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Abstract 

Background  Current risk models for renal cell carcinoma (RCC) based on clinicopathological factors are sub-optimal 
in accurately identifying high-risk patients. Here, we perform a head-to-head comparison of previously published 
DNA methylation markers and propose a potential prognostic model for clear cell RCC (ccRCC).

Patients and methods  Promoter methylation of PCDH8, BNC1, SCUBE3, GREM1, LAD1, NEFH, RASSF1A, GATA5, SFRP1, 
CDO1, and NEURL was determined by nested methylation-specific PCR. To identify clinically relevant methylated 
regions, The Cancer Genome Atlas (TCGA) was used to guide primer design. Formalin-fixed paraffin-embedded (FFPE) 
tissue samples from 336 non-metastatic ccRCC patients from the prospective Netherlands Cohort Study (NLCS) were 
used to develop a Cox proportional hazards model using stepwise backward elimination and bootstrapping to cor‑
rect for optimism. For validation purposes, FFPE ccRCC tissue of 64 patients from the  University Hospitals Leuven and 
a series of 232 cases from The Cancer Genome Atlas (TCGA) were used.

Results  Methylation of GREM1, GATA5, LAD1, NEFH, NEURL, and SFRP1 was associated with poor ccRCC-specific 
survival, independent of age, sex, tumor size, TNM stage or tumor grade. Moreover, the association between GREM1, 
NEFH, and NEURL methylation and outcome was shown to be dependent on the genomic region. A prognostic bio‑
marker model containing GREM1, GATA5, LAD1, NEFH and NEURL methylation in combination with clinicopathological 
characteristics, performed better compared to the model with clinicopathological characteristics only (clinical model), 
in both the NLCS and the validation population with a c-statistic of 0.71 versus 0.65 and a c-statistic of 0.95 versus 0.86 
consecutively. However, the biomarker model had limited added prognostic value in the TCGA series with a c-statistic 
of 0.76 versus 0.75 for the clinical model.

Conclusion  In this study we performed a head-to-head comparison of potential prognostic methylation markers 
for ccRCC using a novel approach to guide primers design which utilizes the optimal location for measuring DNA 
methylation. Using this approach, we identified five methylation markers that potentially show prognostic value 
in addition to currently known clinicopathological factors.
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of uniformity among the different studies [10, 15]. Par-
ticularly, observed disparities in genomic location of the 
methylation assay are suggested to have implications for 
the development of DNA methylation markers and their 
translation into clinic [16, 17].

To review the current evidence on methylation mark-
ers in RCC, we previously performed a systematic review 
and identified GREM1, RASSF1A, GATA5, LAD1, NEFH, 
SCUBE3, PCDH8, SFRP1, and BNC1 as the most prom-
ising prognostic methylation markers for RCC at the 
moment [15]. We also previously identified a DNA 
methylation marker panel consisting of GREM1, LAD1, 
NEURL, and NEFH that predicts disease outcome for 
ccRCC patients [18].

Despite the fact that these markers, and approximately 
70 other potential prognostic methylation markers for 
RCC, have been published over the last decades [15], a 
direct comparison of the performance of all these mark-
ers is lacking and none of these biomarkers is currently 
used in clinical practice. In this study, we performed a 
head-to-head comparison of the most promising meth-
ylation markers identified in literature using new techni-
cal assays designed to cover the most clinically relevant 
methylated genomic regions [16]. Prognostic value of 
the markers was assessed using multivariable predic-
tion modeling in a series of ccRCC cases derived from 
the prospective Netherlands Cohort Study (NLCS). The 
performance of the final model was further validated in 
non-metastatic ccRCC cases collected from the archives 
of the Department of Pathology, Universtity  Hospitals 
Leuven and in a series of ccRCC cases from The Cancer 
Genome Atlas (TCGA).

Materials and methods
Methylation specific PCR assay development
In our systematic review on prognostic methylation 
markers in RCC [15], we did not only observe extensive 
heterogeneity regarding the methylation analysis tech-
niques used across the different studies, but also regard-
ing the exact genomic location that was used to asses a 
particular gene. It is known that the clinical value of DNA 
methylation may differ according to the exact genomic 
location that is analyzed, even within the gene promoter 
region, which complicates head-to-head comparison of 
DNA methylation markers’ performance and hampers 
subsequent clinical translation [16, 17, 19]. We there-
fore applied the approach that we recently developed 

Highlights

•	 This work represents a head to head comparison of 
promising published DNA methylation biomarkers 
for ccRCC.

•	 TCGA data was used to select optimal DNA meth-
ylation location to guide primer design.

•	 We propose a new prognostic model for ccRCC add-
ing five DNA methylation markers to the standard 
clinicopathological factors.

•	 Preliminary results suggest added clinical value and 
merit further validation in larger cohort studies.

Introduction
Renal cell carcinoma (RCC) is the most common malig-
nant neoplasm of the kidney and accounts for 2–3% 
of the total human cancer burden [1]. Clear cell RCC 
(ccRCC) is the most prevalent histopathological subtype, 
comprising 80–90% of all RCC cases [2]. Patients with 
non-metastatic ccRCC are treated with curative intent 
by (partial) nephrectomy. The clinical course after sur-
gery is however erratic, as approximately 30% of these 
patients still develop metastases during follow-up and 
around ~ 10% die of disease progression within five years 
after surgery [3]. Currently, it is difficult to recognize 
these high-risk patients upon initial diagnosis. Despite 
the fact that current clinical characteristics or prognostic 
models, such as the TNM staging system, Fuhrman grad-
ing, the Stage, Size, Grade, and Necrosis (SSIGN) Risk 
Score, and the University of California Los Angeles Inte-
grated Staging System (UISS), are considered to be strong 
prognostic indicators [4–7], these do not yet lead to the 
desired accuracy in predicting patient outcome. For 
example, the c-index for SSIGN to predict disease recur-
rence is 0.82, indicating that there is room for improve-
ment. [8]. In addition, there have been several changes in 
the landscape of RCC management since the inception 
of such models. Therefore, there is a need to identify and 
develop additional molecular prognostic markers that 
can enhance the predictive performance of current prog-
nostic models [5, 9–13].

In the search for prognostic markers, DNA methyla-
tion in particular has received recognition as epigenetic 
alterations are more frequently found in RCC compared 
to genetic alterations [14]. Despite this attention, DNA 
methylation biomarkers have not yet bridged the gap 
between laboratory and clinic [10], possibly due to lack 
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using publicly available DNA methylation data from The 
Cancer Genome Atlas (TCGA) [16] to determine the 
genomic location of methylation that is most likely to be 
clinically relevant and thus represents the optimal loca-
tion for methylation assay development. Methylation 
data from ccRCC samples and normal kidney samples 
from TCGA were plotted to gain insight in the promoter 
CpG-island methylation pattern of each gene. Primers 
for methylation-specific PCR (MSP) were designed in 
regions in which there was statistically significant dif-
ferential methylation between tumor and normal sam-
ples, and normal samples had a methylation level (i.e. the 
β-value) lower than 0.2 (see Additional file 1: Fig. S1 for 
examples).

Our previously designed MSP assays for GREM1 
(three different regions [19]), LAD1, NEFH and NEURL 
were also re-evaluated to see whether we could further 
improve these assays. All our previously designed MSP 
assays were located at genomic regions that complied 
to the above-described criteria (data not shown). How-
ever, for LAD1, NEFH, and NEURL an additional, poten-
tially clinically relevant promoter region was identified 
for which new assays were designed. Also, for PCDH8, 
BNC1, and SCUBE3 two clinically relevant regions were 
identified and two different assays were developed. How-
ever, the primer sets for BNC1 region i and SCUBE3 
region ii failed optimization and were not used in further 
analyses.

Study population
Formalin-fixed paraffin-embedded (FFPE) primary 
ccRCC tissue samples were obtained from the NLCS, a 
prospective, population-based cohort study. This study 
was initiated in 1986 and included 120,852 men and 
women in the ages of 55–69 years at baseline [20]. After 
20.3  years of follow-up, 608 incident RCC cases were 
identified and tumor tissues were collected from 51 
pathology laboratories throughout the Netherlands. Tis-
sue collection was conducted in two phases: initially only 
tumor samples of cases identified in the first 11.3  years 
of follow-up were included, but recently the series was 
expanded to 20.3  years of follow-up. Tumor tissue was 
available for 453 of the identified RCC cases. Hema-
toxylin and eosin (HE) stained slides of tumor tissues 
were revised by two experienced genitourinary patholo-
gists to confirm tumor histology and Fuhrman grade. 
Information on patient and tumor characteristics (i.e. 
sex, age at diagnosis, TNM stage, and tumor size) was 
derived from the pathology reports and the cancer regis-
try. TNM stage was classified according to the 1987 ver-
sion of the TNM classification [21], as recoding to more 
recent TNM classifications was not possible due to a lack 
of needed information. Difference in tumor size between 

the 1987 version and more recent TNM classifications 
was addressed by including tumor size as a covariate in 
the statistical models. Follow-up was accomplished by 
record linkage to the causes of death registry from Statis-
tics Netherlands and the municipal population registries. 
Patients included for this study had not received adjuvant 
therapy and further details of the tissue collection and 
follow-up have been described in detail elsewhere [22].

For this study, only patients with histologically con-
firmed ccRCC, with non-metastatic disease at diagnosis 
were included (n = 336). This led to the inclusion of some 
patients with TNM stage IV disease (n = 9) but with M0 
regarding distant metastasis. The clinicopathological 
characteristics of the included patients are summarized 
in Additional file 1: Table S1 and S2.

For the validation of our proposed prognostic model, 
we used FFPE ccRCC tissue samples (n = 64) from 
the archives of the Department  of Pathology, Univer-
sity Hospitals Leuven. These tumor samples were col-
lected prospectively from patients with sporadic ccRCC, 
treated with radical or partial nephrectomy without any 
neo-adjuvant therapy, and are further referred to as the 
hospital-based series. All HE slides were revised by an 
experienced genitourinary pathologist. The clinicopatho-
logical characteristics of the included patients are sum-
marized in Additional file 1: Table S3.

The Cancer Genome Atlas data analysis
A patient series with the same clinicopathological char-
acteristics (i.e. ccRCC subtype, non-metastatic disease) 
with a median follow up of 39 months was derived from 
TCGA, and was used as an additional validation cohort 
(Additional file  1: Table  S4). DNA promoter methyla-
tion was measured using the Illumina Human Methyla-
tion 450 K platform. For each of the five genes included 
in the final model, the probes located closest to, or within 
our primer region, were identified (Additional file  1: 
Table S5). For genes for which more than one probe was 
identified, the methylation level was determined by cal-
culating the mean β-value of these probes. We defined 
methylated samples as those with a (mean) β-value 
of > 0.2.

DNA isolation and sodium bisulfite conversion
Genomic DNA from five 20-μm slices from FFPE ccRCC 
tissue from the population-based series, collected during 
the first 11.3 years of follow-up, was isolated as follows: 
paraffin was removed with xylene and genomic DNA 
was extracted by salt-precipitation. Briefly, 450 μl of cell 
lysis solution (10 mM Tris/HCl (pH 7.4), 400 mM NaCl, 
2  mM EDTA), 25  μl of 10% SDS and 50  μl of protein-
ase K solution (20 mg/ml) were added to the tissue sam-
ples and incubated over-night at 55  °C. Proteins were 



Page 4 of 11Joosten et al. Clinical Epigenetics  (2021) 13:103

precipitated using 175  μl of saturated NaCl, followed 
by centrifugation (2  min, 13.200  rpm). DNA was pre-
cipitated by the addition of 0.6 volumes of iso-propanol, 
dissolved in TE (pH 7.4) and stored at − 20 °C [23]. The 
isolated DNA was further cleaned up using QIAamp 
DNA Mini Kit (Qiagen, Venlo, the Netherlands) accord-
ing to the manufacturer’s instructions. Genomic DNA 
from four 20 μm slices samples collected in the second 
phase of follow-up was isolated after macro-dissection 
using the QIAamp DNA Mini Kit (Qiagen, Venlo, the 
Netherlands) according to the manufacturer’s instruc-
tions. To isolate genomic DNA from the ccRCC hospi-
tal-based series FFPE samples, we first cut ten 10-μm 
slices, incubated the slides overnight at 37  °C and 
deparaffinized the sections by incubation for 5  min on 
Xylene twice. Afterwards, the slides were incubated 
twice for 3  min in 100% Ethanol, followed by an incu-
bation for 1  min in 96% Ethanol and for 1  min in 70% 
Ethanol. Genomic DNA was thereafter isolated using 
the QIAamp DNA FFPE Tissue kit according to manu-
facturer’s protocol. The quality and concentration of the 
extracted DNA was estimated using NanoDrop quanti-
fication (NanoDrop ND-2000  m Spectrophotometer). 
To further evaluate the DNA integrity of our samples, 
we performed DNA integrity test on a subset of samples 
(Additional file  1: Table  S12). In the population-based 
series, sodium bisulfite modification of 500 ng genomic 
DNA was performed using the EZ DNA Methylation 
Kit (Zymo Research, California, USA) according to the 
manufacturer’s instructions. In the hospital-based series, 
sodium bisulfite conversion of 500 ng genomic DNA was 
performed using EpiTect Bisulfite kit (Qiagen, Venlo, the 
Netherlands) according to manufacturer’s instructions.

Promoter CpG island methylation analysis
Promoter CpG-island methylation was determined by 
nested MSP [24].To facilitate MSP analysis on DNA 
derived from FFPE material, DNA was first amplified 
with flanking PCR primers. Details on MSP PCR pro-
tocol and conditions are described in Additional file  1: 
Table  S6, S7, S8 and S9. All primer sequences are pro-
vided in Additional file  1: Table  S10. All PCR reactions 
were performed with controls for unmethylated alleles 
(CpGenomeTM Human Non-Methylated DNA Stand-
ard, MerckMillipore, USA or EpiTect control DNA 
unmethylated, Qiagen, Venlo, The Netherlands), meth-
ylated alleles (CpGenomeTM Human Methylated DNA 
Standard, MerckMillipore, USA or an in-house prepared 
in  vitro methylated DNA control), and a no-template 
control without DNA. Ten µl of each MSP reaction was 
directly loaded onto 3% agarose gels containing Midori 
Green Advance DNA Stain (Nippon Genetics Europe, 
Dueren, Germany) and visualized under UV illumination. 

Reproducibility of MSP analysis was assessed by repeat-
ing 10% of the cases. Representative agarose gel examples 
of MSP experiments are shown in Additional file 1: Fig. 
S2, S3, S4 and S5.

Statistical analysis
Cause-specific survival (CSS) was defined as time from 
cancer diagnosis until RCC-related death or end of fol-
low-up. Analyses were restricted to 10  years after diag-
nosis as deaths related to RCC are not likely after that 
period.

Univariable survival analyses for all potential methyla-
tion markers separately were performed using Kaplan–
Meier and log rank tests. Hazard ratios (HR) and 
corresponding 95% confidence intervals (CI) were deter-
mined with Cox proportional hazards models adjusted 
for potential confounders. Factors were considered pos-
sible confounders if they were known prognostic factors 
for RCC and included age at diagnosis (continuous), sex, 
and tumor size (mm). TNM staging was analyzed as a 
categorical factor stratifying into stage I, II, III and IV. 
Moreover, Fuhrman grading was also analyzed as a cat-
egorical factor distinguishing grade 1, 2, 3 and 4. To build 
a multivariable prediction model containing multiple 
methylation markers, we performed a backward stepwise 
elimination procedure using the likelihood-ratio test and 
a liberal α of 0.1 to prevent the exclusion of potentially 
important predictors from the model [25]. This was done 
to identify the most predictive combination of risk fac-
tors for survival of patients with non-metastatic ccRCC. 
Therefore, all known RCC prognostic factors (age at 
diagnosis, sex, TNM stage, tumor grade, and tumor size) 
were included in the model regardless of statistical sig-
nificance. Continuous variables were included as such. 
We used restricted cubic splines to assess evidence of a 
non-linear association with the log-hazard of an event. 
The final model was compared with a model containing 
the known RCC prognostic factors (age at diagnosis, sex, 
TNM stage, Fuhrman grade, and tumor size) only. Model 
performance was assessed using Harrell’s c-statistic and 
Akaike’s Information Criteria (AIC). The preferred model 
was the one with the lowest AIC and the highest c-sta-
tistic (c-statistic was leading if the highest c-statistic did 
not have the lowest AIC). The initial prediction model 
was internally validated using bootstrapping (number of 
bootstraps was 1000) [25]. Results from this validation 
step were used to penalize the regression coefficients to 
prevent too optimistic predictions and to estimate an 
optimism-corrected c-statistic.

To visualize model performance in our dataset, risk 
scores for individual patients were computed based on 
the final model and were used to split the data into 3 
subgroups based on tertiles. Kaplan–Meier curves were 
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created for all subgroups. All analyses were performed 
using the statistical software STATA 14.1 and R 3.4.1.

Results
Patient characteristics and epigenetic characterization 
of ccRCCs
Additional file 1: Table S1 and S2 show the baseline char-
acteristics of the population-based series. The major-
ity of the patients was male (58.6%), and the mean age 
at diagnosis was 71.2 years. The median ccRCC-specific 
survival in the total population was 8.1  years. During 
10  years follow-up, 122 patients died of a renal cancer-
related cause. The frequency of promoter methylation 
of the studied genes ranged from 18% (SFRP1) to 84% 
(RASSF1A) (Additional file  1: Fig. S6 and Table  S11). 
For PCDH8, LAD1, NEFH, and NEURL two, and in the 
case of GREM1 three, different locations within the pro-
moter region were analyzed. The methylation frequencies 
of NEURL, LAD1, and GREM1 slightly differed accord-
ing to the region analyzed (NEURL-i 39% vs. NEURL-ii 
35%, LAD1-i 28% vs. LAD1-ii 37%, and GREM1-i 29% vs. 
GREM1-ii 42% vs. GREM1-iii 40%). For PCDH8 no dif-
ference in methylation frequency was observed, while for 
NEFH the methylation frequency greatly varied between 
the two regions analyzed (NEFH-i 28% vs. NEFH-ii 69%) 
(Additional file 1: Fig. S6 and Table S11).

Clinical value of DNA methylation is location dependent
Next, we used Kaplan–Meier analysis to examine the 
prognostic value of the 11 candidate DNA methyla-
tion markers (including the different genomic loca-
tions, in total 17 assays) in the population-based series 
of non-metastatic ccRCC cases (Additional file 1: Fig. S7 
and Fig. S8). The methylation status of GREM1 (region 
i), LAD1 (region i and ii), NEFH (region i), NEURL 
(region ii), SFRP1, and GATA5 was significantly associ-
ated with poorer ccRCC-specific survival (log-rank test, 
P ≤ 0.0001–0.0117, Additional file  1: Fig. S7). Notably, 
the association between methylation of GREM1, NEFH, 
NEURL and patient outcome was dependent on the 
region that is methylated. For GREM1, only methylation 
of the region located most upstream of the TSS (GREM1-
i) was associated with patient outcome (log-rank test, 
P = 0.0022), while for the other two regions no signifi-
cant association with survival was found (log-rank test, 
GREM1-ii P = 0.5662 and GREM1-iii P = 0.2102). Also, 
for NEFH and NEURL, methylation of only one of the 
two studied regions was associated with ccRCC-specific 
survival (log-rank test, NEFH-i P = 0.0067 versus NEFH-
ii P = 0.9680 and NEURL-i P = 0.1533 versus NEURL-ii 
P = 0.0010).

Multivariate Cox proportional hazards analyses 
showed that advanced disease stage and Fuhrman grade 

were independent, statistically significant predictors of 
poor survival (Additional file 1: Table S11). Subsequently, 
the prognostic value of the individual methylation mark-
ers was assessed in a multivariate model together with 
known prognostic variables (i.e. TNM stage, Fuhr-
man grade, and tumor size) including age at diagno-
sis and gender. In multivariate analyses, methylation of 
GREM1-i, LAD1-i, LAD1-ii, NEFH-i, NEURL-ii, SFRP1, 
and GATA5 remained statistically significant predic-
tors of poor survival (HRGREM1-i 1.86 (95% CI 1.16–2.97), 
HRLAD1-i 2.26 (95% CI 1.47–3.48), HRLAD1-ii 1.71 (95% CI 
1.12–2.61), HRNEFH-i 1.74 (95% CI 1.11–2.74), HRNEURL-ii 
1.94 (95% CI 1.21–3.13), HRSFRP1 1.89 (95% CI 1.16–
3.08), and HRGATA5 1.67 (95% CI 1.08–2.60) (Additional 
file 1: Table S11).

A prognostic risk model for patients with non‑metastatic 
ccRCC​
We next sought to determine whether these prognostic 
methylation markers could add prognostic value to the 
clinical variables that are currently used to predict prog-
nosis (i.e. TNM stage, Fuhrman grade, and tumor size). 
The final prognostic risk model consisted of the standard 
prognostic variables and five methylation markers (i.e. 
NEFH-ii, GREM1-ii, GATA5, NEURL-ii and LAD1-ii). 
TNM stage, Fuhrman grade, and methylation of LAD1-
ii were the most significant predictors of survival. All 
coefficients and HRs for the final model are presented in 
Table 1. The c-statistic for the final model was 0.71 (0.65 
after correction for optimism), with an AIC of 674. Com-
parison with the clinical model containing the standard 
prognostic variables alone (c-statistic 0.65, AIC 681) 
showed that model fit and performance were better for 
our final prognostic model including the five methylation 
markers (Table 2). Kaplan–Meier curves were generated 
for the final model, showing a low-, intermediate- and 
high-risk group that could be identified with the prog-
nostic model including the five methylation markers 
(Fig. 1).

Validation of the prognostic risk model 
in the hospital‑based series
Additional file  1: Table  S3 shows the baseline charac-
teristics of the hospital-based series. Compared to the 
population-based series, patients in the hospital-based 
series had a significantly lower mean age at diagnosis 
(59.3 ± 12.1 versus 71.2 ± 6.3  years). In both series, the 
majority of patients were diagnosed with stage II dis-
ease (61.9% and 59.6%). Except for the methylation of 
GREM1-ii, methylation frequencies of the genes included 
in the final model were comparable between the hospi-
tal-based and the population-based series (Additional 
file 1: Table S1, S2 and S3). Notably, performance of our 
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final prognostic model in the hospital-based series was 
significantly better than its performance in the popula-
tion-based series, with a c-statistic of 0.95 versus 0.71. 
Comparably, the model including only standard prog-
nostic variables seemed to have a better performance in 
the hospital-based series with a c-statistic of 0.86 versus a 
c-statistic of 0.65 in the population-based series (Table 2). 
However, comparison of the clinical model with the final 
prognostic model in the hospital-based series revealed 
that model fit and performance were better for the 
final model, indicating that the addition of methylation 

markers to the clinical model provides additional prog-
nostic value (Table 2).

Validation of the prognostic model in the TCGA series
Additional file 1: Table S4 shows the baseline character-
istics of the TCGA series. Compared to the population-
based series, patients in the TCGA series also had a lower 
mean age at diagnosis (61.7 ± 12.3 versus 71.2 ± 6.3), and 
considerably more patients were diagnosed with stage I 
disease (56.0% versus 5.7%), and hence fewer with stage 
II. Methylation frequencies of the five genes included in 

Table 1  Hazard ratios for the final model in non-metastatic ccRCC (population-based series)

Coef, coefficient; HR, hazard ratio; M, methylated; ref, reference; SE, standard error; TNM, tumor-node-metastasis; U, unmethylated; yrs, years; 95% CI, 95% confidence 
interval
a TNM stage as defined in 1987

Marker Values Coef SE HR (95% CI) P-value

Age at diagnosis Continuous (yrs) 0.021 0.023 1.02 (0.98–1.07) 0.36

Gender Male 1 (ref )

Female 0.109 0.272 1.11 (0.65–1.90) 0.69

TNM stagea I 1 (ref )

II 0.569 0.638 1.77 (0.51–6.17) 0.37

III 1.207 0.685 3.34 (0.87–12.79) 0.08

IV 1.884 0.915 6.58 (1.09–39.57) 0.04

Fuhrman grade G1 1 (ref )

G2 -0.112 0.426 0.89 (0.39–2.06) 0.79

G3 -0.047 0.437 0.95 (0.41–2.25) 0.92

G4 0.955 0.462 2.60 (1.05–6.43) 0.04

Tumor size Continuous (mm) -0.003 0.005 1.00 (0.99–1.01) 0.59

NEFH-ii U 1 (ref )

M -0.002 0.298 1.00 (0.56–1.79) 0.99

NEURL-ii U 1 (ref )

M 0.475 0.280 1.61 (0.93–2.78) 0.09

LAD1-ii U 1 (ref )

M 0.738 0.258 2.07 (1.25–3.43) 0.01

GREM1-ii U 1 (ref )

M -0.456 0.284 0.64 (0.36–1.11) 0.11

GATA5 U 1 (ref )

M 0.351 0.283 1.43 (0.82–2.49) 0.20

Table 2  Comparison of model performance and fit

a–c Performance of both the clinical Cox proportional hazards model a (including age at diagnosis, sex, Fuhrman grade, tumor size and TNM stage) and the prognostic 
biomarker Cox proportional hazards model b (containing age at diagnosis, gender, Fuhrman grade, tumor size, TNM stage, methylation of NEFH, GREM1, GATA5, LAD1, 
and NEURL). Numbers in the table refer to the number of cases included in the analysis (n), degrees of freedom (Df), Akaike Information Criterion (AIC) and the Harrel’s 
C-statistic (C-statistic). c Lower number of patients due to missing data on methylation status of the included genes

Models Population-based series Hospital-based series TCGA series

n Df AIC C-statistic n Df AIC C-statistic n Df AIC C-statistic

Clinical modela 219 9 681 0.65 42 5 63 0.86 227 7 470 0.75

Prognostic modelb 219c 14 674 0.71 42 10 55 0.95 227 12 475 0.76
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the model differed between the population-based and 
the TCGA series, with generally lower methylation fre-
quencies in the TCGA series, except for methylation of 
NEURL-ii which was found to be methylated in 95% of 
the TCGA cases compared to 35% in the population-
based series (Additional file  1: Table  S1, S2 and S4). In 
this respect, it has to be pointed out that methylation 
in TCGA is measured using a quantitative assay (i.e. the 
Illumina Human Methylation 450  K platform) and that 
for some genes the available probes were not exactly 
located within the MSP assay (see Additional file  1: 
Table S5).

Performance of our prognostic model with the meth-
ylation markers in the TCGA series was somewhat bet-
ter than its performance in the population-based series, 
with a c-statistic of 0.76 versus 0.71. However, the model 
including only standard prognostic variables without the 
methylation markers showed a comparable performance 
to the prognostic model with (Table 2). Hence, addition 
of the methylation markers to the model provided limited 
incremental prognostic value in the TCGA series.

Protein and mRNA expression data
No protein expression data was available for any of our 
markers in TCGA nor in the Central Proteomic Tumor 
Analysis Consortium. However, mRNA-seq data from 
TCGA revealed statistically significant differences 
between normal and tumor tissue (Mann–Whitney test, 
P < 0.05), as well as between normal and the various 
tumor stages (Kruskal–Wallis rank sum test, P < 0.05) for 
all the markers described (data not shown).

Discussion
In the present study, we performed a head-to-head 
comparison of reported potential prognostic methyla-
tion markers for ccRCC and developed a prognostic risk 
model for non-metastatic ccRCC patients that includes 
standard clinicopathological features plus five meth-
ylation markers. Our model including the methylation 
markers might have additional prognostic value as com-
pared to the model including only clinicopathological 
factors.

Fig. 1  Risk score calculated by final model and survival curves in the population-based ccRCC series. Kaplan–Meier curves for overall cause-specific 
survival based on risk score. Patients were divided into low-, intermediate-, and high-risk groups based on tertiles
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Up until now, a direct comparison of the performance 
of suggested prognostic methylation biomarkers from 
previous studies has not been feasible, due to large dif-
ferences among studies, especially in the exact genomic 
location of DNA-methylation assays [26]. In order to 
facilitate a direct comparison for this study, we applied 
our in-house developed strategy to design methylation 
assays at the clinically most relevant genomic location for 
all studied biomarkers [16].

A total of 6 (i.e. GREM1 (region i), LAD1 (region i 
and ii), NEFH (region i), NEURL (region ii), SFRP1, and 
GATA5) out of the 11 published, promising methylation 
markers were validated as predictors of CSS in a popu-
lation-based series of ccRCC patients independent of 
standard prognostic variables. Using multivariable pre-
diction modeling we developed a prognostic risk model 
including the standard prognostic variables and five 
methylation markers (i.e. NEFH-ii, GREM1-ii, GATA5, 
NEURL-ii and LAD1-ii) that appears to have independ-
ent prognostic value in addition to the standard clinical 
and pathological variables.

Our model showed similar results in a second, hospi-
tal-based series with a better prognostic performance of 
the prognostic model over the clinical model. However, 
in TCGA, performance of the model including stand-
ard prognostic variables was comparable to that of the 
model including the methylation markers. There are 
however extensive differences between the three study 
populations. Firstly, the population-based series has been 
prospectively collected from a representative base popu-
lation, including up to 80% of all incident ccRCC cases. In 
contrast, the hospital-based series and the TCGA series 
represent a selected study population and, in the case of 
the TCGA series, with less detailed clinical and follow up 
data. Moreover, considerably more patients were diag-
nosed with stage I disease in the TCGA series compared 
to the population-based and hospital-based series. This 
could however be due to differences in the TNM ver-
sion used. In the population-based series patients were 
staged according to the TNM classification from 1987. 
Conversion to the latest TNM classification was not pos-
sible due to lack of information in the cancer registry files 
and the pathological reports. Because the main difference 
between the TNM classifications is the cut-off values for 
tumor size, we added tumor size as a separate variable 
in our analyses. In addition to that, methylation in the 
TCGA is measured using the Illumina Human Methyla-
tion 450 K platform as a quantitative trait which forced 
us to set a cut-off value for methylation above a β-value 
of 0.2. Although this is a commonly used value, altering 
this threshold may influence the methylation status of the 
samples and eventual conclusions. This could explain the 

disparities in methylation frequencies between the popu-
lation-based, hospital-based and TCGA series.

Interestingly, for LAD1, NEFH, and NEURL, only one 
of the designed MSP assays was retained in the final 
model. This suggests that only methylation at that spe-
cific region has independent prognostic value. Tradition-
ally, research in the DNA methylation marker field has 
focused on hypermethylation of the promoter region of 
genes [27] and undervalued the fact that not all CpGs in 
the promoter region are functionally uniform [16, 28]. 
The importance of the genomic location of DNA meth-
ylation markers and its biological and clinical relevance 
has previously been postulated [17, 19]. Here, we there-
fore utilized publicly available DNA methylation data 
from TCGA to select the optimal location for DNA 
methylation-based biomarker development [16] for each 
of the genes. Results suggest that for GREM1, NEFH, and 
NEURL the association between methylation and patient 
outcome was indeed dependent on the chosen assay loca-
tion, supporting the fact that the location of DNA meth-
ylation influences the clinical relevance of the marker. 
These observations further highlight that the location 
of the CpG dinucleotides to be analyzed and with this 
namely MSP primer location and design can influence 
the observed methylation frequency and clinical rele-
vance. Moreover, this highlights that developing an opti-
mal methylation assay should not be solely dependent on 
selecting the optimal methylation location but also on 
combining that with clinical outcome factors.

We further explored the biological relevance of these 
markers and found that GREM1 is a member of the cys-
tine knot superfamily and a bone morphogenetic protein 
(BMP) antagonist [29, 30] and that it plays a crucial role 
in embryogenesis, tissue differentiation and organ devel-
opment through the regulation of the BMPs [31]. Several 
studies revealed its involvement in renal inflammation 
[32, 33] and renal fibrosis [34] through the epithelia mes-
enchymal transition (EMT) process, which in turn is 
critical for tumor metastasis and cancer progression [35]. 
Additionally, GREM1 stimulates angiogenesis and neo-
vascularization by binding directly to vascular endothe-
lial growth factor (VEGF) receptor 2 (VEGFR2) [36].

GATA 5 is a zinc-finger transcription factor and mem-
ber of the GATA family proteins 1–6 and is known to 
be involved in cellular differentiation [37]. It has been 
reported that hypermethylation of GATA5 is associated 
with metastasis and progression‐free survival of RCC 
patients [38]. Besides that, several studies have shown 
that reduced GATA 5 mRNA levels were associated with 
a poor clinical outcome, indicating a possible role of 
GATA 5 for the development of aggressive ccRCC phe-
notypes [37].
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LAD 1 is a relatively uncharacterized protein and is 
proposed to contribute to the stability of the association 
of the epithelial layers with the underlying mesenchyme. 
Therefore, it is believed that LAD 1 is involved in cell 
adhesion, cytoskeleton organization and invasion [14, 39, 
40].

NEFH gene encodes the heavy neurofilament protein 
[41] and is suggested to play a role in the cell motility 
[14, 42]. Moreover, in tumor cells, loss of NEFH by pro-
moter methylation leads to increased aerobic glycolysis 
and mitochondrial dysfunction [43] and could, there-
fore, contribute to the metabolic shift that is observed in 
aggressive ccRCC [44].

The NEURL on the other hand acts as a tumor suppres-
sor [45] and is involved in the Notch signaling pathway 
[18, 46] which is critical for determination of cell fates 
within a wide variety of tissues by regulation of growth, 
differentiation, and apoptosis. Furthermore, several stud-
ies revealed that the Notch signaling pathway has an 
important role in the development of the mammalian 
kidney whereby several key members of the Notch cas-
cade are expressed during nephrogenesis [47].

Although our model including the five methylation 
markers showed some incremental prognostic value 
compared with standard clinicopathological variables 
alone, we were not able to evaluate whether the identified 
prognostic methylation markers were also able to further 
improve other established prognostic models such as the 
UISS and the SSIGN score [5], due to lack of information 
on tumor necrosis and patients’ performance status in 
our patient series. This would however be important as 
these prognostic models are now considered efficacious 
tools in tailoring RCC management and making deci-
sions for selection for adjuvant therapy [48]. Moreover, 
we have developed our prognostic model using stepwise 
backward elimination which, despite being the most 
popular variable selection method, has its shortcom-
ings [49]. For example, backward elimination can lead to 
bias in parameter estimation as once a variable is elimi-
nated from the model it is not re-entered again, whilst a 
dropped variable may become significant later in the final 
model [49].

Furthermore, we were not able to assess the effect of 
intratumor heterogeneity (ITH) on the performance of 
our model, as no multi-region sampling was performed 
at the time of tumor tissue collection. ITH can impede 
biomarker development due to sampling bias [50, 51] 
and can affect the reproducibility of biomarkers when 
relying solely on a single area of the tumor [52]. How-
ever, in contrast to the extensive genetic ITH observed 
in RCC, epigenetic intratumor heterogeneity (eITH), in 
particular DNA methylation, seems to be less promi-
nent [53]. It is warranted that multiregion sampling is 

performed in further validation studies of our proposed 
prognostic model, as this will contribute to elucidat-
ing a possible impact of ITH on the performance of our 
prognostic model.

Conclusion
This work presents a head-to-head comparison of 
prognostic methylation markers for RCC using a novel 
approach to determine the optimal location for DNA 
methylation-based biomarker development. We dem-
onstrated that using epigenomic TCGA data to guide 
methylation assay design is a suitable approach to iden-
tify clinically relevant regions of methylation. Using 
this concept, we were able to develop a prognostic risk 
model, including DNA methylation markers, for ccRCC 
that is suggested to have additional value in patients 
with localized ccRCC compared with the typical clin-
icopathological risk factors. This indicates that evalu-
ating well defined and validated molecular markers 
for incremental value to existing models is worth the 
effort. However, further validation in large prospec-
tive series with extended patient data that comply with 
the requirements of the current prognostic models in 
practice, such as the SSIGN score and UISS, is crucial 
to establish its actual clinical value.
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