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Abstract 

Background:  Non-alcoholic fatty liver disease (NAFLD) is characterized by changes in cell composition that occur 
throughout disease pathogenesis, which includes the development of fibrosis in a subset of patients. DNA methyla-
tion (DNAm) is a plausible mechanism underlying these shifts, considering that DNAm profiles differ across tissues 
and cell types, and DNAm may play a role in cell-type differentiation. Previous work investigating the relationship 
between DNAm and fibrosis in NAFLD has been limited by sample size and the number of CpG sites interrogated.

Results:  Here, we performed an epigenome-wide analysis using Infinium MethylationEPIC array data from 325 indi-
viduals with NAFLD, including 119 with severe fibrosis and 206 with no histological evidence of fibrosis. After adjust-
ment for latent confounders, we identified 7 CpG sites whose DNAm associated with fibrosis (p < 5.96 × 10–8). Analysis 
of RNA-seq data collected from a subset of individuals (N = 56) revealed that gene expression at 288 genes associated 
with DNAm at one or more of the 7 fibrosis-related CpGs. DNAm-based estimates of cell-type proportions showed 
that estimated proportions of natural killer cells increased, while epithelial cell proportions decreased with disease 
stage. Finally, we used an elastic net regression model to assess DNAm as a biomarker of fibrotic stage and found that 
our model predicted fibrosis with a sensitivity of 0.93 and provided information beyond a model based solely on cell-
type proportions.

Conclusion:  These findings are consistent with DNAm as a mechanism underpinning or marking fibrosis-related 
shifts in cell composition and demonstrate the potential of DNAm as a possible biomarker of NAFLD fibrosis.
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Background
Non-alcoholic fatty liver disease (NAFLD), which 
encompasses a group of conditions characterized by the 
accumulation of fat in liver cells, is the most common 
chronic liver disease in Western countries [1]. Hallmarks 

of NAFLD include excessive lipid storage in hepatocytes 
and persistent wound healing carried out by activated 
myofibroblasts [2]. While the underlying causes are not 
fully known, risk factors for NAFLD include obesity and 
insulin resistance [3]. A subset of NAFLD patients also 
develop inflammation and fibrosis, collectively represent-
ing non-alcoholic steatohepatitis (NASH), an advanced 
form of NAFLD that is associated with increased liver-
related morbidity and mortality [4]. NASH patients have 
a greater risk of developing cirrhosis and hepatocel-
lular carcinoma [5] by processes involving interactions 
of many hepatic cell types, including parenchymal and 
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non-parenchymal cells. Few studies have focused on epi-
genetic changes in advanced fibrosis in NAFLD [6].

DNA methylation (DNAm) is an epigenetic DNA 
modification in which a cytosine residue predominantly 
followed by a guanine, i.e., a CpG dinucleotide, is modi-
fied through the covalent addition of a methyl group. 
DNAm has been shown to play a regulatory role in fibro-
genesis in a variety of organs [7], but its contribution to 
liver fibrosis is not well characterized [8]. In cell culture, 
transdifferentiation of hepatic stellate cells into myofibro-
blasts, the primary cellular mediators of liver fibrosis, is 
accompanied by changes in DNAm status of hundreds 
of genes [9]. Previous studies have interrogated NAFLD-
related DNAm status of specific candidate genes [10, 11]. 
For example, DNAm of the peroxisome proliferator-acti-
vated receptor γ (PPARγ) gene promoter has been found 
to associate with severe versus mild fibrosis in NAFLD 
[11]. Extending beyond candidate genes, Gerhard et  al. 
[12] performed an epigenome-wide association study 
(EWAS) to compare DNAm between advanced fibrosis 
(N = 14) versus sex- and age-matched non-fibrotic liver 
samples (N = 15) and observed differential DNAm at 208 
CpG islands, as well as 34 CGI-transcript pairs show-
ing significant association between DNAm and gene 
expression. This study also found differential DNAm to 
be enriched for biological pathways relevant to cirrho-
sis. Another EWAS of liver samples (35 healthy, 34 with 
simple steatosis, and 26 with NASH) reported 1292 CpG 
sites with NASH-associated differential DNAm [13].

To date, studies of NAFLD and DNAm in liver have 
been limited to small samples, while larger EWAS of 
NAFLD phenotypes has been performed in less inva-
sive tissues such as blood. In a blood EWAS interro-
gating the association between DNAm and hepatic fat 
accumulation, Ma et al. [14] observed 58 CpGs with sig-
nificant associations (FDR < 0.05) in a discovery cohort 
(N = 1496), among which 22 were significant in a repli-
cation cohort (N = 1904). A Mendelian randomization 
analysis from this study suggested that one of the CpGs 
may be causally related to NAFLD. Other studies have 
reported results showing NAFLD-associated changes in 
DNAm, although all of these have been based on rela-
tively limited sample sizes of less than 100 individuals 
[13, 15–18].

In addition to serving as a common and relatively sta-
ble molecular modification that functions to regulate 
gene expression during differentiation of cells, DNAm 
patterns can be used to identify distinct cell types and 
changes in cell-type composition [19], a well-known 
feature of NAFLD disease progression [20–22]. Because 
DNAm is usually tissue- and cell-type-specific, cellular 
composition is a major contributor to DNAm patterns. 
Changes in cellular composition can thus be inferred 

from changes in DNAm profiles, through deconvolu-
tion of cell-type-specific loci. Progression to fibrosis in 
NAFLD may involve changes in a variety of cell types, 
including hepatocytes, Kupffer cells, stellate cells, sinu-
soidal endothelial cells, cholangiocytes, and various 
immune cells. There have been few studies that have used 
DNAm data to define cellular composition in the liver, 
and of those, most are based on mouse models [23].

Previous studies of DNAm in NAFLD have been 
mostly based on small sample sizes or blood-derived 
DNA sources [12, 13, 15–18]. Here, we sought to extend 
the available data by focusing specifically on the fibrotic 
stage in a large set of liver samples from individuals with 
NASH, and interrogating nearly twice as many CpG sites 
as previous studies. In addition, we used DNAm data to 
examine estimated cell-type proportions, investigated the 
potential of DNAm to serve as a marker of fibrotic stage, 
and conducted a combined analysis of DNAm and gene 
expression to identify possible regulatory mechanisms 
involved in the progression of NAFLD fibrosis.

Results
Patient characteristics
Demographic and clinical characteristics of the study 
participants are shown in Table 1. The majority (77%) of 
study participants were female and of European ancestry 
(99%) with a mean (± SD) age of 48.6 ± 11.5 and BMI of 
47.1 ± 9.1. The distribution of fibrosis was 68% no fibrosis 
(Grade 0), 17% bridging (Grade 3), 11% incomplete cir-
rhosis (Grade 3/4), and 9% cirrhosis (Grade 4).

DNA methylation data are concordant across technical 
replicates and cluster by sex and disease status
PCA was used to identify and remove ten outliers (Addi-
tional file 1: Fig S1–S2). One sample had eight replicates, 
and nine samples had pairs of duplicates, which also clus-
tered by individual, indicating high concordance between 
replicates (Additional file  1: Fig S3). Following removal 
of outliers and averaging of the duplicates/replicates, the 
final sample size was N = 325. PCA of the DNAm data 
for each sample showed that samples clustered by sex 
and fibrosis stage (Additional file  1: Fig S1A–C). While 
the first two principal components partially separated 
individuals by sex, male and female individuals were fully 
separated into distinct clusters when the 3rd principal 
component was added to the plot (Additional file 1: Fig 
S1B). Partial overlap was seen between groups of sam-
ples with fibrotic versus non-fibrotic liver tissue (Addi-
tional file 1: Fig S1C). In addition, we observed significant 
associations between age and PC2–PC6, along with PC9 
(Additional file 1: Fig S2).
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Fibrosis has a distinct DNA methylation profile
We performed an EWAS adjusted for age, sex, and 
BMI, as well as two latent confounders (see “Meth-
ods” section) using DNAm β-values as the dependent 
variable and the presence of fibrosis at any stage as 
the independent variable. Seven CpG sites passed the 
Bonferroni significance threshold (p < 5.96 × 10–8); all 
seven sites were hypomethylated in individuals with 
fibrosis (Fig.  1; Table  2). Although located on six dif-
ferent chromosomes, the seven fibrosis-related CpGs 
were highly correlated with one another (Fig.  2) and 
showed decreased DNAm levels that corresponded to 
increasing severity of fibrosis (top CpG sites shown in 

Fig. 3). Three and four CpG sites were located in genes 
and enhancers, respectively (Table  2). The effect sizes 
for these CpG sites indicated that the estimated DNAm 
proportion is, on average, 0.05–0.16 lower in individu-
als with fibrosis compared to those without.

When applying a less stringent statistical threshold, a 
Benjamini–Hochberg FDR cutoff of 0.05, we observed 
18 hypermethylated and 110 hypomethylated CpG 
sites (Additional file 1: Table S1). Gene ontology (GO) 
analysis of these 128 CpG sites did not yield evidence 
of significant enrichment, although the top GO terms 
correspond to biological processes involved in NAFLD, 
including apoptosis and morphogenesis (Table 3).

Table 1  Study cohort demographic information and clinical characteristics (N = 325)

Fibrosis stage

Grade 0 Grade 3 Grade 3/4 Grade 4 All

Age (years) 47.2 (12.4) 49.5 (10.0) 50.4 (8.1) 53.8 (9.5) 48.6 (11.5)

BMI 46.6 (8.8) 48.6 (8.0) 46.5 (9.7) 48.1 (12.1) 47.1 (9.1)

Sex

 Female 166 34 29 22 251

 Male 40 21 7 6 74

Race

 Black or African American 3 0 0 0 3

 White 203 54 36 28 321

 Not available 0 1 0 0 1

Type 2 diabetes

 No 130 7 4 4 145

 Yes 76 48 32 24 180

Fig. 1  Manhattan plot depicting association between DNAm and fibrosis. The solid horizontal lines indicate the Bonferroni threshold, and the 
dotted lines indicate the FDR < 0.05 threshold. Covariates include age, sex, BMI, and two latent variables
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Estimated cell‑type proportions vary with disease stage
Measurement of DNAm allows for the deconvolution 
of specific cell types from data derived from bulk tissue. 

We therefore sought to estimate proportions of cell types 
found in biopsied liver tissue using EpiDISH [24], as 
described in the Methods section. Our results indicated 

Table 2  Summary information for seven CpGs associated with fibrosis

CpG Chr Position Effect size T-stat p val Overlapping gene Enhancer ID Genes linked to enhancer

cg09822959 6 82,862,789 − 0.159 − 5.4 5.93E−08 GH06F082862 LOC105377877, GC06M082916

cg19686543 7 148,327,678 − 0.093 − 6.0 1.87E−09 CNTNAP2 None N/A

cg08033828 9 89,137,984 − 0.093 − 5.6 2.61E−08 SHC3 GH09F089136 SHC3, CKS2

cg05550145 10 71,871,455 − 0.174 − 5.7 1.08E−08 GH10F071871 VSIR, PSAP

cg09998038 10 73,894,805 − 0.052 − 5.5 3.99E−08 GH10F073886 NDST2, KAT6B, C10orf55, DNAJC9, FUT11, VCL, 
MYOZ1, CAMK2G, SEC24C, DUSP8P5, ANXA7, 
PLAU

cg22317887 17 37,698,375 − 0.067 − 5.7 1.17E−08 HNF1B GH17F037697 HNF1B, MRPL45, LOC105371754, GC17P037657

cg01931861 21 41,601,636 − 0.077 − 5.6 2.22E−08 GH21F041601 LOC105372809, LOC105372812

Fig. 2  Boxplot of DNAm proportions against NAFLD fibrosis stage for the most significant CpG site (cg19686543) in the primary analysis
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that estimated cell-type proportions change with the 
presence and severity of fibrosis (Fig. 4). Estimated pro-
portions of epithelial cells decreased from approxi-
mately 38% in non-fibrotic liver to ~ 32% in cirrhosis. 
In contrast, the estimated proportions of immune cells 
increased as fibrosis stage advanced from about 40% in 
non-fibrotic liver to 48% in cirrhosis. We used a second-
ary non-overlapping EpiDISH reference set to estimate 
subsets of immune cells and observed that natural killer 
(NK) cells increased from about 16% of immune cells in 
non-fibrotic liver to over 25% in incomplete cirrhosis and 
cirrhosis.

DNAm profile of fibrosis may partially reflect changing 
cell‑type proportions
For comparison to our primary analysis, which adjusted 
for latent confounders such as cell type via a “reference-
free” approach, we performed a secondary EWAS that 
directly adjusted for cell-type proportions estimated via a 
reference-based method [24] (Additional file 1: Table S2; 

Fig S4). The purpose of this secondary analysis was to 
facilitate comparisons to previous EWAS that have used 
similar models, and also to provide insight into the extent 
to which cellular composition may contribute to the 
latent confounding. Using this approach, we observed 
25,170 hypermethylated CpG sites and 32,118 hypometh-
ylated CpG sites that achieved statistical significance at a 
Bonferroni threshold of 5.96 × 10–8 (Additional file 1: Fig 
S4). A similar model unadjusted for cell-type proportions 
yielded an even larger set of significant CpG sites. In our 
primary analysis, we found no genomic inflation (λ = 1.0), 
i.e., the deviation of the distribution of the observed 
results compared to the distribution of the expected 
results. In the secondary analysis (Additional file  1: Fig 
S5), results were highly inflated (λ = 4.28). The inflation 
observed when using the reference-based approach sug-
gests that there may be significant changes in DNAm due 
to unmeasured confounders, such as technical factors or 
specific cell subtypes not measured by current reference-
based methods.

Pathway analysis of the reference-based results from 
this secondary analysis indicated that 404 GO terms were 
significantly enriched according to a Bonferroni cutoff 
p < 2.2 × 10–6; the top ten results are shown in Additional 
file  1: Table  S2. Some of the significant GO terms were 
suggestive of involvement in lipid metabolism, mor-
phogenesis, and cell migration, which are all processes 
observed in NAFLD.

Subgroup‑based sensitivity analyses are largely consistent 
with one another
To investigate the robustness of our results, we com-
pared the results of our primary analysis (Fig.  1) to 
five additional subgroup analyses (Additional file 1: Fig 
S6). When we re-ran the analysis including only indi-
viduals without type 2 diabetes (N = 145), 43 CpG sites 
passed the Bonferroni significance threshold, but test 

Fig. 3  Correlation matrix of the seven NAFLD-related CpG sites from 
the main analysis

Table 3  The top ten GO terms showing enrichment in the primary analysis

MF molecular function, BP biological process, CC cellular component

Ontology Term p

MF ATPase-coupled heme transmembrane transporter activity 9.93E−04

BP Heme transmembrane transport 9.93E−04

BP Regulation of apoptotic process involved in morphogenesis 2.69E−03

BP Regulation of apoptotic process involved in development 2.73E−03

BP Positive regulation of miRNA catabolic process 3.64E−03

BP Regulation of miRNA catabolic process 4.62E−03

BP Positive regulation of stem cell differentiation 5.03E−03

BP Regulation of steroid biosynthetic process 5.32E−03

CC Phosphatidylinositol 3-kinase complex 5.55E−03

BP Negative regulation of phospholipase A2 activity 5.85E−03
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statistics were correlated with test statistics obtained 
in the original analyses (r = 0.608) (Additional file  1: 
Fig S6B). We also performed an analysis in which only 
individuals with Grade 0 fibrosis and Grade 4 fibrosis 
were included (N = 234), and again, the results were 
similar (r = 0.784) to five CpG sites showing differential 
DNAm (Additional file 1: Fig S6A). In sex-specific anal-
yses, results were similar for men and women (r = 0.35), 
with five differentially methylated CpG sites in men and 
eight differentially methylated sites in women (Addi-
tional file 1: Fig S6D). We also tested for an interaction 
between sex and fibrosis state and observed 154 signifi-
cant CpG sites (Additional file 1: Fig S6C). The effect of 
fibrosis on DNAm was higher in women for 49 CpGs 
and higher in men for 105 CpGs. None of the 154 CpGs 
overlapped the seven significant sites in the primary 
analysis. These results show that our primary analysis is 
robust to diabetes status and the inclusion/exclusion of 
particular disease stages. We did not detect sex-specific 
effects of fibrosis status on DNAm for the seven CpGs 

associated with fibrosis in the primary analysis, possi-
bly due to the low number of males in the cohort.

DNA methylation profile of fibrosis similar to previously 
published study on epigenetics of non‑alcoholic 
steatohepatitis (NASH) in liver tissue
To further assess the robustness of the observed asso-
ciations, we compared our results to a previous study 
that used the Illumina Infinium HumanMethylation450 
BeadChip to analyze liver biopsies obtained from 95 
obese individuals (35 with normal liver phenotype, 
34 with simple steatosis, and 26 with NASH) [13]. 
A comparison of effect sizes between this study and 
the current work is shown in Fig.  5A and Additional 
file  1: Figure S7A. CpG-specific effect sizes from our 
study showed extremely high concordance with these 
previously published results (r = 0.75 and 0.94 when 
compared to our primary and secondary analysis), sug-
gesting that a significant number of loci with changes in 
DNAm detected in NASH relative to normal histology 

Fig. 4  First row of panels shows estimated proportions of epithelial, fibroblast, and immune cells by fibrotic stage. Second row of panels shows 
estimated proportions of subsets of immune cells by fibrotic stage
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may also be observed in fibrosis, which arises out of a 
background of NASH.

DNA methylation profile of fibrosis correlates with test 
statistics from a blood‑based study of hepatic fat
We next compared our EWAS results to those of a large 
(N = 1496) EWAS investigating the association between 
hepatic fat and DNAm in blood [14]. Their test statis-
tics showed a correlation of r = 0.61 with the results 
of our primary analysis (Fig. 5B), and r = 0.28 with the 
results of our secondary analysis (Additional file  1: 

Fig S7B). These correlations support a partially shared 
DNAm signature of the two related NAFLD pheno-
types, fibrosis and hepatic fat.

Inflammation‑related EWAS test statistics in blood are 
associated with liver fibrosis‑related DNA methylation
Because NAFLD phenotypes including fibrosis sever-
ity [25] and hepatic fat [26] have previously shown mild 
association with levels of the inflammatory marker 
C-reactive protein (CRP), we compared our results 
to those of a large (N = 8863) EWAS investigating the 

Fig. 5  Comparisons with other analyses. A Effect sizes from our primary analysis compared to previous analyses. NASH-related EWAS in liver tissue. 
Test statistics from our primary analysis compared to B an EWAS investigating the association between hepatic fat accumulation. C An EWAS of 
inflammation (C-reactive protein) in blood
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association between CRP and DNAm in blood [27] to 
examine whether our results could reflect an inflamma-
tory signature of DNAm. When comparing their test sta-
tistics to ours, we observed a correlation of r = 0.59 with 
our primary analysis (Fig. 5C) and r = 0.28 with our sec-
ondary analysis (Additional file 1: Fig S7C). The similar-
ity of these correlations to the correlations observed with 
the hepatic fat DNAm signature suggests that inflamma-
tion may contribute to the DNAm signatures of NAFLD 
and related phenotypes.

Associations between fibrosis‑related DNA methylation 
and gene expression are consistent with trans‑regulation
Association analysis of DNAm at the seven EWAS CpG 
sites compared to gene expression measured using RNA-
seq was conducted using the R Bioconductor package 
DESeq2 [28]. Each of the fibrosis-related CpG sites was 
associated with differential gene expression of 14–202 
genes (p < 3.2 × 10–6; Fig.  6). While most of the tran-
scripts associated with DNAm at a single CpG site, some 
genes had significant associations with multiple CpG 
sites including nine genes with a significant association 
with DNAm at six of the CpG sites. Genes whose expres-
sion significantly associated with DNAm in at least four 
of the seven fibrosis-related CpG sites are listed in Addi-
tional file  1: Table  S3. CpG sites and their associated 
genes were mostly located on different chromosomes, 
and all of them were separated by > 4  Mb, which may 
indicate a trans-acting effect (Additional file 1: Table S4).

We performed a separate GO analysis for each set 
of significant genes associated with CpG sites identi-
fied in Fig. 6. The gene sets corresponding to two of the 
CpG sites had significant GO terms (Additional file  1: 
Table  S5). Twelve GO terms specifically mention mor-
phogenesis. Curiously, six of the 12 terms were specific to 
heart morphogenesis. There were several other GO terms 
corresponding to processes involved in cardiovascular 
development.

We also performed a GO analysis to investigate 
whether the set of genes that associated with ≥ 3 NAFLD-
related CpG sites were enriched for biological processes 
(Additional file  1: Table  S6). Although no terms were 
significant, the term with the lowest p value was positive 
regulation of epithelial differentiation, which was one of 
the cell types we previously observed to change with dis-
ease progression based on EpiDISH estimates.

DNA methylation is highly predictive of fibrosis
To assess whether DNAm can predict disease stage, we 
performed elastic net regression with tenfold cross-vali-
dation on an initial training set of DNAm data from 225 
samples to tune hyperparameters α and λ, with the 100 
remaining samples reserved for the independent test set. 
Elastic net regression adds the hyperparameters to mini-
mize the size of all coefficients, including minimizing to 
zero and dropping predictor variables to avoid large esti-
mated coefficients due to relatively fewer samples than 
input predictors or variables. As potential predictors in 
the model, we included the 15,000 most significant fibro-
sis-related CpG sites (p < 3.2 × 10–40) from the covariate-
adjusted linear regression model. Our resulting model 
included 28 CpGs (Additional file  1: Table  S7) and had 
a test accuracy of 94% with a sensitivity of 93.1% (27 of 
29 true positives) and a specificity of 94.4% (67 of 71 true 
negatives) (Table  4). The prediction score provided by 
our model was highly correlated with fibrosis in our test 
set (r = 0.846, Fig. 7).

Additional file  1: Figure S8 shows that the prediction 
score was associated with estimated proportions of every 
cell type, except for monocytes. To assess whether our 
predictive power mainly reflected differences in cell-type 

Fig. 6  Number of genes with a significant association with DNAm 
across the 7 NAFLD-related CpGs

Table 4  Prediction of elastic net model across the four observed 
grades of NAFLD

Hyperparameters: α = 1, λ = 0.025

Predicted healthy Predicted 
fibrosis

Grade 0 67 4

Grade 3 0 12

Grade 3/4 1 10

Grade 4 1 5
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proportions, we also performed an elastic net regression 
with tenfold cross-validation using EpiDISH-estimated 
cell-type proportions and observed an accuracy of 79%. 
This indicates that a model tuned using raw DNAm 
has greater potential as a biomarker of NAFLD fibrosis 
than a model based simply on the estimated cell-type 
proportions.

Discussion
Most studies of DNAm in human NAFLD have been 
focused on candidate CpG sites and have analyzed pre-
fibrotic stages of NAFLD using a restricted number 
of samples. We performed an EWAS of severe fibro-
sis in NAFLD with a larger sample size (n = 325) than 
has yet been reported. In comparison with our EWAS 
results to those from EWAS of NAFLD and hepatic fat, 
we observed high concordance between results. Since 
hepatic fat accumulation is a phenotype related to 
NAFLD, this comparison may indicate that DNAm regu-
lates the same genes in both blood and liver throughout 
NAFLD pathogenesis. The observed high concordance 
between both our subgroup analyses and our results and 
previously published findings further suggests that the 
observed DNAm signature of fibrosis is robust.

Interestingly, our EWAS results in liver tissue were 
positively correlated with results from an inflammation-
related EWAS in blood. Association between DNAm 
signatures of NAFLD fibrosis and CRP is consistent with 
previous work that reported increased CRP levels in 
NAFLD patients [25, 26]. These results may suggest that 
the DNAm signature associated with fibrosis partially 
reflects increased inflammation or that the same inflam-
mation-related genes regulated by blood DNAm are also 
regulated by liver DNAm in NAFLD.

A well-known issue in blood-based EWAS is that dif-
ferent components of whole blood often have distinct 
DNAm profiles [29, 30]. Because cell-type composi-
tion often differs between disease states, it is not always 
apparent whether an association detected in an EWAS 
reflects a true difference in DNAm or merely a differ-
ence in cell-type composition. There is no one-size-fits-
all method for correcting for cell-type composition in 
EWAS analyses, and as Teschendorff and Zheng [29] 
point out, the best method to address this issue may 
depend on the tissue type and phenotype being inves-
tigated. When investigating the relationship between 
DNAm in liver and NAFLD fibrosis, cell composition is 
of particular importance considering its critical role in 
NAFLD pathogenesis, including the differentiation of 
hepatic stellate cells to myofibroblasts and infiltration 
of immune cells [31]. To account for cell composition 
in our primary analysis, we employed a reference-free 
method [32] that estimates and adjusts for latent fac-
tors in high-dimensional data. Using this approach, we 
observed seven hypomethylated CpG sites. For compari-
son, we observed tens of thousands of associated CpG 
sites in unadjusted linear models (257,825 sites) or in 
those adjusted for the cell-type proportions estimated via 
EpiDISH (58,686 sites). The reduced number of signifi-
cant results in the primary analysis compared to the anal-
ysis with EpiDISH-estimated cell types may indicate that 
the cellular heterogeneity was not adequately captured by 
the reference used. Reference-free methods are capable 
of fully adjusting for genomic inflation. In contrast, a ref-
erence-based method can adequately adjust for genomic 
inflation only if the reference sets fully capture the dis-
tinct DNAm signatures for each cell type. This task can 
be challenging if a tissue has many cell subsets each with 
distinct DNAm signatures. For example, Diedrich et  al. 
[33] observed decreased frequencies of CD8+ T cells, 
Vd2+γδ T cells, and CD56bright NK cells, but increased 
frequencies of Vδ2−γδ T cells and CD56dim NK cells in 
liver samples in NAFLD patients compared to controls. 
Moreover, complex patterns underlie the NAFLD-related 
cell differentiation and migration, which could affect the 
accuracy of a method attempting to deconvolute cell 
types. Krenkel et al. [22] found that myofibroblasts split 
into functionally distinct heterogeneous populations of 
cells in fibrosis-induced mice, both in vivo and in vitro. 
Furthermore, a study investigating transcriptomes in 
100,000 human cells found that cirrhotic human liver 
tissue is characterized by a pro-fibrogenic subpopula-
tion of macrophages, as well as endothelial cell subsets 
that enhance the transmigration of leukocytes [21]. Thus, 
one of the limitations of this study is that cell composi-
tion is a potential confounder in epigenome-wide asso-
ciation studies, particularly when the DNAm is extracted 

Fig. 7  Prediction scores are highly correlated with NAFLD disease 
stage in independent test data
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from composite tissues. Because there is not yet a widely 
agreed upon method to adjust for cell composition, we 
performed our primary analysis adjusted for latent con-
founders, followed by a secondary analysis adjusting for 
EpiDISH-estimated cell types.

Nevertheless, our comparison with the results from a 
recent EWAS of hepatic fat and blood DNAm [14] sug-
gests that our inclusion of latent confounders was cor-
recting for cell composition. We observed a significant 
correlation between the two studies; notably, the results 
from the hepatic fat EWAS showed a much higher cor-
relation (r = 0.61 compared to r = 0.28) with our primary 
analysis adjusted for latent confounders than with our 
secondary analysis (Fig.  5B). Considering that we are 
investigating related phenotypes (hepatic fat accumula-
tion vs NASH fibrosis) in distinct tissues (blood vs liver), 
this increase in correlation may indicate that the refer-
ence-free primary analysis is successfully adjusting for 
cell composition.

As a complement to DNAm, single-cell RNA sequenc-
ing (scRNA-seq) has the potential to measure cell com-
position at a higher resolution and could facilitate greater 
elucidation of the relationship between NAFLD fibrosis, 
cellular composition, and DNAm. Many methods have 
been developed to utilize scRNA-seq data to cluster 
cells into their respective cell types [34, 35]. Such meth-
ods could potentially be combined with DNAm stud-
ies considering that a previous study has been able to 
capture RNA-sequencing data and bisulfite-sequencing 
data within the same cells [36]. However, there are cur-
rently many more methods that utilize scRNA-seq data 
to cluster cells into their respective cell types than there 
are ways to perform similar clustering using single-cell 
DNAm data. It may be possible to infer cell type to a high 
accuracy from single-cell DNAm data alone considering 
that DNAm profiles can be specific to cell lineage [37]. 
A method called RETrace estimates cell-type proportions 
from DNAm measured using single cell reduced repre-
sentation bisulfite sequencing [38].

We performed gene ontology analysis on both the 
EWAS results and downstream RNA-seq results, and 
while there were no significant GO terms in the pri-
mary analysis, GO terms with the lowest p values 
were related to apoptosis and morphogenesis, both 
of which occur in NAFLD [39, 40]. Based on the GO 
analysis of genes associated with ≥ 4 CpG sites (Addi-
tional file  1: Table  S5), some of the top 35 GO terms 
(0.05 < FDR < 0.1) corresponded to processes involved in 
NAFLD fibrosis, including three terms corresponding 
to apoptosis and two terms corresponding to epithelial 
cell differentiation. The most significant GO term cor-
responded to B cell receptor transport. Although the 
role of B cells in NAFLD is not as well-characterized 

as other immune cell types, recent work suggests this 
cell type is involved in hepatic fat accumulation [41]. 
Considering this GO analysis was performed on genes 
associated with DNAm at multiple CpG sites, it is pos-
sible that these biological processes involved in NAFLD 
are orchestrated via the coordinated regulation of gene 
expression across multiple CpG sites.

Our elastic net regression model demonstrates that 
DNAm may have potential as a biomarker to diagnose 
NAFLD. Our model was able to predict NAFLD fibrosis 
with a 94% accuracy in our test set with a sensitivity of 
93.1% and a specificity of 94.4%. A potential drawback 
of our model is that it was performed in liver tissue, 
which is relatively invasive to obtain, especially com-
pared to blood. Thus, a limitation of this analysis is that 
we were unable to perform it on blood-based DNAm, 
which would be a less-invasive candidate tissue for a 
noninvasive diagnostic tool. However, results from our 
primary and secondary analyses were strongly associ-
ated with results from previous work investigating 
blood DNAm related to hepatic fat accumulation [14]. 
These results suggest that our model could potentially 
predict NAFLD fibrosis in blood DNAm. Circulat-
ing DNAm has been suggested as a potential nonin-
vasive biomarker of disease severity for NAFLD [42, 
43]. Hardy et al. [10] observed an association between 
plasma DNAm in the PPARγ gene promoter and sever-
ity of fibrosis in 26 NAFLD patients, ranging from mild 
(F0–F2) to severe fibrosis (F3–F4), and reported that 
an optimal cutoff of 81% DNAm was able to separate 
NAFLD patients with mild versus severe fibrosis with 
a sensitivity of 83% and a specificity of 93%, though 
prediction accuracy was not assessed in an independ-
ent dataset. The same research group also observed an 
association between DNAm and fibrosis in the PPARγ 
promoter in a Turkish cohort [44]. Using DNAm from 
blood leukocyte samples, Wu et  al. [15] also searched 
for optimal cutoffs in several genes to separate NASH 
patients from NAFLD patients with simple hepatic ste-
atosis. However, to date, the accuracy of DNAm to pre-
dict NAFLD disease state has not been assessed in an 
independent dataset.

Here, we investigated the DNAm profile of advanced 
fibrosis with approximately twice as many CpG sites and 
more than three times the number of samples compared 
to previous work. Using the DNAm data, we showed 
that estimated levels of epithelial cells decrease, while 
levels of immune cells increase, with fibrosis severity, 
suggesting that shifts in cell composition may partially 
explain changes in DNAm observed across fibrotic stage. 
In addition to contributing to a better understanding of 
the underlying biology of NAFLD fibrosis, we created a 
DNAm-based model capable of predicting fibrotic stage 
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with very high accuracy. Overall, our investigation shows 
that DNAm provides information that is not only useful 
for understanding the underlying biology of NAFLD, but 
may also serve as a clinical tool capable of independently 
diagnosing fibrosis.

Methods
Study participants
Liver wedge biopsies were intraoperatively obtained 
from individuals enrolled in the Bariatric Surgery Pro-
gram at the Geisinger Clinic Center for Nutrition and 
Weight Management and histologically evaluated using 
NASH CRN criteria as described [45]. Patients with 
histologic or serologic evidence for other chronic liver 
diseases were excluded from this study. Both medical 
history and histological assessment excluded individu-
als with clinically significant alcohol intake and drug 
use from participation in the bariatric surgery program. 
Clinical data including demographics, clinical meas-
ures, ICD-9 codes, medical history, medication use, 
and common laboratory results were available for all 
study participants as described previously [46].

DNA methylation analysis
Frozen liver biopsy specimens were minced and lysed 
using the Bullet Blender Bead Lysis kit (Next Advance; 
Troy, NY). Liver genomic DNA was extracted with the 
ALLprep DNA/RNA Mini Kit (Qiagen; Valencia, CA) 
and quantified using the Qubit system (ThermoFisher 
Scientific; Waltham, MA). Whole genome DNAm pro-
filing was performed using the Infinium MethylationE-
PIC BeadChip kit (Illumina; San Diego, CA). We used 
the EZ DNA Methylation Kit (Zymo Research; Irvine, 
CA) for sodium bisulfite conversion of DNA, and 
bisulfite-treated DNA was fragmented and hybridized 
to the bead chips. Bead chips were scanned and imaged 
with the iScan system (Illumina). DNAm levels for each 
CpG residue were estimated as the ratio of the meth-
ylated signal intensity over the sum of the methylated 
and unmethylated intensities at each locus.

DNA methylation data processing
We performed background correction using the pre-
processNoob function with default settings in the 
R package minfi [47, 48]. We then removed samples 
with > 5% missingness and CpGs with > 5% missingness, 
as well as CpGs with a detection p value > 0.001 using 
the cpg.qc() function in the R package CpGassoc [49].

We performed several diagnostic tests to check for 
outliers or potential sample swaps. To check for sam-
ple swaps, we computed DNAm-inferred age [50] and 

DNAm-inferred sex on the samples. We then regressed 
chronological age on the DNAm-inferred age and 
removed any samples whose residuals exceeded 15 
(indicating a roughly 15-year difference in DNAm-pre-
dicted age vs. recorded age, and thus a possible sample 
swap). We also excluded any samples whose observed 
sex differed from DNAm-inferred sex.

We used principal components analysis (PCA) on 
the matrix of DNAm β-values to check for outliers and 
assess concordance between technical replicates. Inten-
tional duplicates were included for multiple samples 
including one technical replicate derived from a single 
sample with 8 runs, and 11 samples each with 2 dupli-
cate runs. After removing all potential outliers/sample 
swaps, we averaged the β values for each CpG site for 
the replicates and duplicates within their respective 
samples.

Estimation of cell‑type proportions
We used EpiDISH, a reference-based method of esti-
mating cell-type proportions based on genome-wide 
DNAm data [24] to estimate proportions of each cell 
type. EpiDISH uses two non-overlapping references to 
estimate cell-type proportions. The first reference ena-
bles estimation of proportions of fibroblast cells, epithe-
lial cells, and immune cells, while the second reference 
allows further deconvolution of the immune cells into 
NK cells, B cells, and monocytes. We performed analyses 
using both references.

Epigenome‑wide association analyses
For our primary analysis, we performed an epigenome-
wide association study (EWAS) using the R package 
CATE [32] using the robust regression adjustment 
method with 2 latent confounders to allow for adjust-
ment of unobserved confounders including technical 
factors and variation in cell-type proportions. DNAm 
β values were modeled as the dependent variable, while 
fibrosis status (yes/no) was the independent variable of 
interest with age, sex, and BMI included as covariates. 
To further interpret and assess robustness of our results, 
we also performed several secondary sensitivity analyses, 
including a similar EWAS where NAFLD patients with 
no fibrosis (F0) were compared to those with cirrhosis 
(F4) only.

For comparison to our primary analysis that adjusted 
for latent confounders, we performed a secondary analy-
sis considering an alternative model that directly adjusted 
for potential confounders as covariates. For this analy-
sis, we used the R package CpGassoc to fit mixed effects 
linear models with DNAm β values as the dependent 
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variable, fibrosis status as the independent variable, and 
age, sex, BMI, and cell-type proportions as covariates, 
and chip ID as a random effect. For all analyses, we used 
a Bonferroni correction ( p <

0.05
839,596

 ) to correct for the 
number of CpG sites tested.

Overlap of NAFLD‑related DNAm with enhancers
We investigated the overlap of CpGs with the NAFLD-
related DNAm in the primary analysis to an annota-
tion of enhancers [51]. In addition to reporting on the 
overlaps with enhancers, we also reported on any genes 
linked to those enhancers.

Enrichment analyses
We used the R/Bioconductor package missMethyl to test 
whether fibrosis-related CpG sites were enriched for bio-
logical pathways [52]. We performed a separate enrich-
ment analysis for each EWAS performed above. To test 
for enrichment of genes whose expression associated 
with DNAm at NAFLD-related CpG sites, we used the 
GOStats R/Bioconductor package [53].

Comparisons with previous analyses
To investigate the concordance of fibrosis-related DNAm 
with previous work, we compared the effect sizes of our 
EWAS analyses (both the primary and secondary analy-
ses) to those reported in a previous EWAS of NASH in 
liver samples [13]. We also compared our results to a 
large EWAS of hepatic fat based on 1496 blood samples 
[14]. Finally, we compared our findings to a previous 
study investigating genome-wide inflammation-related 
DNAm based on a discovery cohort of N = 8863 [27]. 
For all of these comparisons, we compared test statistics 
from our primary and secondary analyses to previously 
published test statistics by calculating Pearson’s correla-
tion coefficient to assess similarity of direction and mag-
nitude of effects.

Comparison of gene expression and DNA methylation
RNA-seq was performed to measure genome-wide gene 
expression in 56 of the 325 individuals in the EWAS as 
described [54]. We first aligned paired-end RNA-seq 
fastq files to the hg38 build of the human genome. Genes 
with fewer than 10 reads in ≥ 14 samples were excluded 
from the analysis. We then used the R Bioconductor 
packages Rsamtools [55] and Genomic Ranges [56] in 
the hg38 build of the human genome. We used the same 
hg38 gene annotation file (Homo_sapiens.GRCh38.87.
gtf ) to build the STAR genome index and the count 
matrix. Using the DESeq2 package [28], we tested for 

an association between gene expression and DNAm, 
where read counts for each transcript were modeled as 
a function of CpG-specific DNAm, controlling for sex, 
age, BMI, and estimated cell-type proportions using 
both EpiDISH references. We used a Bonferroni cutoff 
( p <

0.05
15,414

 ) to correct for multiple testing.

Elastic net regression model to predict disease status 
in NAFLD
To predict fibrosis status, we performed an elastic net 
regression with tenfold cross-validation using the glmnet 
and caret packages in R [57]. For potential predictors, we 
used DNAm from the top 15,000 NAFLD-related CpGs 
from the linear model unadjusted for cell types. The out-
come variable was fibrosis disease status (yes/no).
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