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Abstract 

Background:  There are no prior reports that compare differentially methylated regions of DNA in blood samples 
from COVID-19 patients to samples collected before the SARS-CoV-2 pandemic using a shared epigenotyping plat-
form. We performed a genome-wide analysis of circulating blood DNA CpG methylation using the Infinium Human 
MethylationEPIC BeadChip on 124 blood samples from hospitalized COVID-19-positive and COVID-19-negative 
patients and compared these data with previously reported data from 39 healthy individuals collected before the 
pandemic. Prospective outcome measures such as COVID-19-GRAM risk-score and mortality were combined with 
methylation data.

Results:  Global mean methylation levels did not differ between COVID-19 patients and healthy pre-pandemic 
controls. About 75% of acute illness-associated differentially methylated regions were located near gene promoter 
regions and were hypo-methylated in comparison with healthy pre-pandemic controls. Gene ontology analyses 
revealed terms associated with the immune response to viral infections and leukocyte activation; and disease ontol-
ogy analyses revealed a predominance of autoimmune disorders. Among COVID-19-positive patients, worse out-
comes were associated with a prevailing hyper-methylated status. Recursive feature elimination identified 77 differen-
tially methylated positions predictive of COVID-19 severity measured by the GRAM-risk score.

Conclusion:  Our data contribute to the awareness that DNA methylation may influence the expression of genes that 
regulate COVID-19 progression and represent a targetable process in that setting.
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Introduction
More than 3 million deaths worldwide have been attrib-
uted to COVID-19, primarily arising from acute respira-
tory distress syndrome (ARDS). The clinical course of 
SARS-CoV-2 infection is highly variable, ranging from 

an asymptomatic state to life-threatening infection [1–
4]. Recent evidence indicates that disease severity pre-
dominantly depends on host factors [5–10], supporting 
the need to better resolve individual responses at the 
molecular level. We and others have recently described 
the multi-omic profile of COVID-19 patients in asso-
ciation with disease severity [10–12]. Analysis of mRNA 
sequencing from circulating leukocytes identified multi-
ple expressed genes associated with worse outcomes [10, 
11, 13].

Because almost every cell in an individual shares iden-
tical genomic sequence, distinct cellular phenotypes are 
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established and maintained by epigenetic mechanisms 
[14, 15], including DNA, histone and chromatin modifi-
cations and non-coding RNA expression that affect the 
chromatin landscape [16]. Although DNA cytosine meth-
ylation at 5′–C–phosphate–G–3′ (CpG) sites is pervasive 
in the genome and is considered relatively stable [15–18], 
it is highly sensitive to age and environmental factors [16, 
19–23]. However, CpG rich regions (CpG islands) in gene 
promoter regions of actively transcribed genes are typi-
cally hypomethylated and selective hypermethylation of 
key cytosine residues may repress gene transcription by 
modifying transcription factor accessibility [16]. Moreo-
ver, methylation of cytosine residues outside the context 
of CpG sites may also affect gene transcription [16]. Crit-
ically ill patients exhibit altered circulating blood DNA 
methylation profiles [24, 25]. Epigenetic marks affect 
gene expression profiles and increase individual vulner-
ability to viral infections [26]. For example, modulators 
of host–pathogen interactions including interferons are 
epigenetically regulated [27, 28], and DNA methyla-
tion has been shown to underpin antigen-presentation 
following MERS-CoV infection [27–29]. To date, no 
methylomes of samples from COVID-19 patients have 
been compared to pre-pandemic sample sources, or to 

samples from patients with non-COVID-19 respiratory 
illness using a shared epigenotyping platform and facility. 
Moreover, it is currently unknown whether patients with 
worse outcomes and distinct transcriptomes [11, 30, 31] 
may be further distinguished by patterns of differential 
methylation. These data carry strong potential to illumi-
nate mechanisms underlying COVID-19-associated gene 
expression and outcomes [32, 33], and may facilitate the 
identification of sub-phenotypes likely to benefit from 
specific interventions [34–36]. For example, immune-
modulating drugs such as corticosteroids, that are benefi-
cial in COVID-19 patients [7, 37–39], interact with gene 
expression-response elements throughout the genome. 
Resolution of the differential methylome in COVID-19 
patients offers potential insights into COVID-19 patho-
genesis, susceptibility, diagnosis and prognosis.

Accordingly, we conducted a prospective cohort 
study involving 124 consecutive patients with and with-
out COVID-19 diagnosis who were admitted to Albany 
Medical Center in Albany, New York. Thirty-nine healthy 
patient samples collected before the COVID-19 pan-
demic characterized with an identical epigenotyping 
platform provided reference methylomes (Fig.  1). We 
hypothesized that: (1) DNA methylation regions would 

Fig. 1  Diagram of the entire cohort involved in study: Notice that while the hospitalized patients’ cohort contributed 128 patients, only 124 were 
part of the analyses due to inadequate quality of 4 samples; see diagram and details in the text
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differ in patients with COVID-19 diagnosis in compari-
son with pre-pandemic healthy control individuals; (2) 
DNA methylation regions would differ in patients with 
COVID-19 diagnosis in comparison with patients with 
respiratory illness of similar magnitude not caused by 
COVID-19; and 3) COVID-19 severity reflected by clini-
cally validated outcome measures [40], would be associ-
ated with distinct patterns of DNA methylation in blood.

Results
Sample cohort and experimental design
From 6 April 2020 through 1 May 2020, we collected 
blood samples from 128 adult patients admitted to the 
Albany Medical Center in Albany, NY for moderate to 
severe respiratory failure presumably related to infec-
tion with SARS-CoV-2 (Fig. 1). In addition to acquisition 
of various clinical data (Table  1), a 10  ml blood sample 
was obtained at the time of enrollment. Patients who 
later tested positive (N = 102) and negative (N = 26) for 
SARS-CoV-2 infection were assigned to the COVID-19 
and non-COVID-19 groups, respectively (see “Methods” 
for enrollment details). Females comprised 37.3% and 
50.0% of the COVID-19 and non-COVID-19 patients, 
respectively. The average age of patients was similar: 
60.5 (50.5–74.8) and 62 (50–74) years in the COVID-19 
group (females and males, respectively; p value = 0.28) 
compared the non-COVID-19 patients: 59.5 (49–75) 
and 68.2 (63–82) years, (females and males respectively; 
p value = 0.09). The average number of days hospitalized 
before study enrollment was 3 and 1 for the COVID-19 
and non-COVID-19 patients, respectively (Table  1). To 
identify DNA CpG methylation changes associated with 
COVID-19, we compared DNA methylation data from 
COVID-19 patients (N = 102) to DNA methylation data 
from a previously published study [21] that profiled 
DNA methylation from whole blood of healthy partici-
pants (N = 39) that was collected at least 3  years before 
the COVID-19 outbreak. An identical epigenotyping 
platform and facility (Genuity Science, Inc. Boston, MA) 
was used to obtain the methylation data. To test whether 
COVID-19 severity correlates with patterns of differen-
tial DNA methylation in blood, we used the COVID-19 
specific GRAM risk score [40] and patient mortality. 
Other clinical data included: Acute Physiologic Assess-
ment and Chronic Health Evaluation (APACHE II) score, 
Sequential Organ Failure Assessment (SOFA) score [41], 
SAPS II score, Charlson Comorbidity Index score [42], 
mechanical ventilation physiological parameters, need 
for admission to intensive care, and C-reactive protein 
(CRP), D-dimer, ferritin, lactate, procalcitonin, fibrino-
gen, and other levels (Table  1). APACHE II, SOFA, and 
SAPS II severity scores assigned to patients in intensive 
care, exhibited similar distributions between the groups 

(Table  1). In keeping with previous reports, males pre-
dominated in the group requiring intensive care (66 vs. 
33%) and mechanical ventilation (46.9 vs. 34.2%, Addi-
tional file 1: see clinical data Table S1).

DNA methylation in blood is altered in COVID‑19 patients
Average DNA methylation abundance across the entire 
genome did not significantly differ between COVID-
19 patients (58.8%) and healthy pre-pandemic controls 
(58.7%), indicating that no global changes in methylation 
abundance are related to COVID-19 (Fig. 2A). To inves-
tigate locus-specific DNA methylation levels linked to 
COVID-19, methylome data were subjected to a linear 
regression model that accounted for batch effects, sex, 
and leukocyte proportions for downstream analyses [43]. 
This approach detected 1505 differentially methylated 
regions (DMRs) distributed across the entire genome 
comprising clusters of ≥ 5 CpGs (FDR p value < 0.05; 
Fig.  2B; Additional file  1: Table  S2-1). A total of 416 
hyper-methylated and 1089 hypo-methylated DMRs 
were distinguished, indicating that a majority of differen-
tially methylated regions are hypo-methylated, as noted 
in a recent report of 7 COVID-19 positive patients [10]. 
A majority of DMRs (~ 75%) reside within or near gene 
promoter regions, denoting a potential role in gene reg-
ulation [16] (Fig.  2C). The 1,505 DMRs were annotated 
to 1,680 unique genes, indicating that several DMRs 
spanned two contiguous genes that harbor alterations in 
DNA methylation in the presence of SARS-CoV-2 infec-
tion. To test the relationships between the DMR-associ-
ated genes, we conducted a gene ontological analysis and 
found significant enrichments of immune-related terms, 
including immune responsivity, leukocyte activation, 
and defense responses, together with a diversity of rec-
ognized immune function genes (cytokines/chemokines 
and receptors (including IL-10, IL-1β, CXCR2/5/6), 
interferon-stimulated genes (IFIT3, ISG20), and signal 
transduction genes (TRAF2, ZAP70), (FDR p value < 0.05; 
Fig.  2D; Additional file  1: Table  S2-2). A disease onto-
logical analysis of methylation regions that differ between 
COVID-19 patients and healthy pre-pandemic controls 
indicated significant associations of DMR-associated 
genes with autoimmune diseases, including systemic 
lupus erythematosus and rheumatoid arthritis (FDR 
p value < 0.05; Fig.  2E; Additional file  1: Table  S2-1). 
We observed no difference in the gap between chrono-
logic age and “epigenetic clock” age between COVID-19 
patients and healthy pre-pandemic controls, suggesting 
that there is no difference between the two groups in pre-
disposition and resilience to an acute infection known to 
have enhanced severity in the elderly [44, 45] (Additional 
file  2: Figure  1). These findings indicate that differential 
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Table 1  Demographics and baseline characteristics of COVID-19 and non-Covid 19 in ICU and non-ICU setting and healthy controls

Variables COVID-19 Non-COVID-19 Healthy

Total
n = 102

non-ICU
n = 51

ICU
n = 51

Total
n = 26

non-ICU
n = 10

ICU
n = 16

Total
n = 39

Days admitted 
pre-enrollment 
(iqr)*

3.37 (1–5) 2.78 (1–3) 3.96 (1–6) 0.97 (1–1) 0.9 (0.8–1) 0.94 (1–1) N/A

Sex—n (%)

Male 64 (62.7%) 30 (58.8%) 34 (66.7%) 13 (50%) 4 (40%) 9 (56%) 18 (46%)

Female 38 (37.3%) 21 (41.2%) 17 (33.3%) 13 (50%) 6 (60%) 7 (44%) 21 (54%)

Age-year

Mean (IQR)+ 61.3 (50.0–74.3) 59.7 (49.0–80.0) 62.9 (55.0–73.0) 63.8 (52.3–76.8) 60.4 (47.3–74.0) 66 (55.3–80.3) 75.8 (71.9–78.8)

Etnicity—n (%)

White*+ 46 (45.1%) 28 (54.9%) 18 (35.3%) 21 (80.8%) 8 (80%) 13 (81.2%) 35 (89.7%)

Black 11 (10.8%) 5 (9.8%) 6 (11.8%) 4 (15.4%) 2 (20%) 2 (12.5%) 4 (10.3%)

Asian*+ 2 (1.9%) 0 (0%) 2 (3.9%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Hispanic*+ 21 (20.6%) 7 (13.7%) 14 (27.5%) 1 (3.8%) 0 (0%) 1 (6.3%) 0 (0%)

Other*+ 22 (21.6%) 11 (21.6%) 11 (21.6%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

BMI, kg/m2 mean 
(IQR)

30.39 (25.30–
32.24)

29.84 (26.09–
32.37)

30.92 (24.50–
32.05)

30.36 (26.53–
33.10)

27.20 (23.68–
30.38)

32.34 (26.98–
37.67)

28.52 (24.15–
30.40)

Severity indexes (IQR)

Charlson comor-
bidity index*

3.3 (1–5) 3.16 (1–5) 3.49 (2–5) 4.35 (2–6) 3.3 (1–5) 5 (3–7) N/A

APACHEII N/A N/A 21.6 (15–27) N/A N/A 20.6 (12–26) N/A

SOFA N/A N/A 8.2 (6–11) N/A N/A 8.6 (3–11) N/A

SAPSII N/A N/A 51.8 (45–62) N/A N/A 47.6 (33–65) N/A

Biomarkers (IQR)

Ferritin (ng/mL)* 938.9 (301.8–
1203.8)

782.6 (206.0–
934.5)

1076.9 (378.0–
1294.0)

250.5 (80.5–
382.5)

205.3 (58.0–
411.0)

285.7 (92.0–
438.5)

N/A

C-Reactive pro-
tein (mg/L)*

140.9 (52.0–
204.3)

120.6 (44.7–
155.0)

158.9 (61.7–
248.3)

73.8 (20.0–110.2) 34.7 (8.9–56.8) 99.8 (37.8–175.2) N/A

D-dimer (mg/L 
FEU)

11.7 (1.0–12.8) 2.3 (0.6–1.73) 18.6 (1.7–21.6) 5.3 (0.5–4.6) 5.2 (0.4–1.9) 5.5 (0.6–10.2) N/A

Procalcitonin (ng/
mL)

3.2 (0.2–1.8) 1.7 (0.2–1.0) 4.4 (0.3–2.3) 2.1 (0.2–0.7) 2.2 (0.1–3.4) 2.1 (0.3–1.21) N/A

Lactate (mmol/ 
L)*

1.2 (0.9–1.5) 1.2 (0.9–1.4) 1.3 (0.9–1.5) 2.1 (0.9–2.5) 1.2 (0.8–1.5) 2.53 (0.9–3.4) N/A

Fibrinogen (mg/
dL)*

543.6 (413.0–
667.0)

559.3 (420.0–
703.0)

531.7 (391.5–
663.0)

362.3 (257.3–
550.0)

348.0 (256.75–
441.5)

373 (257.3–
572.0)

N/A

Albumin (mg/L)* 2.9 (2.6–3.3) 3.2 (2.9–3.5) 2.7 (2.4–2.9) 3.4 (2.9–3.8) 3.8 (3.4–4.1) 3.19 (2.6–3.8) N/A

Hemogram (IQR)

White blood cells 
(K/uL)

10.8 (6.1–12.5) 7.1 (4.9–8.5) 14.4 (8.4–15.4) 12.7 (7.2–17.3) 8.3 (6.7–9.7) 15.4 (8.2–20.9) N/A

Hemoglobin (g/
dL)*

11.2 (9.7–12.6) 11.6 (10.2–13.0) 10.7 (9.4–12.1) 12.4 (9.9–14.7) 12.8 (10.45–
14.85)

12.3 (9.6–14.5) N/A

Mean corpuscular 
volume (fL)*

87.1 (84.5–93.7) 88.0 (85.6–94.2) 86.2 (82.5–93.0) 92.3 (88.6–95.4) 91.2 (87.2–94.6) 93.0 (89.4–97.8) N/A

Platelet (K/uL)* 266.0 (192.5–
320.5)

269.2 (209.0–
334)

262.8 (187.0–
317.0)

203.5 (151.8–
247.8)

228.1 (163.5–
278.0)

188.2 (127.5–
229.5)

N/A

Neutrophils (%) 76.2 (68.5–86.0) 69.7 (61.0–82.0) 82.8 (80.0–90.0) 77.7 (74.0–87.0) 73.1 (58.8–82.5) 80.5 (79.25–
89.25)

N/A

Lymphocytes (%) 13.8 (5.0–18.5) 19.4 (9.0–26.0) 8.3 (4.0–11.0) 12.7 (6.0–18.0) 16.9 (7.0–26.0) 10.1 (4.3–10.8) N/A

Monocytes (%) 7.1 (4.0–9.0) 8.8 (6.0–11.0) 5.5 (3.0–8.0) 8.0 (4.0–9.3) 7.7 (4.0–10.3) 8.2 (4.0–9.0) N/A

Eosinophils (%) 0.8 (0.0–1.0) 1.1 (0.0–1.0) 0.5 (0.0–1.0) 1.0 (0.0–1.25) 1.8 (0.0–3.3) 0.44 (0.0–1.0) N/A
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patterns of COVID-19 DNA methylation in blood occur 
in the promoter regions of immune-related genes.

DNA methylation in blood is specific to SARS‑CoV‑2 
infection
To identify DNA methylation profiles that distinguish 
concurrently enrolled respiratory patients with and 

without COVID-19, we analyzed data of 128 patients, 
with (N = 102) and without (N = 26) COVID-19 diag-
nosis collected concurrently at Albany Medical Center 
(Fig. 1, Table 1). Four samples (two COVID-19 and two 
non-COVID-19 patients) were removed due to unreli-
able methylation values (Fig. 1) and 95,447 probes were 
removed leaving 770,412 for further analysis. Average 

Table 1  (continued)

Variables COVID-19 Non-COVID-19 Healthy

Total
n = 102

non-ICU
n = 51

ICU
n = 51

Total
n = 26

non-ICU
n = 10

ICU
n = 16

Total
n = 39

Respiratory parameters

PaO2/FiO2 Ratio N/A N/A 161.6 (98–211) N/A N/A 149.4 (73–184) N/A

Positive-end 
expiratory pres-
sure (cmH2O)*

N/A N/A 10.8 (10–12) N/A N/A 6.6 (73–184) N/A

Inspiratory Pla-
teau (cmH2O)

N/A N/A 22.8 (19.7–25.3) N/A N/A 23.9 (19.8–28.8) N/A

Treatment—n (%)

Renal Replace-
ment Therapy

12 (11.8%) 3 (5.9%) 9 (17.6%) 3 (11.5%) 0 (0%) 3 (18.8%) N/A

Hydroxychloro-
quine*

87 (85.3%) 43 (84.3%) 44 (86.3%) 0 (0%) 0 (0%) 0 (0%) N/A

Antibiotics* 98 (96.1%) 47 (92.2%) 51 (100%) 16 (61.5%) 3 (30.0%) 13 (81.3%) N/A

Antiviral* 1 (0.98%) 0 (0%) 1 (1.9%) 0 (0%) 0 (0%) 0 (0%) N/A

IL6-Antagoinist* 4 (3.9%) 1 (1.9%) 2 (3.9%) 0 (0%) 0 (0%) 0 (0%) N/A

Convalescent 
Plasma*

26 (25.5%) 8 (15.7%) 18 (35.3%) 0 (0%) 0 (0%) 0 (0%) N/A

Steroid* 46 (45.1%) 12 (23.5%) 34 (66.7%) 4 (15.4%) 1 (10.0%) 3 (18.8%) N/A

Therapeutic 
Anticoagulation

37 (36.3%) 2 (3.9%) 35 (68.6%) 8 (30.8%) 1 (10.0%) 7 (43.8%) N/A

Comorbidities—n (%)

Smoking history* 18 (17.6%) 11 (21.6%) 7 (13.7%) 10 (38.5%) 1 (10.0%) 9 (56.3%) 0 (0%)

Myocardial infarc-
tion*

11 (10.8%) 7 (13.7%) 4 (7.4%) 8 (30.8%) 2 (20.0%) 6 (37.5%) 0 (0%)

Congestive heart 
failure*

4 (3.9%) 2 (3.9%) 2 (3.9%) 4 (15.4%) 1 (10.0%) 3 (18.8%) 0 (0%)

Peripheral vascu-
lar disease*

1 (0.98%) 1 (1.9%) 0 (0%) 4 (15.4%) 1 (10.0%) 3 (18.8%) 0 (0%)

Cerebrovascular 
accident*

2 (1.9%) 1 (1.9%) 1 (1.9%) 3 (11.5%) 1 (10.0%) 2 (12.5%) 0 (0%)

Dementia 6 (5.9%) 4 (7.8%) 2 (3.9%) 1 (3.8%) 0 (0%) 1 (6.3%) 0 (0%)

Pulmonary 
disease

21 (20.6%) 10 (19.6%) 11 (21.5%) 4 (15.4%) 2 (20.0%) 2 (12.5%) 0 (0%)

Rheumatic 
disease

3 (2.9%) 3 (5.9%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Peptic ulcer 
disease

1 (0.98%) 1 (1.9%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

Diabetes mellitus 36 (35.3%) 15 (29.4%) 21 (41.2%) 6 (23.1%) 2 (20.0%) 4 (25.0%) 0 (0%)

Renal disease 11 (10.8%) 4 (7.8%) 7 (13.7%) 5 (19.2%) 2 (20.0%) 3 (18.8%) 0 (0%)

Cancer (solid) 4 (3.9%) 1 (1.9%) 3 (5.9%) 2 (7.7%) 0 (0%) 2 (12.5%) 0 (0%)

HIV/AIDS 2 (1.9%) 1 (1.9%) 1 (1.9%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)

*Indicates a significant difference between COVID-19 and non-COVID-19 hospitalized groups. +Indicates a significant difference between COVID-19 and healthy 
control groups
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DNA methylation abundance across the entire genome 
did not significantly differ between groups (COVID-
19 patients: 58.5%; non-COVID-19 patients: 58.4%, 
Fig.  3A), indicating no global changes in methylation 
abundance related to COVID-19 status. To investigate 
locus-specific DNA methylation levels linked to SARS-
CoV-2 infection, methylome data were subjected to 
a linear regression model that accounted for age, sex, 
and leukocyte proportions for downstream analyses 
[43]. This approach detected 254 DMRs distributed 
across the entire genome comprising clusters of ≥ 5 
CpGs (FDR p value < 0.05; Fig.  3B; Additional file  1: 
Table  S3-1). A total of 101 hyper-methylated and 153 
hypo-methylated DMRs were identified, indicating that 
COVID-19 patients demonstrate changes in specific 
DNA positions even when compared to patients with 
acute respiratory decompensation due to other causes. 

Mapping the 254 DMRs identified 230 annotated genes, 
including known immune function genes (e.g., IRF7, 
BCL6, MX1, and TNF). A gene ontological analysis 
identified significant enrichment of immune-related 
terms, including defense response to viruses, type I 
interferon signaling pathway constituents, and regu-
lation of viral genome replication (FDR p value < 0.05; 
Fig. 3C; Additional file 1: Table S3-2). Disease ontologi-
cal terms disclosed significant links to other virus-caus-
ing diseases, including influenza and hepatitis C (FDR 
p value < 0.05; Fig.  2D; Additional file  1: Table  S3-3). 
These findings indicate that COVID-19 patients dem-
onstrate an altered blood methylome compared to that 
of patients with respiratory illness arising from other 
causes, and that differences in DNA methylation occur 
at genes specific to COVID-19.

Fig. 2  Differential SARS-CoV-2 DNA methylation between blood samples from patients on hospital admission for COVID-19 compared to blood 
samples from healthy controls before the COVID-19 pandemic. A A box and whisker plot depicts the difference in mean global methylation level 
(y-axis) between COVID-19 patients and healthy controls (x-axis). Each black dot represents the mean methylation level of each participant. These 
results indicate that global mean methylation levels do not distinguish COVID-19 patients from healthy pre-pandemic controls. B A Manhattan 
plot of DNA methylation regions shows the distribution of SARS-CoV-2-associated significantly differentially methylated regions (DMRs) across 
the genome by chromosome number. Hyper-methylated regions are displayed with a positive log10 (p value), and hypo-methylated regions are 
displayed with a negative log10 (p value). DMRs were ascertained as regions having at least 5 consecutive CpGs where > 75% of the CpGs in the 
region had an FDR p value < 0.05, and all were either hyper-methylated or hypo-methylated. This approach identified 1505 DMRs, that are displayed 
above and below the blue lines. Dots alternate colors to depict a change in chromosome. Sex chromosomes were excluded from analysis. These 
results indicate that 1505 DNA regions are differentially methylated within days of SARS-CoV-2 infection. C A pie chart showing the percent 
distribution of DMRs to standard genomic features. 5′UTR = 5′ untranslated region 3′UTR = 3′ untranslated region. In keeping with the known role 
of DNA methylation in regulation of gene expression, a preponderance of DMRs are in gene promoter regions. D Bar graphs of the top ten gene 
ontological (GO) biological processes related to the COVID-19 differentially methylated genes, ordered by statistical significance. The X-axis indicates 
the number of COVID-19 DMR-associated genes that contribute to each GO term. Bar color indicates the FDR P-value using a Fischer test. These 
results indicate that the observed DMRs occur in genes that participate in leukocyte activation and immune responses. E Bar Graph of the top 10 
disease ontological (DO) processes related to the COVID-19-associated differentially methylated genes, ordered by statistical significance. The X-axis 
indicates the number of COVID-19 DMR-associated genes contributing to each GO term. Bar color indicates the FDR P-value using a Fischer test. 
These results indicate that the observed DMRs occur in genes that participate in the pathogenesis of inflammatory and leukocyte disorders



Page 7 of 16Balnis et al. Clin Epigenet          (2021) 13:118 	

COVID‑19 DNA methylation in blood 
and interferon‑stimulated gene (ISG) expression
To narrow our focus on COVID-19 specific DMRs, we 
identified common DMRs from COVID-19 patients 
vs. healthy pre-pandemic control individuals, and 
DMRs from COVID-19 patients vs. patients with non-
COVID-19 respiratory illness. Forty-seven DMRs are 
shared between the two datasets (Fig.  4A; Additional 
file 1: Table S4-1). Twenty-five of the 47 DMRs are closely 
linked to B lymphocyte, T lymphocyte, macrophage, 
and neutrophil functions, including antiviral activity, 
cytokine production, inflammation, and innate and adap-
tive immunity (Additional file 1: Table S4-2). Gene ontol-
ogy and pathway enrichment analysis revealed significant 
enrichment in terms related to host defense responses 
including interferon alpha and beta signaling, defense 
response to organisms, and activation of the immune sys-
tem (Fig. 4B). DMRs were hypo-methylated in promoter 
regions and contiguous sites in 2 prototypical interferon-
stimulated genes, IFI27 and OAS2, (Fig.  4C, D), sug-
gesting possible regulatory effects on gene expression. 
Both previously published RNA sequencing analysis of 
the same samples [11], and RT-qPCR experiments done 
for this project confirm that transcriptional products of 

IFI27 and OAS2 are upregulated in COVID-19 samples 
in comparison with non-COVID-19 control patients 
(Fig. 5A, B).

To gain insight into the effects of DMRs on gene 
expression, we compared DMRs between COVID-19 
patients and patients with non-COVID-19 respiratory 
illness, with differentially expressed genes (DEGs) iden-
tified in our RNAseq analysis of circulating leukocytes 
from the same patients [11]. We identified 36 genes that 
were both differentially methylated and differentially 
expressed in COVID-19 patients. This gene set was highly 
enriched in the gene ontology term: defense response to 
virus (27/36 genes) and a Reactome gene set: interferon 
signaling (19/36 genes) (Additional file 1: Tables S5-1 and 
S5-2). Eight in the interferon pathway were upregulated 
in parallel with the presence of DMRs in their genes. All 
identified DMRs were hypo-methylated with at least 5 
consecutive CpGs near promoter regions (Additional 
file 1: Table S5-1).

DNA methylation in blood and COVID‑19 severity
The GRAM score is a validated outcome measure that 
defines the risk of deterioration in COVID-19 patients 
[40]. We obtained GRAM scores and mortality outcomes 

Fig. 3  DMRs in blood samples from COVID-19 patients on hospital admission are distinct from patients with non-COVID-19 respiratory illness in 
genes that participate in virus-related pathways and disorders. A Box and whisker plot depicts the difference in mean global methylation level 
(y-axis) between COVID-19 and non-COVID-19 respiratory ill patients (1 and 0, respectively; x-axis). Each black dot represents the mean methylation 
level of each participant. These results indicate that global mean methylation levels do not distinguish COVID-19 from non-COVID-19 respiratory 
ill patients. B Circos plot depicts genomic distribution of differentially methylated regions (DMRs) across the human genome. (Outer ring) Each 
chromosome is shown as a different color. The relative chromosome size is represented by the arc bar length. (Inner rings) Hyper-methylated DMRs 
are shown in red and hypo-methylated regions are shown in blue. Sex chromosomes were omitted from the analysis. These results indicate that 254 
DNA differentially methylated regions distinguish SARS-Cov-2 infection from non-COVID-19 respiratory illness. C Bar Graph of the top ten disease 
ontological (DO) biological processes related to the SARS-CoV-2-associted differentially methylated genes, ordered by statistical significance. The 
X-axis indicates the number of SARS-CoV-2 DMR-associated genes that contribute to each DO term. Bar color indicates the FDR p value using a 
Fischer test. These results indicate that the observed DMRs occur in genes that participate in inflammatory and host-defense processes. D Bar 
Graph of the top ten gene ontological (GO) processes related to the SARS-CoV-2-associated differentially methylated genes, ordered by statistical 
significance. The X-axis indicates the number of SARS-CoV-2 DMR-associated genes that contribute to each GO term. BAR color indicates the FDR 
P-value by using a Fischer test. These results indicate that the observed DMRs occur in genes that participate in the pathology of influenza, other 
viral infections and inflammatory disorders
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in our cohort, which allowed comparison of different 
disease burdens with DMRs in blood, and to test the 
potential value of DMR analysis as a predictor of patient 
prognosis. The GRAM-score risk percentage was dichot-
omized into a discrete variable (i.e., low [< 50%] and high 
[> 50%]) and DNA methylation data was regressed on this 
variable in the COVID-19 respiratory patients (N = 100). 
Because the GRAM-risk score has been validated for spe-
cific use in COVID-19 patients [40], only patients with 
COVID-19 were included in the analysis (Table 1). Nine-
teen DMRs with ≥ 3 consecutive differentially methylated 
CpGs were identified, (p value < 0.0001, Additional file 1: 
Table  S7) between patients with low and high GRAM-
risk scores. In total, the DMRs comprised 145 differen-
tially methylated positions (DMPs), of which there were 
84% located at gene promoter regions and ~ 65% were 
hyper-methylated (Fig.  6A). Evaluation of mortality as 
an outcome measure identified 18 DMRs comprising 113 
DMPs, 62% of which were hyper-methylated.

To identify specific DMPs that best define GRAM-
score risk, the DNA methylation levels at these 145 
GRAM-risk score-associated DMPs were subjected to a 
recursive feature elimination analysis [46]. This algorithm 

Fig. 4  Overlap of COVID-19 DMR-associated genes in blood. A Venn diagram of the overlap of COVID-19 DMR-associated genes identified by 
comparison of DMRs between COVID-19 patients and healthy pre-pandemic controls, and DMRs between COVID-19 and non-COVID-19 respiratory 
illness patients on admission. Asterisks indicate overlap that is significant at p value < 0.001. Twenty-five of the 47 overlapping genes with DMRs 
encode proteins that participate in leukocyte viral defense, inflammation and immune responses. B Ontology analysis of the 47 overlapping genes 
with DMRs indicate a role in viral defense mechanisms. C Relative positions of COVID-19-associated DMRs in the promoter region of OAS2 (C-1) and 
IFI27 (C-2) with a schematic depicted for each gene. The relative positions of probes measuring methylation levels of CpG sites annotated to each 
gene with their genomic 5′-3′ positions are provided (inset panel; x-axis) versus the -log10 of the p value (y-axis). The p value < 0.05 is displayed as 
a black dashed line. Probes residing in a COVID-19-associated DMR are shown as hypo-methylation (blue dots) and hyper-methylation (red dots). 
Probes not meeting a p value < 0.05 at the individual CpG level are shown as hollow dots. These results indicate that the DMRs comprise a cluster of 
differentially methylated positions within days of SARS-CoV-2 infection

Fig. 5  Transcriptional expression of prototypical interferon 
stimulated genes (ISGs) -IFI27 and OAS2- correlates with methylation 
status of their gene promoter regions. RNA from circulating 
leukocytes obtained from the same COVID-19 positive and negative 
patients presented in Fig. 4 was used to interrogate expression level 
of two ISGs. A OAS2 and B IFI27 expression levels are significantly 
higher in hospitalized patients with COVID-19, which correlates 
with their gene promoter regions predominant hypomethylation. 
GAPDH was used as a reference gene; see methods for details. **; p 
value < 0.01
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revealed 77 DMPs with methylation levels that distin-
guish COVID-19 severity in a hierarchical cluster analy-
sis (Fig. 6B). These data suggest that worse outcomes are 
associated with hyper-methylation in promoter regions 
and that specific positions throughout the genome may 
potentially correlate with COVID-19 severity.

Discussion
In this prospective cohort study, we tested the hypoth-
esis that COVID-19 patients demonstrate patterns of 
DNA methylation in blood that are different from pre-
pandemic healthy individuals, and from patients with 
respiratory illness who did not have COVID-19. We also 
tested whether worse outcomes in COVID-19 patients 
were associated with DMRs and DMPs in blood.

DNA methylation in blood altered in COVID‑19 patients
In samples obtained within days of acute SARS-CoV-2 
infection, patients exhibit 1089 (72%) hypo-methylated 
regions and 416 (28%) hyper-methylated regions com-
prising 5 or more consecutive differentially methylated 
CpGs in comparison with healthy control blood sam-
ples collected before the COVID-19 pandemic (Fig. 2B). 
A recent report comparing patients with and without 
sepsis of unspecified origin indicates differential meth-
ylation at genes that participate in interferon-gamma-
mediated (IFNγ) signaling, MHCII antigen processing 
and presentation, immunoglobulin production, and cell 

adhesion pathways [47]. In a limited study of 6 patients 
with SARS-CoV-2 infection, 6 DMPs (not DMRs) were 
observed in genes that encode proteins that participate 
in granulopoiesis and B-lymphocyte-to-granulocyte 
trans-differentiation [10]; and a very recent report of a 
larger cohort identifies 44 CpGs in 39 genes that were 
differentially methylated, including genes related to 
interferon response to viral infections [48]. It has also 
been previously reported that viral infections induce 
aberrant methylation patterns in host cells [33, 49]. For 
instance, H5N1 influenza and Middle Eastern respiratory 
syndrome coronavirus (MERS-CoV) infections down-
regulate interferon-stimulated and antigen-presenting 
genes, which are associated with hyper-methylation of 
gene promoter regions in human airway epithelial cells 
in vitro [28, 29]. The large number of DMRs identified by 
the very conservative criteria and inferential comparisons 
used here, and the diversity of their corresponding loci 
and pathways, are surprising in view of the short interval 
from infection to hospitalization in the enrolled patients, 
thereby potentially denoting the role of the methylome 
as a rapid responder to SARS-CoV-2 infection. Interest-
ingly, a very recent report focused on pediatric critical 
illness demonstrates a rapid regulation of DNA methyla-
tion in circulating leukocytes, taking place within the first 
three days of hospitalization [50].

Genes comprising DMRs between patients with 
COVID-19 and healthy pre-pandemic controls include 

Fig. 6  DNA methylation is associated with COVID-19 outcomes. A Volcano plot shows genes associated with dichotomized GRAM-risk scores, 
either hyper-methylated (red) or hypo-methylated (blue). B DNA methylation levels at 77 differentially methylated positions (DMPs) correlate 
with disease severity in COVID-19 patients. DMRs (N = 19) associated with the GRAM-score were identified in COVID-19 patients (N = 100). DMRs 
were ascertained as regions with at least 3 consecutive CpGs where > 75% of the CpGs in the region had a FDR p value < 0.05 and all were either 
hyper-methylated or hypo-methylated. DNA methylation levels of the DMPs (N = 145) residing in the DMRs were subjected to recursive feature 
elimination to identify CpGs that best distinguish GRAM-score risk. Shown is a hierarchical cluster using the DNA methylation data from the 77 
DMPS (see Additional file 1: Table S8), that are shown as a heatmap of the M-values. Low GRAM-score risk (gray) and high GRAM-score risk (black) 
are indicated. These results indicate that DNA methylation levels at these 77 DMPs may be useful as biomarkers of the severity of COVID-19 patients. 
(see Additional file 1: Table S6-1 and S6-2)
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IFN-stimulated genes (ISGs), with well-recognized anti-
viral activity such as IFI27 and OAS2. Differential meth-
ylation of type I IFN pathway genes in specific leukocyte 
subsets is associated with autoimmune disorders includ-
ing Sjogren’s syndrome, Lupus, Grave’s disease, and rheu-
matoid arthritis [51–55], indicating a possible role for 
ISG methylation in the dysregulation of inflammatory 
processes, and autoimmunity as a potential contributor 
to COVID-19 pathogenesis [56, 57]. Much less is known 
about the impact of ISG methylation in blood on the con-
trol of viral infections. Recently, a correlation between 
ISG methylation and the outcome of HIV infection has 
been reported, with hyper-methylation of interferon and 
antiviral genes correlated with improved HIV control 
[58]. In SARS-CoV-2 infection, differential methylation 
and expression of antiviral ISGs may influence viral rep-
lication and spread in leukocyte subsets [59], or contrib-
ute to COVID-19 pathogenesis by altering immune cell 
activation or function. Multiple DMRs reported here 
appear in genes recently found with dysregulated expres-
sion levels in samples from the identical patients [11]. 
As previously described, methylation of CpGs located 
at promoter regions is canonically associated with tran-
scriptional repression [16]. Mechanistically, methylated 
CpGs recruit complexes holding methyl-CpG binding 
domain-containing proteins and other factors that aggre-
gate into multiprotein repressive complexes to silence 
transcription [60, 61]. Of note, while our previously 
reported RNA sequencing analysis [11] and the qPCR 
experiments presented here indicate that expression 
of ISGs, IFI27 and OAS2 is upregulated in COVID-19 
patients, their differential hypo-methylation in gene pro-
moter regions suggests that methylation may contribute 
to their transcriptional regulation. Future studies focused 
on cross-ome trajectory analyses combined with locus-
specific interrogation of DNA methylation will add clar-
ity to this possibility.

DNA methylation in blood and COVID‑19 severity
To determine if disease severity in COVID-19 patients is 
associated with DMRs in blood, we tested the association 
of DMRs with clinical outcomes including the GRAM 
risk score [40] and mortality. We found that worse 
GRAM scores were associated with 19 DMRs compris-
ing 145 differentially methylated positions (DMPs) in 18 
genes. Sixty-three percent of the GRAM-score-associ-
ated DMPs were hyper-methylated. Mortality was asso-
ciated with 18 DMRs comprising 113 DMPs in 17 genes 
(Additional file  1: Table  S9). In this setting, 61% of the 
DMRs were hyper-methylated. Over 84% of the DMRs 
associated with outcomes were located in gene promoter 
regions; notably, promoter hyper-methylation is canoni-
cally associated with transcriptional repression [15, 16, 

18]. Previous research indicates that non-permissive 
(immunosuppressive) transcriptomic states are associ-
ated with worse outcomes in critical illness [30, 62–64]. 
Moreover, protracted COVID-19 is associated with 
blockade of T-cells proliferation [65] and suppression 
of the innate immune system in circulating blood [13]. 
These data suggest that as COVID-19 severity increases, 
promoter-predominant hypermethylation may regu-
late transcriptional repression at critical genes, poten-
tially influencing the pathophysiology of host response. 
Future investigations with animal models will enable 
further elucidation of these pathways, and test whether 
promoter hypermethylation induced by greater sever-
ity downregulates gene expression and is physiologically 
consequential.

Using recursive feature elimination, we identified 77 
DMPs that discriminate clinical outcomes. Given the 
observed epigenetic changes were captured at the time 
of patients’ enrollment, their combined use with other 
biochemical variables may support an accurate predictive 
instrument to guide care before clinical deterioration. 
This instrument may be of value for resource-allocation 
in a pandemic environment with an overwhelmed health-
care system [66]. Future studies based on whole genome 
methylation sequencing will provide the opportunity to 
capture other outcome-associated DMRs and DMPs and 
provide a more comprehensive instrument based on a 
shared principle [11, 67, 68].

Strengths and limitations of this study
While the global RNA transcriptomic profiles in blood 
have been previously reported in sepsis [30], acute res-
piratory distress syndrome [31, 69] and COVID-19 [10, 
11, 13], and there are recently reported small cohorts 
describing blood DNA methylation in COVID-19 [70], 
there are no prior reports that compare differentially 
methylated regions blood samples from COVID-19 
patients to samples collected before the SARS-CoV-2 
pandemic using a shared epigenotyping platform. 
Together, DNA methylation and RNA expression data 
may facilitate improved COVID-19 diagnosis, progno-
sis, and targeted treatments [71]. As well, we provide a 
first large, prospective cohort study that addresses the 
association of COVID-19 blood methylome and patient-
centered outcomes including mortality. Future studies 
will investigate the association of DMRs in blood with 
longer-term outcomes. For example, COVID-19-induced 
DMRs may persist long after acute care, contributing to 
the post-ICU syndrome comprising physical and cogni-
tive dysfunction [72–75]. Recent data indicate that blood 
DNA methylation profiles mediate worse neurocognitive 
development in the pediatric ICU population [25], which 
could be relevant in COVID-19 as well [76, 77].
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Our study has some limitations. First, COVID-19 
patients were enrolled in a single center. Although our 
population is racially diverse, it does not necessarily rep-
licate factors related to geography or population socioec-
onomic status elsewhere. Second, while we enrolled the 
patients near the time of hospital admission, we did not 
control the interval that elapsed between disease onset 
and the blood sampling (Table  1). While most observa-
tional clinical ICU research is based on inception cohort 
studies in which the timeline is arbitrarily defined by 
the moment of patient enrollment [78], the time elapsed 
between admission and enrollment could have an effect 
on the analyzed data. Of note, previous research on the 
transcriptome of patients with sepsis indicated that the 
timing of blood sampling in relation to ICU admission 
was not predictive of the patients’ expression profiles 
[30]. Third, due to the urgency-driven pandemic environ-
ment and the initial lack of formal recommendations by 
medical society guidelines, we had no control of the vari-
ous drugs administered to the patients including azithro-
mycin, hydroxychloroquine, corticosteroids and others, 
which could have impacted the overall COVID-19 data 
generated. Fourth, our study relies on a cross-sectional 
blood sample per patient on admission and must be com-
plemented with longitudinal sampling and trajectory 
analysis to ascertain the dynamics of DNA methylation 
in COVID-19. Lastly, our analysis is based on a high-
capacity chip array which despite contributing valuable 
information, is limited to about 3.4% of the genome [79]. 
Future studies based on whole methylome sequencing 
analysis will assure a more highly resolved database of 
DMRs associated with COVID-19 severity.

In summary, we generated pre- and post-COVID-19 
methylome maps, and have shown that while acute res-
piratory disease causes substantial changes in the DNA 
methylation status leading to a predominantly hypo-
methylated state, COVID-19 infection is associated with 
differentially methylated regions impacting, among oth-
ers, IFN-stimulated genes (ISGs). Using RNA sequenc-
ing analysis from the same patients [11], and confirmed 
with qPCR experiments to interrogate two prototypal 
ISGs, we found that gene promoter regions of over-
expressed transcripts are hypomethylated in COVID-19 
versus non-COVID-19 patients, thereby suggesting an 
epigenetic regulatory mechanism played by CpG meth-
ylation. Moreover, we found that sicker patients exhibit 
a predominantly promoter hypermethylated profile, pos-
sibly suggesting a regulatory role of DMRs in the immu-
nosuppressive gene profile already described in severe 
COVID-19 cases [13]. Finally, using a recursive feature 
elimination algorithm, we identified a limited number 
of DMPs that accurately discriminate clinical outcomes, 

suggestive the potential role of DNA methylation profil-
ing in the early prognostication of COVID-19 patients.

Methodological considerations
The use of the Illumina Infinium MethylationEPIC 
850,000 BeadChip facilitates comparisons of data 
between investigations that employ a shared platform 
comprising sites that span the genome. This approach, 
which predominantly captures circulating leukocytes 
DNA, has been recently used in the intensive care setting 
[25]. However, the array is intrinsically biased by a priori 
selection of regions targeted for interrogation and does 
not incorporate over 24,000,000 additional CpGs amena-
ble to direct sequencing of the entire methylome. While 
use of mixed cell populations in whole blood is of high 
relevance in infectious disease diagnosis and prognosis 
[67], and has supported identification of actionable sub-
phenotypes [34, 35, 71], it does not capture processes 
taking place in other tissue compartments or specific cell 
types relevant to the pathogenesis of the COVID-19 that 
may arise from tissue or cell type-specific DMRs.

Whereas the nucleotide sequence of the genome is 
remarkably stable from conception to death [15, 16], our 
data contribute to the awareness that DNA methylation 
is rapidly dynamic, influences the expression of genes 
that regulate COVID-19 progression [11], and potentially 
modifiable by acute insults which could be reversed by 
targeted interventions [80].

Methods
Cohort characteristics
Human subject enrollment
Albany Medical Center  With approval of the Albany 
Medical College Committee on Research Involving 
Human Subjects (AMC IRB Study No. 5670–20), we con-
ducted a single-center observational study of adult sub-
jects admitted to either the medical floor or the medical 
intensive care unit (MICU) of Albany Medical Center in 
Albany, NY. Enrollment took place between April 6, 2020, 
and May 1, 2020, and follow-up continued until June 15, 
2020. Patients were eligible for enrollment if they were 
older than 18 years and were admitted to the hospital for 
symptoms compatible with COVID-19. Exclusion crite-
ria were imminent death or inability to provide consent, 
which was obtained from the patient or a legally author-
ized representative. Patients were assigned to the COVID-
19 group only after receiving a positive test result via 
nasopharyngeal swab testing using the Abbott Realtime 
SARS-CoV-2 Assay® (Abbott, IL). SARS-CoV-2 test nega-
tive participants were assigned to the non-COVID-19 res-
piratory patient group as controls. The cause of respira-
tory distress in the non-COVID-19 patients is presented 
in Additional file 1: Table S1. Pre-hospital co-morbidities 
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determined using clinical history and hospital documen-
tation were aggregated using the Charlson comorbidity 
index [42]. APACHE II, SOFA, and SAPS II scores were 
used to assess severity of critical illness on ICU admission 
[41]. Sex, age, and other relevant subject data are provided 
in Table 1 and the Additional file 1: Table S1.

Wisconsin Alzheimer’s disease research center  With 
approval of the University of Wisconsin Institutional 
Review Board (UW IRB Study No. 2015-0300), blood 
samples were collected before 2017 from 39 healthy nor-
mal control participants. Participants were recruited from 
the community by advertisements and outreach events, 
and served as healthy normal controls in a Wisconsin 
Alzheimer’s Disease Research Center (WADRC) inves-
tigation [21]. The healthy normal control participants 
complete a yearly study visit consisting of a blood draw, 
medical history questionnaires, psychometric testing, 
a physical exam, and must have no known diseases that 
interfere with study participation over time. Demographic 
details of the healthy normal control participants are pro-
vided in Table 1.

Selection of outcome measures
We analyzed the data with an outcome measure that: (1) 
is able to combine the severity of disease with mortality 
in a single metric; (2) is applicable to both ICU and medi-
cal floor populations; (3) uses a timeframe that accounts 
for longer hospitalizations in COVID-19 patients with 
respiratory failure compared with non-COVID-19 indi-
viduals [3, 81]; (4) accounts for COVID-19 linear deterio-
ration that transitions from mild respiratory compromise 
to respiratory failure, followed by respiratory distress 
requiring mechanical ventilatory support and eventu-
ally death. Thus, we selected the composite outcome 
variable defined by the COVID-19 risk GRAM score 
[40]. Characteristics contributing to the determination 
of the COVID-19 risk GRAM score are shown in Addi-
tional file 1: Table S6-1 and 6-2. To simplify the analysis, 
patients were separated into two groups based on a cal-
culated risk percentage below or above 50%. The second-
ary outcome measure was in-hospital mortality.

Sample collection and storage
At enrollment, blood samples were collected using BD 
EDTA Vacutainers®. Whole blood was then aliquoted 
and frozen at − 80  C degrees for later processing and 
analysis.

DNA isolation and methylation microarray
DNA was isolated from 500µL of frozen whole blood 
using the GeneJET whole blood kit (Thermo Fisher Sci-
entific, K0782) following the manufacturer’s protocols. 

DNA concentration was determined using a Qubit fluo-
rometer (Thermo Fisher Scientific) and normalized to 
20 ng/µL for microarray analysis. Samples were shipped 
overnighted to Genuity Science Inc. (Boston, MA) for 
bisulfite conversion and methylation microarray analy-
sis using the Illumina Infinium MethylationEPIC Bead-
chip array [82]. The shared collection and processing of 
the blood DNA methylation levels from the Wisconsin 
healthy individuals’ cohort (WADRC) was previously 
published [21].

Leukocyte messenger RNA (mRNA) expression determination
Whole blood samples were simultaneously collected 
from all participants, and leukocytes were isolated using 
LeukoLOCK filters (Cat. No. AM1923; Thermo Fisher). 
RNA was then extracted from the filters following the 
manufacturer’s instructions and as previously reported 
[83]. Five hundred nanograms of total RNA was used 
to prepare cDNA using Qiagen RT Master Mix at 42 °C 
(Cat. No. 210215; Qiagen) following the manufacturer’s 
instructions. After RT reaction, 2 µL of cDNA was used 
per qPCR reaction. qPCR was performed on a CFX Con-
nect (Bio-Rad) instrument using SYBR green-based uni-
versal iTaq supermix (Cat. No. 1725125; Bio-Rad) and 
2  pmol primers (IDT). Fold induction was calculated 
using the ΔΔCt method using GAPDH as the reference 
gene. Each sample was assayed in triplicate, and a nega-
tive control was included in each experiment. Primer 
sequences can be found in Additional file 1: Table S10.

Illumina human MethylationEPIC data preprocessing
To identify methylation changes associated with COVID-
19, we compared COVID-19 patients (N = 102) to meth-
ylation data from pre-pandemic participants [21] that 
were enrolled 3 or years before the SARS-CoV-2 out-
break (N = 39). Raw.idat files from all (N = 141) were 
imported to the R environment. R package minfi was 
used to parse and preprocess methylation microarray 
data [84]. The quality of raw data was assessed, and no 
samples were filtered due to high mean detection p value 
(i.e., mean > 0.05). Bisulfite conversion of samples was 
assessed for each sample by density and bean plots, and 
determinations, to assure that the distribution of beta-
values was bimodal with the largest densities being cen-
tered on 0 or 1, and that the majority of data was either 
methylated or unmethylated. All samples were deemed 
to be successfully converted. Leukocyte proportions were 
estimated from methylation signatures, and cell counts 
were extracted for incorporation into models of differ-
ential methylation. Samples were normalized using func-
tional normalization by background and dye correction 
following the normal-exponential out-of-band method 
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[85]. Following normalization, sex prediction was gener-
ated using normalized values.

Two COVID-19 samples were removed due to 
improper sex prediction from the COVID-19 and non-
COVID-19 cohorts each, suggesting unreliable meth-
ylation values from these samples. Probes were removed 
from remaining samples (N = 139) if any of the following 
criteria applied: probes measured methylation on sex 
chromosomes; probes contained or reported methyla-
tion at SNPs; probes measured methylation at CH sites; 
detection p value of a probe > 0.01 for at most one sam-
ple; and probes were known to be cross-reactive. This 
filtering approach removed 99,905 probes through qual-
ity processing, leaving 765,954 for further analysis. Beta-
values and logit M-values from the remaining probe 
set were generated for differential analysis. A one-way 
ANOVA was used to determine significant differences 
between mean beta-values of patients between groups.

To identify methylation changes associated specifi-
cally with COVID-19 versus non-COVID-19 respira-
tory patients, or other variables of interest (i.e., GRAM 
score, and mortality), raw.idat files from the AMC cohort 
(N = 124) samples were imported to the R environment. 
R package minfi was used to parse and preprocess meth-
ylation microarray data [84]. The quality of raw data and 
bisulfite conversion were assessed, leukocyte proportions 
were estimated, and samples were normalized, as above. 
After normalization, sex prediction was generated using 
normalized values. Four samples were removed due to 
improper sex prediction, suggesting unreliable methyla-
tion values for these samples. Probes were removed from 
remaining samples (N = 124) using the criteria as above. 
Filtering removed 95,447 probes through quality process-
ing, leaving 770,412 for further analysis. Beta-values and 
logit M-values were generated for differential analysis. A 
one-way ANOVA was used to determine significant dif-
ferences between mean beta-values of patients between 
groups.

Model selection for differential analysis
Several potential models using available covariates were 
assessed to generate the best fit for the data. To com-
pare COVID-19 (N = 100) samples with pre-pandemic 
samples (N = 39), models accounting for COVID-19 
status (positive vs. negative), age, sex, and estimated 
leukocyte proportions (i.e., granulocytes, monocytes, 
natural killer cells, B lymphocytes, CD8 T lymphocytes, 
CD4 T lymphocytes) were generated. Model selection 
was based on BIC score criterion. Of the tested models, 
a model accounting for COVID-19 status, sex, and leu-
kocyte proportions was preferential and used for down-
stream analyses. Batch effects between microarrays were 
adjusted using ComBat from the R package sva [86]. 

Batch-adjusted beta- and M-values were assessed by the 
R package sva to identify unknown confounders such as 
with other infections or complications. The surrogate 
variables found were adjusted for during model fitting.

To compare COVID-19 respiratory patients (N = 100) 
with non-COVID-19 respiratory patients (N = 24), the 
model selection was performed as above.

When assessing methylation levels associated with 
mortality of COVID-19 patients (N = 100) and GRAM 
score (N = 100), model selection was performed as above. 
Based on BIC criterion, models adjusted for surrogate 
variables using sva were selected for downstream analy-
sis. Two outlier samples were removed from the GRAM 
score analysis because their scores were greater than 3 
standard deviations from the mean.

Detection of differentially methylated regions
R package DMRcate was used for the detection of dif-
ferentially methylated regions (DMRs) [43]. M-value 
matrices were annotated to their chromosomal position, 
and test statistics were generated for variables of inter-
est using models as described above. For comparisons 
of COVID-19 patients versus pre-pandemic healthy par-
ticipants, and COVID-19 patients versus non-COVID 
respiratory patients, DMRs were identified using an FDR 
p value cutoff of 0.05 and a minimum of 5 CpG sites in 
the region. For the comparison of methylation levels to 
GRAM score, and mortality, criteria for DMR identifica-
tion included a p value cutoff of 0.0001 and a minimum 
of 3 CpG sites in the region. Genes annotated to DMRs 
were extracted for downstream ontological analyses.

Ontological analyses
Genes comprising DMRs were assessed for ontological 
analyses of biological processes and diseases using the 
R package clusterProfiler [87]. A listing of background 
genes was generated from all tested regions from DMR-
cate (N = 20,899 genes). Gene symbols were converted to 
ENTREZIDs. Significant terms were determined using 
an FDR p value cutoff of 0.05, comparing differentially 
methylated genes to the background gene list.

Plot generation
Manhattan plot generation used R packages qqman and 
ggplot2. For the pie plot, R package ChIPseeker was 
used to annotate regions [87]. Bar plots of ontological 
terms were generated using the R package clusterPro-
filer. Hypergeometric tests in the R environment were 
used to identify enrichments of gene lists. Custom-
ized Circos plots were generated using the R package 
BioCircos [88]. For heatmap generation of dichoto-
mous GRAM score data, the R package caret was used 
for backward feature selection, starting with a matrix 
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of M-values from all CpGs in identified DMRs from 
the comparison. For model selection, cross-validation 
methodology and 5 iterations using subsets of 1–100 
CpGs were used. Heatmaps were generated using the R 
packages gplots and heatmap.plus.
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