 16 samples 
from women) from 6 Asian LIHC cases (of no speci-
fied Asian subtype available) and 34 EUA cases were 
analyzed. The data were normalized using SWAN, and 
batch effects were removed by adjusting for batches 
before the data analysis.

Statistical analyses
All statistical analyses were performed in R version 
3.5.2, relevant Bioconductor version 3.7 packages, and 
the Partek Genomics Suite™ 6.6 (St. Louis, MO). To 
compare the descriptive characteristics of JPA versus 
EUA, Welch’s t tests were used for continuous traits 
and Fishers’ exact test for categorical traits. The total 
fat-adjusted liver fat values were obtained in general 
linear models (ANCOVA).

Identification and characterization of differentially 
methylated CpGs between JPA and EUA
CpGs differentially methylated by race/ethnicity (DM-
CpGs) were identified in linear regression of the M-value 
for each CpG on race/ethnicity (JPA vs. EUA) (R Bio-
conductor, limma [43]). Significant CpGs (Bonferroni-
correct P < 0.1) were visually examined for their ability to 
separate JPA from EUA by applying hierarchal clustering 
with Unweighted Pair Group Method with Arithmetic 
Mean (UPGMA; R, hclust). The CpGs were also exam-
ined in a volcano plot, showing the mean methylation 
difference in each for JPA versus EUA (Δβ; positive for 
hypermethylation and negative for hypomethylation in 
JPA vs. EUA) plotted against –log10[P-value].

Welch’s t test was used to compare the mean meth-
ylation of the DM-CpGs between JPA and EUA (P < 0.05 
for significance) stratified by categories defined by 
the genomic location of the CpG or proximity to CpG 
islands. The genomic location (promoter, non-promoter, 

Table 1  Characteristics of study participant women

* For 46 participants (20 Japanese Americans, 26 European Americans) with MRI measurements

Characteristics All Japanese Americans (n = 30) European Americans (n = 28)
Mean (SD) or N (%) Mean (SD) or N (%) Mean (SD) or N (%)

Age, years 63.4 (1.4) 63.4 (1.4) 63.5 (1.4)

Body mass Index, kg/m2 26.6 (4.6) 26.5 (4.7) 26.8 (4.5)

Total body fat mass, kg 27.0 (8.4) 25.5 (8.2) 28.6 (8.4)

Liver fat %, adjusted for total fat* 4.56 (0.51) 5.81 (0.98) 3.74 (0.55)

Smoking history

 Never 37 (64%) 22 (73%) 15 (54%)

 Former 18 (31%) 7 (23%) 11 (39%)

 Current 3 (5%) 1 (3%) 2 (7%)

Education

 12 years 5 (9%) 4 (13%) 1 (4%)

 14 years 20 (34%) 13 (43%) 7 (25%)

 16 years 17 (29%) 7 (23%) 10 (36%)

 18 years 16 (28%) 6 (20%) 10 (36%)

Blood biomarkers

 C-reactive protein (CRP), mg/L 2.0 (3.3) 1.7 (3.6) 2.4 (2.9)

 Macrophage inflammatory protein-1 beta 
(MIP1B), pg/mL

30.7 (12.9) 36.0 (13.9) 25.0 (8.8)

 Triglycerides (TG), mg/dL 93.0 (75.6) 107.1 (95.9) 77.8 (41.5)

 Insulin, mIU/L 8.3 (8.1) 10.5 (9.4) 6.0 (5.9)

 Alanine Aminotransferase (ALT), U/L 31.8 (16.1) 34.4 (18.4) 29.0 (13.0)

Blood cell compositions

 CD8 + T cells 0.05 (0.04) 0.05 (0.03) 0.05 (0.04)

 CD4 + T cells 0.15 (0.06) 0.15 (0.06) 0.16 (0.07)

 Natural killer cells 0.09 (0.05) 0.10 (0.05) 0.08 (0.05)

 B cells 0.06 (0.03) 0.08 (0.03) 0.05 (0.02)

 Monocytes 0.09 (0.02) 0.09 (0.02) 0.10 (0.02)

 Granulocytes 0.57 (0.08) 0.56 (0.08) 0.58 (0.07)
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or intergenic) was defined according to the Illumina’s 
annotation file (https://​suppo​rt.​illum​ina.​com/​conte​nt/​
dam/​illum​ina-​suppo​rt/​docum​ents/​downl​oads/​produ​
ctfil​es/​methy​latio​nepic/​infin​ium-​methy​latio​nepic-​manif​
est-​column-​headi​ngs.​pdf ). Finally, the DM-CpGs were 
examined in Ingenuity Pathway Analysis (IPA) (Qiagen) 
to assess their likely functional involvement.

Separately, we compared the mean of 285,457 CpGs, as 
global methylation and the mean DNA methylation age 
(Hannum’s blood epigenetic clock [44]) between JPA and 
EUA using Welch’s t test.

Correlation of differentially methylated CpGs by race/
ethnicity with gene expression and blood biomarkers
Pearson correlation was used for the association of 
DM-CpGs with their corresponding gene expression, 
using Benjamini and Hochberg False Discovery Rate 
(FDR) < 0.1 for significance. Spearman correlation was 
used to determine if the DM-CpGs were associated with 
each blood biomarker (FDR < 0.1 for significance).

Association between differentially methylated CpGs by race/
ethnicity and SNPs
Pearson’s chi-square test was used to determine whether 
allele distribution differed by ethnicity for each SNP. To 
determine if genetic variants in metabolic disease-related 
SNPs were associated with DNA methylation at the DM-
CpGs, ANOVA models were used. For each SNP, samples 
with missing data were removed, and an indicator varia-
ble was created that was 1 if the sample contained at least 
one risk allele. A simple ANOVA model was fit for each 
DM-CpG, with DNA methylation as the outcome and 
risk allele indicator as the covariate. FDR < 0.1 was used 
to determine significance.

Comparison of differentially methylated CpGs by race/
ethnicity with TCGA liver tissue methylation
Once we found that the majority of the DM-genes 
between JPA and EUA were enriched in liver function/
liver diseases, we utilized TCGA data to: (1) examine 
whether these CpGs were similarly differentially meth-
ylated in non-tumor liver tissue of Asians versus EUA 
and (2) examine whether these CpGs were differentially 
methylated between liver tumor and adjacent non-tumor 
tissue, in order to explore their potential involvement 
in liver tumorigenesis. To identify the CpGs differen-
tially methylated between Asians (n = 6) versus EUA 
(n = 34) in their non-tumor liver tissue, we used three-
way ANOVA with adjustment for age and sex. To identify 
the CpGs differentially methylated between hepatocel-
lular carcinoma tumors and adjacent non-tumor tissues 
(n = 40 pairs), we performed two-way ANOVA with 
adjustment for pairs (FDR < 0.1 for significance).

Results
Participant characteristics
As reported previously [20], JPA and EUA women were 
all post-menopausal and had similar age and BMI distri-
butions by study design, JPA had a higher level of total 
adiposity-adjusted liver fat compared to EUA (Table  1). 
JPA and EUA did not differ in smoking history, education, 
blood levels of CRP, TG, and ALT in Table 1. However, 
JPA had higher blood concentrations of MIP1B (36.0 pg/
mL vs. 26.7  pg/mL in EUA; P = 0.006) and insulin (10.5 
vs. 6.0 mIU/L; P = 0.03) compared to EUA.

Identification of differentially methylated CpGs 
between JPA and EUA
When compared for the mean methylation level for all 
CpGs analyzed, a value that can be taken as a measure 
of global methylation, we observed a significantly higher 
mean methylation level in JPA (mean β = 0.565) com-
pared to EUA (mean β = 0.556) (P = 0.00018) (Fig.  1A). 
For the blood epigenetic clock index, JPA had a higher 
mean DNA methylation age (64.19) than EUA (62.69), 
but the difference was not statistically significant (data 
not shown).

From the locus-specific analysis, we identified 730 dif-
ferentially methylated CpGs (DM-CpGs) between JPA 
and EUA (Bonferroni P < 0.1), which were reduced to 
174 DM-CpGs after adjusting for blood cell type com-
position: 160 of the 174 were found among the 730 
(Additional file 2: Table 2). With respect to the cell pro-
portions, JPA had significantly higher B cells and mono-
cytes than EUA (P < 0.05), but did not differ for CD8 + T 
cells, CD4 + T cells, natural killer cells, and granulocytes 
(Table  1). None of the DM-CpGs were associated with 
the level of education.

The majority of the DM-CpGs (n = 133, 76%) were 
hypermethylated in JPA compared to EUA, as shown 
in the volcano plot (Fig.  1B) and hierarchical cluster-
ing (Fig.  1C). The DM-CpGs were spread across all 
autosomes, as shown in the Manhattan plot (Fig.  1D). 
The top ten DM-CpGs based on statistical significance 
are presented in Fig.  2. Five CpGs were associated with 
genes HHLA2, LOC91948, WDR16, VWA1, and OCA2, 
as well as intergenic CpGs (cg12407057, cg11156891, 
cg07073561, cg00587301, and cg00695177). A full list of 
the 174 DM-CpGs and their genomic characteristics is 
provided in Additional file 3: Table 3.

Characterization of differentially methylated CpGs 
between JPA and EUA
We compared the mean methylation of DM-CpGs for 
JPA compared to EUA within each functional location 
category. We found significantly more hypermethylation 

https://support.illumina.com/content/dam/illumina-support/documents/downloads/productfiles/methylationepic/infinium-methylationepic-manifest-column-headings.pdf
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https://support.illumina.com/content/dam/illumina-support/documents/downloads/productfiles/methylationepic/infinium-methylationepic-manifest-column-headings.pdf
https://support.illumina.com/content/dam/illumina-support/documents/downloads/productfiles/methylationepic/infinium-methylationepic-manifest-column-headings.pdf


Page 6 of 13Song et al. Clin Epigenet          (2021) 13:188 

of DM-CpGs in JPA (36% vs. 15%) within the pro-
moter region but did not detect differences within the 
non-promoter or intergenic region (Additional file  4: 
Table  4). Figure  3 shows a further comparison of mean 
methylation of the DM-CpGs in JPA versus EUA strati-
fied by CpG island-related regions (CpG islands, North- 
or South-shelves, North- or South-shores, and open 
sea regions) within each genomic location (promoter, 
non-promoter, and intergenic). Across all CpG island-
related regions, mean methylation varied by race/ethnic-
ity the most in promoters. There was a large variation in 
the DM-CpG methylation positioned in N-shelf, among 
EUA for promoter or non-promoter location and among 
JPA for intergenic location. Mean methylation was 

significantly higher among JPA for 12 of the 15 regions, 
whereas it was higher among EUA for only S-shore in the 
intergenic region (P < 0.05).

Correlation of differentially methylated CpGs between JPA 
and EUA with corresponding gene expression
Of the 174 DM-CpGs, 116 (67%) corresponded to 111 
unique genes, resulting in 147 DM-CpG-transcript 
pairs (Additional file  5: Table  5). Eleven CpG-transcript 
pairs (9 unique CpGs and 10 unique transcripts) were 
significantly correlated at FDR < 0.1 (Fig.  4). AFAP1, 
CSMD3, GATM (3 transcripts), KIAA0748, SH3BP4, and 
SOX6 were negatively correlated, and CCDC66 (2 tran-
scripts) and MRPL15 were positively correlated. The 

Fig. 1  Global DNA methylation and 285,457 differentially methylated CpGs between JPA and EUA. A A box plot of global DNA methylation 
(mean methylation of 285,457 DM-CpGs) between JPA (red) and EUA (blue). B A volcano plot for all 285,457 CpGs showing differences in mean 
methylation (Δβ = Avg Methylation JPA—Avg Methylation EUA) (x-axis) and –log10P-value (y-axis). The green line indicates the Bonferroni-adjusted 
P-value < 0.1 cutoff. The red points correspond to significantly DM-CpGs that are hypermethylated in JPA relative to EUA, while the blue points 
correspond to DM-CpGs that are hypermethylated in EUA compared to JPA. C Hierarchal clustering of the 174 significantly DM-CpGs (rows) 
and samples (columns). Red corresponds to higher methylation, while blue corresponds to lower methylation. D A Manhattan plot showing 
the significance of association by chromosome, with the top 10 DM-CpGs by P-value labeled. The dotted line indicates the Bonferroni-adjusted 
P-value < 0.1 cutoff
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strongest correlation was found for AFAP1 (cg13534536-
TC04001014.hg.1) (r =  − 0.83), driven by the correlation 
among EUA (r =  − 0.77), while no significant correla-
tion was detected in JPA (r =  − 0.031). Also, the CpG-
transcript correlation for KIAA0748 was strong in JPA 
(r =  − 0.72) but not in EUA (r = 0.042).

Potential biological roles of differentially methylated CpGs 
between JPA and EUA
We examined 102 of the 111 unique genes correspond-
ing to the DM-CpGs in the IPA analysis and found that 
the majority of these genes (52, 51%) were function-
ally enriched in liver function/diseases, including liver 
inflammation, hyperplasia, proliferation, cirrhosis, and 
regeneration. These are summarized in Additional file 6: 
Table 6.

Associations between differentially methylated CpGs 
between JPA and EUA and metabolic disease‑related SNPs
We further explored the association between the DM-
CpGs and eight previously reported metabolic dis-
ease-related SNPs (Additional file  1: Table  1). Among 
174 DM-CpGs, 156 were significantly associated with 
rs7498665 (SH2B1), 3 with rs738409 (PNPLA3), and 49 
with rs29941(KCTD15) at FDR < 0.1 (Additional file  7: 
Table  7). Some associations remained significant even 
after adjusting for race/ethnicity. These corresponded to 
3 CpGs (cg22216157 [PTPRN2], cg24524099 [PTPRN2], 
and cg02903756 [CASZ1]) for rs738409 and 2 CpGs 

(cg07073561 [intergenic] and cg07863524 [OR3A4]) for 
rs29941.

Correlation of differentially methylated CpGs between JPA 
and EUA with blood biomarkers of inflammation 
and metabolism
We further investigated the association of the methyla-
tion levels of 174 DM-CpGs with 28 blood biomarkers 
of inflammation, lipids, insulin resistance, and liver func-
tion. There were 183 significant CpG-biomarker asso-
ciations, involving 149 CpGs (86% of DM-CpGs) and 5 
biomarkers at FDR < 0.1: MIP1B (n = 146), HOMA-IR 
(n = 18), ALT (n = 1), IL-1β (n = 17), and IL-5 (n = 1) 
(Additional file 8: Table 8). Thirty-one CpGs were signifi-
cantly correlated with multiple biomarkers, which were 
mostly associated with genes (n = 27; 87%). The major-
ity of the CpG-biomarker associations (146/183, 80%) 
involved MIP1B, and top correlated CpGs were associ-
ated with genes, SEPT9, HHAL2, OR3A4, NIPA1,   and 
PTPRN2. None of the DM-CpGs were statistically associ-
ated with the other 23 biomarkers.

Consistency of differentially methylated CpGs between JPA 
and EUA in TCGA‑LIHC data
Given that the DM-CpGs between JPA and EUA are 
enriched in liver function and liver diseases/cancer, the 
174 DM-CpGs were queried in the TCGA-LIHC data 
(Additional file  9: Table  9) to examine consistency in 
adjacent non-tumor tissues. We further explored the 
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possible involvement of the DM-CpGs in tumorigen-
esis by comparing the CpGs between liver tumor and 
adjacent non-tumor tissue in the TCGA data. Thirty-
eight CpGs (22%) were differentially methylated in the 
adjacent non-tumor tissues of Asian and EUA cases of 
hepatocellular carcinoma (FDR < 0.1), adjusted for age 
and sex, with 35 (92%) of them in a consistent racial/
ethnic pattern as in our blood DNA analysis (Addi-
tional file  10: Table  10). For several example CpGs 
shown in Fig. 5A, the left panel depicts the Asian versus 

EUA difference. Of the 174 DM-CpGs, 110 CpGs (63%) 
were differentially methylated in paired tumor versus 
adjacent non-tumor tissues (pair-adjusted FDR < 0.1): 
the right panel of Fig. 5A depicts the tumor- non-tumor 
tissue difference. A heatmap of the 110 CpGs shows 
overall lower methylation of these CpGs in tumors 
compared to adjacent non-tumor tissues (Fig.  5B): 
the top five hypermethylated genes were GLRX, 
WNT9B, SEPT9, KIAA00284, and PPYR1, and the top 
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five hypomethylated genes were KIAA0748, PAEP, 
PCDH15, PTPRN2, and DUSP27 (Additional file  11: 
Table 11).

Discussion
While some evidence points to racial/ethnic differences 
in blood DNA methylation and a postulated role for these 
differences in racial/ethnic health disparities [12, 45], 
data are still very limited on racial/ethnic comparisons 
and their biological implications. In this cross-sectional 
study, we found blood genome-wide differential methyla-
tion between JPA and EUA for 174 CpGs among gener-
ally healthy post-menopausal women. The majority of 
CpGs differentially methylated by race (DM-CpGs) (76%) 
were hypermethylated in JPA compared with EUA and 
highly enriched in promoter regions. The methylation 
levels of only a small subset of the DM-CpGs were posi-
tively or negatively correlated with their corresponding 
gene expression. Gene enrichment analysis for DM-CpGs 
revealed that the majority of the genes for these CpGs 
were involved in liver function and liver diseases, which 
may explain the substantially higher susceptibility of JPA 
to liver disease and liver cancer reported in this [20] and 
larger studies [6, 7]. Notably, most of the DM-CpGs were 
also associated with a blood biomarker of inflamma-
tion MIP1B. In the TCGA-LIHC (hepatocellular carci-
noma) dataset, we confirmed some of the DM-CpGs in 
the TCGA non-tumor liver tissue of Asians compared 
to EUA. A large proportion of the DM-CpGs were also 
differentially methylated between liver tumor and non-
tumor tissues.

Our study adds to the previous evidence for racial/
ethnic differences in DNA methylation as reflecting 
underlying biological mechanisms possibly underlying 
some racial/ethnic health disparities.[17, 45–48]. Most 
past studies analyzed global DNA methylation, such as 
LINE-1 methylation, with inconsistent findings in small 
numbers of African or Hispanic ancestry [12]. In our 
study using a genome-wide methylation array, the mean 
methylation levels of all CpGs, a marker of global methyl-
ation, were significantly higher in JPA compared to EUA.

The majority of our DM-CpGs were involved in liver 
function and liver disease. Of the genes with DM-CpG-
correlated gene expression, AFAP1 and KIAA0748 in 
particular were distinctly expressed in JPA versus EUA. 
AFAP1, found to be expressed at lower levels in JPA with 
hypermethylation of cg13534536 in this study, codes 
for actin filament associated protein 1, and its antisense 
RNA promotes liver tumor cell proliferation, indica-
tive of a poor diagnosis [49]. KIAA0748 is also known as 
TESPA1, and its deletion was detected in cirrhotic liver 
tissue [50]. Also differentially methylated and expressed 
in this study was SOX6, a transcription factor, acting as 

an activator of adipogenesis [51]. In the TCGA-LIHC 
dataset, we further found significantly differential meth-
ylation between tumor and adjacent non-tumor tissue 
for AFAP1, KIAA0748, and SOX6. Additional studies are 
needed to understand whether the liver diseases related 
to DM-genes contribute to the risk and progression of 
liver diseases.

Genetics may directly or indirectly explain an impor-
tant part of the epigenetic differences by race/ethnic-
ity. Here, we found 90% of the DM-CpGs between JPA 
and EUA to be significantly associated with rs7498665 
(SH2B1). Also, we identified 3 CpGs to be associated with 
rs738409 (PNPLA3) and 49 for rs29941(KCTD15). SH2B1 
is a well-known metabolic regulator related to obesity 
and liver lipid metabolism [52, 53], and rs7498665 is 
associated with visceral fat [54]. PNPLA3 genetic variant, 
rs738409, is a significant genetic risk factor for hepatic 
steatosis by accumulating high lipid droplets [55, 56]. 
Although the role of KCTD15 is unclear in liver diseases, 
this gene is an obesity-related gene [57], and its genetic 
variation (rs29941) was significantly associated with 
weight changes [58] and fasting plasma glucose level [59]. 
As it is difficult in this small study for genetic polymor-
phisms to tease out independent SNP-CpG correlations 
from racial/ethnic differences in minor allele frequency, 
further study is warranted to investigate the role of DNA 
methylation in mediating racially/ethnically differential 
genetic susceptibility for metabolic diseases.

It is important to note that, in addition to the initial 
exclusion of SNPs associated probes in order to avoid 
potential risks of SNPs in the probe regions, we evalu-
ated whether our 174 DM-CpGs overlap with any SNPs 
from 1000 Genomes available in the dbSNP database. 
We searched the chromosomal location of each CpG site 
and found that 21/174 (12.1%) overlap with the SNPs of 
1000 Genomes. Of these 21, only 9 SNPs (9/174, 5.2%) 
had slightly different allele frequencies between East 
Asians and Europeans (e.g., C = 0.9990/T = 0.0010 vs 
C = 1.0000/T = 0.0000 for most cases). However, methyl-
ation levels at these 9 DM-CpGs had a continuous distri-
bution, indicating no SNP effects on methylation at these 
CpGs.

Finally, we found eight DM-CpGs that were consist-
ently associated with corresponding gene expression, 
important genetic variation (rs7498665, SH2B1), and sys-
temic inflammation (MIP1B): these were cg12040201 in 
CSMD3, cg04088932 in SH3BP4, cg24328539 in GATM, 
cg05401945 in CCDC66, cg07880109 in KIAA0748, 
cg10760299 in GATM, cg10825530 in SOX6, and 
cg13534536 in AFAP1. CSMD3 is considered a driver 
gene in liver cancer [60]. Although the biological func-
tion of CSMD3 has not been fully understood, this 
gene is associated with alcohol exposure [61] and its 
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genetic alteration is associated with morbid obesity [62]. 
SH3BP4 is a potential tumor suppressor, and its methyla-
tion is related to impaired insulin signaling [63]. Elevated 
blood levels of proinflammatory cytokine MIP1B, also 
known as CCL4, are observed in liver inflammation and 
fibrosis [64, 65]. Future studies on a larger scale may be 
able to disentangle the genetic-epigenetic-phenotype 
associations by race/ethnicity.

This study has several strengths. It was nested within a 
long-term cohort providing the advantage of having well-
characterized participants with various types of data. 
Our study integrated analysis of gene enrichment, gene 
expression, SNPs, blood biomarkers, and the TCGA. The 
consistency in findings across these analyses are support-
ive of the potential role of race/ethnicity-associated DNA 
methylation patterns in metabolism. However, this initial 
exploratory study had clear limitations, including a small 
sample size and the cross-sectional study design. While 
we had sufficient power to identify a number of signifi-
cant DM-CpGs and detect their association with some 
biomarkers, larger multiethnic studies including both 
sexes are warranted to investigate racial/ethnic DNA 
methylation profiles more systematically. To identify 
potential drivers of DM-CpGs by race/ethnicity, addi-
tional studies for the effects of the environment, lifestyle, 
nutrition, and individual and contextual socioeconomic 
status on these associations should be performed with 
relevant health outcomes more carefully.

In conclusion, our findings provide supportive evidence 
that differential blood DNA methylation across racial/
ethnic populations may represent epigenetic mechanisms 
underlying phenotype differences and disparities. Larger 
and more diverse studies are warranted to explore these 
relationships further.
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