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Abstract

Background: Endometrial cancer is a common gynecologic cancer. Noninvasive molecular biomarkers for triage of
high-risk patients for invasive procedures are needed. Based on the success of cytological Pap smear screening,
cervical scrapings are a good source of DNA for molecular testing. In addition to genetic lesions, DNA methylation
is a promising biomarker. We assessed the usefulness of combining genetic and epigenetic biomarkers from
cervical scrapings to detect endometrial carcinomas.

Methods: We performed a retrospective case—control study of 96 consecutive cervical scrapings from patients with
abnormal uterine bleeding who underwent surgery for diagnostic evaluation. Thirty and 16 cases were diagnosed
with type | and type Il endometrial cancers, respectively. The remaining non-cancer cases included normal
endometrium (n = 12), benign uterine lesions (n = 20), and endometrial hyperplasia (n = 18). Quantitative
methylation-specific PCR and mass spectrometry were used for DNA methylation and genetic mutation analysis.
Logistic regression was used to evaluate the clinical performance of these candidate biomarkers.

Results: We tested the effectiveness of the methylation status of four genes (BHLHE22, CDOT, TBX5, and HAND?) in
endometrial cancer detection. The area under the receiver operating characteristic curves ranged from 0.703 to
0.878, and panels of hypermethylated BHLHE22/CDO1/HAND?2 (87.0% sensitivity and 86.0% specificity) and BHLHE22/
CDO1/TBX5 (89.1% sensitivity and 80.0% specificity) showed significant differences and could distinguish benign
from malignant endometrial lesions. The sensitivity and specificity in endometrial cancer detection for BHLHE22/
CDOT were 84.8% and 88.0%, respectively. Both type | and Il endometrial carcinomas could be detected using a
BHLHE22/CDO1-based methylation profile, suggesting that they may have common epigenomes. Moreover, PTEN
and TP53 mutations were found in 63.3% of type | and 93.6% of type Il endometrial cancers. Unexpectedly, PTEN
and TP53 mutations were commonly found in cervical scrapings of the normal endometrium (25% and 33.3%,
respectively) and in cases with benign uterine lesions (10% and 50%, respectively). Finally, combinations of any one
mutation of PTEN and TP53 mutations had a sensitivity of 91.3%, but a specificity of only 42.0%.

Conclusions: Adding PTEN/TP53 mutation testing to BHLHE22/CDO1-based methylation testing did not improve the
detection of endometrial cancer.
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Background

Endometrial cancer (EC) is the most common female
genital tract malignancy in developed countries [1]. Al-
though abnormal or dysfunctional uterine bleeding is
the most frequent symptom of EC, only 10% of post-
menopausal women with this symptom have EC. The
most common diagnostic test for EC is transvaginal
ultrasound, which measures the thickness of the endo-
metrium. Unfortunately, transvaginal ultrasound cannot
reliably distinguish between benign and malignant le-
sions [2]. Moreover, a cutoff value for an endometrial
thickness that warrants further hysteroscopy remains
under debate. Thus, invasive procedures to obtain endo-
metrial tissues by fractional dilatation, curettage, and
hysteroscopic biopsy remain necessary. However, the
chance of diagnosing EC using current methods is low,
even in symptomatic patients. Consequently, noninvasive
molecular markers with acceptable accuracy for EC
screening, at least in symptomatic women, are much
needed.

The endometrium is a highly proliferative and cyclic-
ally regenerative tissue, which makes it vulnerable to
genetic and epigenetic changes. While estrogen drives
endometrial cell proliferation, progesterone inhibits it
and causes cell differentiation. Conditions associated
with a functional dominance of estrogen over progester-
one increase the risk for both endometrial hyperplasia
and EC. EC is broadly classified into two histotypes: type
I, which consists of predominantly endometrioid adeno-
carcinomas, and type II, which incorporates serous-type,
clear-cell, and poorly differentiated carcinomas. The pro-
posed hyperplasia-to-carcinoma sequence for type I EC
involves unopposed estrogen activity with subsequent mu-
tations or alterations in pro-growth molecular pathways.
Moreover, genomic data from The Cancer Genome Atlas
defined four molecular subtypes of EC [3]. The four mo-
lecularly defined cancer subtypes are: DNA polymerase €
exonuclease domain mutation, microsatellite-instable,
microsatellite-stable with fewer copy-number alterations
(CNAs), and microsatellite-stable (serous-like) with more
CNAs. A categorization of ECs into one of these four sub-
groups could potentially provide individuals with prognos-
tic and predictive information [4].

Unfortunately, the application of such genetic informa-
tion in endometrial screening remains limited. Loss of
function of the phosphatase and tensin homologue
(PTEN) tumor suppressor heralds the beginning of mul-
tistep carcinogenesis, and its somatic mutation and/or
deletion is the most common genetic change in endo-
metrial endometrioid adenocarcinoma [5]. PTEN lesions
are present in 83% of sporadic EC cases [6] and have
been proposed to serve as diagnostic markers for endo-
metrial precancerous lesions [7]. In addition to PTEN,
approximately 25% of all ECs have been found to harbor
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mutations in the tumor suppressor TP53 [8]. Although
both PTEN and TP53 drive carcinogenesis in many ma-
lignancies, the mechanistic role of both genes in endo-
metrial carcinogenesis has not been fully elucidated [9].

A recent investigation revealed the feasibility of testing
such genetic mutations in cervical scrapings (“Pap
smears”) for EC detection [10, 11]. In addition to genetic
anomalies, epigenetic alternations are also involved in
complex cancer development [12]. Aberrant DNA
methylation-associated transcriptional silencing in tumor
suppressor genes is commonly observed in human can-
cers [13]. Two predominantly global methylation pat-
terns in cancer have been generally acknowledged: DNA
hypermethylation of specific gene promoters, leading to
gene silencing (“localized hypermethylation”), and loss of
methylation within highly repeated DNA sequences,
leading to unstable genomes and aberrant expression of
oncogenes (“global hypomethylation”). Thus, under-
standing epigenetic regulation in EC progression may
open new avenues for EC detection.

In light of the above, epigenetic lesions could poten-
tially serve as early detection biomarkers for EC. For ex-
ample, an epigenome-wide methylation analysis revealed
that Heart and Neural Crest Derivatives Expressed 2
(HAND?2) was one of the most commonly hypermethy-
lated and silenced genes in EC [14]. Li and colleagues
also demonstrated that HAND2 plays a major role in
endometrial stromal-epithelial signaling [15], and that,
in the presence of progesterone, endometrial epithelial
cell proliferation inhibits HAND2 upregulation in endo-
metrial stroma. Thus, HAND2 methylation is a common
and crucial molecular alteration in EC that could hold
clinical implications [16, 17]. The feasibility of HAND2
methylation testing in cervical scrapings and its value for
EC detection remain undetermined. Our previous com-
prehensive methylomics approach identified in EC tis-
sues a panel of highly methylated genes, including
BHLHE22/CDO1/CELF4, that were detectable in cervical
scrapings [18]. Such studies provide proof-of-concept for
new means of EC screening using epigenetics analyses.

The combination of genetic and epigenetic markers
from cervical scrapings for EC detection is logical and
appealing. However, to our knowledge, no studies have
tested such an approach. Therefore, the aim of the
present study was to test whether the use of panels of
combined epigenetic and genetic markers derived from
cervical scrapings could improve EC detection.

Methods

Clinical samples

Female participants (age range, 30—80 years) were en-
rolled in our case—control retrospective study from No-
vember 2015 to September 2017. These women had
cervical scrapings performed because of abnormal or
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dysfunctional uterine bleeding, followed by surgery at
the Taipei Medical University-Shuang Ho Hospital, New
Taipei City. This study was approved by the Institutional
Review Board of the Taipei Medical University-Shuang
Ho Hospital, in accordance with the Declaration of
Helsinki 2000 (Protocol no. N201902024). Informed
consent was obtained from all participants. Age, histo-
logic type/grade of lesion or tumor, and International
Federation of Gynecology and Obstetrics stage were ex-
tracted from the hospital records. Following collection,
cervical scrapings were immediately placed in a RNAla-
ter Stabilization Solution (Ambion, Thermo Fisher Sci-
entific) and stored at — 80 °C for future analysis.

Methylation analysis of BHLHE22, CDO1, HAND2, and TBX5
genes

Genomic DNA was extracted from the cervical scrapings
using the QIAmp DNA Mini Kit (QIAGEN, Hilden,
Germany), 800 ng of which was modified with bisulfite
using an EZ DNA Methylation Kit (D5008; Zymo Re-
search, Irvine, CA, USA) according to the manufac-
turer’s instructions, and then dissolved in 70 pL
nuclease-free water. PCR products and quantitative
methylation-specific polymerase chain reaction (qMS-
PCR) were performed using a LightCycler 480 SYBR
Green I Master (Roche, Penzberg, Germany). Reactions
were carried out in 20 puL containing 2 pL bisulfite-
converted DNA, 250 nmol/L of each primer, and 10 puL
Master Mix using the following thermal profiles: 95°C
for 5 min (initiation), 50 cycles of 95 °C for 10's, 60 °C for
30s, and 72 °C for 30 s (amplification), and a final exten-
sion step at 72 °C for 5 min. All gene amplifications were
conducted using duplicate specimens. To calculate a
relative target amount, only the respective crossing point
(Cp) values of the target, the reference gene for each
sample, and a calibrator need to be determined using
LightCycler software. To normalize the input DNA in
each methylation-independent assay, we used the
amount of a non-CpG region of a type II collagen gene
(COL2A1I) as internal reference [19]. DNA methylation
levels were estimated by the difference in crossing point
(ACp) values using the following formula: Cp of target —
Cp value of COL2A1. We considered and simplified the
percentage of methylated reference for each result using
the ACp values for detecting DNA methylation [20, 21].
The analytical sensitivities of candidate genes are shown
in Additional file 1: Figure S1. Linear regression analysis
was used to assess assay linearity. The serial dilution of
COL2A1 showed that the DNA temple was 118 copies;
the mean Cp value of COL2A1 was 35.8. Therefore, we
defined Cp values of COL2A1 > 36 as not detected for
each candidate gene in our samples. BHLHE22-, CDOI-,
and TBX5-specific primers were designed using Oligo
7.0 Primer Analysis software (Molecular Biology
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Insights, Inc.). We used the primer sequences of HAND2
described in a previous study [14].

Somatic mutation detection and analysis of TP53 and
PTEN genes

To identify PTEN and TP53 exomic mutations, we se-
quenced all exons of those two genes using the Illumina
HiSeq2500 high-throughput genome sequencer (Illu-
mina, Inc., San Diego, CA, USA). Next, 40 ng of DNA
from each individual was used to construct a DNA li-
brary of 43 target regions using the QIAseq targeted
DNA system (QIAGEN). Briefly, DNA was enzymatically
fragmented and end-repaired in a 25 pL solution con-
taining 2.5 uL 10x fragmentation buffer and 5 pL frag-
mentation enzyme mix. The reaction was carried out at
4°C for 1min, 32°C for 24 min, and 65°C for 30 min.
Immediately after the reaction, 10 uL 5x ligation buffer,
5puL DNA ligase, 2.8 uL of 25 pM bar-coded adapters,
and water were added for a total volume of 50 pL. The
reaction was then continued at 20 °C for 15 min. To en-
sure the complete removal of free barcoded adapters,
each reaction was purified twice using a bead-system
(QIAGEN). In a total volume of 20 pL, purified DNA
was mixed with 10nM of each target primer, 400 nM
forward primer, 1x PCR buffer, and 0.8 uL. HotStarTaq
DNA polymerase. The PCR enrichment conditions were:
95 °C for 13 min, 98 °C for 2 min, six cycles of 98 °C for
15, 65 °C for 15 min, and 72 °C for 5 min. Each reaction
mixture was purified to remove unused primers. The
enriched DNA was combined with 400 nM universal pri-
mer, 400 nM index primer, 1x PCR buffer, and 1pL
HotStarTaq DNA polymerase in a total volume of 20 pL.
The universal PCR conditions were: 95°C for 13 min,
98 °C for 2 min; 20 cycles of 98°C for 155, 60°C for 2
min, and 72°C for 5min. The DNA library was then
purified and pooled for sequencing (2 x 100 base pairs
[BPs]). The raw output from each individual scraping
was > 100 Mb, with an average target region depth > 30,
000x. The sequence of each read was trimmed based on
its quality score (Q30), and a length < 45 BPs of each
read was discarded from the following analyses. The
reads were aligned to the human hgl9 reference genome
using BWA-MEM (http://bio-bwa.sourceforge.net/), and
variants were called using GATK Unified Genotyper
(GATKLite version 2.3-9) [22]. After variant calling,
Variant Effect Predictor (http://grch37.ensembl.org/
Homo_sapiens/Tools/VEP) was used to annotate the
identified variants. We then selected the confidence of
the mutations using alternate allele frequencies > 0.3 as
a cutoff and removed synonymous substitutions (i.e., si-
lent mutations in the encoded protein). All PTEN and
TP53 mutations were displayed using MutationMapper
software (https://www.cbioportal.org/mutation_mapper),
as shown in Fig. 2a [23, 24]. The presence of a major
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mutation in each individual gene is shown as the max-
imum value of alternate allele frequencies in Fig. 2b.

Statistical analysis

Based on previous work, the area under the receiver op-
erating characteristic curve (AUC-ROC) of hypermethy-
lated HAND?2 in the normal endometrium vs. EC tissues
was 0.9 [14]. Consequently, we assumed that the AUC-
ROC of hypermethylated HAND?2 in cervical scrapings
from normal and type I EC patients was 0.8. The null
hypothesis AUC-ROC, type I error (a), and type II error
(B) values were 0.5, 0.01, and 0.05, respectively, and the
ratio of sample sizes of normal vs. type I EC tissue was
1.0, requiring at least 28 cases in both groups. We then
added three samples to both groups to avoid a 10% fail-
ure rate in subsequent tests. Additionally, we simultan-
eously examined gene mutations and DNA methylation
levels in DNA isolated from cervical scrapings from pa-
tients with endometrial hyperplasia (n = 18) and type II
EC (n = 16). The Mann—Whitney nonparametric U test
and the Kruskal-Wallis test were used to identify signifi-
cant differences in methylation levels between two cat-
egories and more than two categories, respectively. The
associations between categorical clinical variables and

Table 1 Demographics of clinical samples
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methylation levels/genetic mutations were identified by
the chi-square test for 2-by-2 categories. The combina-
tions of methylated DNA levels were calculated using a
logistic regression model, and each gene was weighted
by a coefficient value. The cutoff values were evaluated
by AUC-ROC analysis with the Youden method. A two-
tailed P value < 0.05 was considered significant.

Results

Hypermethylation of BHLHE22, CDO1, HAND2, and TBX5
can be detected in cervical scrapings of patients with ECs
Table 1 shows the clinical and pathological features of
96 patients from whom cervical scrapings and subse-
quent uterine tissue specimens were collected. These in-
cluded scraped samples of normal endometrium (n =
12), benign diseases (n = 20), endometrial hyperplasia (n
= 18), type I EC (n = 30), and type II EC (n = 16). The
methylation levels of those four genes, in terms of ACp
values, are displayed as dot plots in Fig. 1a. The lower
the ACp value, the higher the gene’s methylation status.
BHLHE?22, CDO1, and HAND2 methylation increased
significantly from normal endometrium to endometrial
hyperplasia, type I ECs, and type II ECs (P < 0.001) (Fig.
1a). Next, we calculated the AUC-ROCs for these four

Variables Normal Benign Hyperplasia Endometrial cancer (EC)
endometrium diseases Type | Type I
Number of cases 12 20 18 30 16
Age (years) 534+ 56 462 +58 464 + 6.5 553+ 69 596 £ 87
Subtypes
Adenomyosis 1 (5%)
Leiomyoma 10 (50%)
Adenomyosis and leiomyoma 9 (45%)
Endometrial hyperplasia 12 (42.9%)
Atypical endometrial hyperplasia 6 (33.3%)
Histotypes of cancer
Endometrioid 30 (100%) 3 (18.8%)
Serous 0 6 (37.5%)
Others 0 7 (43.8%)
FIGO stage of cancer
| 28 (93.3%) 10 (62.5%)
Il 0 1 (6.2%)
Il 1(3.3%) 3 (18.8%)
% 1 (3.3%) 2 (12.5%)
Histological grade of cancer
Gl 20 (66.7%) 4 (25.0%)
G2 8 (26.7%) 2 (12.5%)
G3 0 9 (56.2%)
Unknown 2 (6.7%) 1 (6.2%)
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Fig. 1 DNA methylation levels for four candidate genes detected by quantitative methylation-specific polymerase chain reaction (QMS-PCR) in 96
cervical scrapings. a DNA methylation levels are displayed as the difference in crossing point (ACp) values for each candidate gene. Dot plots
indicate the distribution of ACp values for BHLHE22, CDOT, HAND?2, and TBX5. Horizontal bars in the middle of the scattered dots indicate the
average methylation levels. The lower the Cp values, the higher the gene methylation status. P values were calculated using the Kruskal-Wallis
test. b Area under the receiver operating characteristic curve (AUC-ROC) for the DNA methylation status of the four candidate genes in cervical
scrapings. P values were < 0.001 for all analyses, and < 0.5 for the comparison of AUC-ROCs
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genes to determine the sensitivity and specificity of
methylated DNA for cancer detection in cervical scrap-
ings. The results ranged from 0.703 to 0.878 (Fig. 1b).
BHLHE?2?2 performed the best of all tested genes.

PTEN and TP53 mutations are commonly detected in
cervical scrapings from patients with a wide range of
endometrial lesions

Targeted sequencing of PTEN and TP53 revealed muta-
tions across the whole exome of each gene in the control
group (normal endometrium) and in the disease groups
without hot spots (Fig. 2a). As expected, PTEN muta-
tions were common in 63.3% of type I ECs, and TP53
mutations in 93.6% of type II ECs (Fig. 2b). TP53 muta-
tions were also common in type I ECs (63.3%), and these
were primarily missense mutations. Unexpectedly, PTEN
and 7P53 mutations were commonly found in cervical
scrapings of control patients and those with benign uter-
ine lesions. PTEN and TP53 mutations could be detected
in controls (25% and 33.3%, respectively) and patients
with benign uterine lesions (10% and 50%, respectively)
(Fig. 2b). Simultaneous PTEN and TP53 mutations

correlated with disease progression from 8.3% (controls),
to 10% (benign uterine lesions), to 34.7%, in EC cancers.

Adding genetic mutations to epigenetic methylation
aberrations compromises their performance as clinical
biomarkers

For clinical applications, any disease-correlated genetic
alterations were called positive, as shown in Fig. 3. For
example, the sensitivities and specificities of PTEN and
TP53 mutations for overall ECs were 52.2% and 86%,
and 71.1% and 62%, respectively (Fig. 3b and Table 2).
In addition to those genomic assays, we assessed
whether three combinations of DNA methylation levels
of the BHLHE22, CDO1, TBXS5, and HAND?2 genes iden-
tified in our previous study [18] might provide the best
performance for EC detection in terms of sensitivity and
specificity. The sensitivities and specificities of combined
DNA methylation were 87.0-89.1% (BHLHE22/CDO1/
HAND?2) and 80.0-86.0% (BHLHE22/CDO1/TBXS), re-
spectively. Adding genetic mutations increased the de-
tection sensitivity of type I, but not type II ECs, but the
specificity was severely compromised because of the
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numerous mutations detected in patients without ECs
(Fig. 3b).

Discussion

Endometrial cancer (EC) is the most commonly diag-
nosed gynecologic malignancy, and incidences and mor-
tality rates are increasing at an alarming pace [1]. EC
already has a high prevalence, and its morbidity and
mortality rates continue to increase; however, to our
knowledge, no existing screening method can effectively
detect either precancerous lesions or early-stage cancer.
The need for improved screening is particularly high be-
cause when detected early, EC survival rates dramatically

improve. EC is a heterogeneous disease [25], and the
risks of EC development are highly influenced by genetic
and non-hereditary factors [26]. In light of the increase
of high-risk populations due to the current aging and
obesity epidemics, women with risk factors such as post-
menopausal bleeding, breast cancer treatment with hor-
mone therapy, and a family history of Lynch syndrome
desperately need novel and noninvasive molecular bio-
markers that can detect EC early. In addition to being
useful for genetic mutation testing [11, 27], cervical
scrapings could also play a functional role in
methylation-based screening [28] to facilitate the detec-
tion of EC. To that end, this study was the first to
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investigate whether combined testing of genetic muta-
tions and epigenetic DNA methylation alterations from
cervical scrapings would increase sensitivity and specifi-
city for the detection of EC.

Our study provides supporting evidence that epigen-
etic biomarkers (i.e, a BHLHE22/CDOI-based panel)
may be more useful than genetic mutation-based bio-
markers for detecting EC. In the 96 cervical scrapings,
we found high AUC-ROCs for four hypermethylated
genes (BHLHE22, CDO1, HAND2, and TBX5, which
were previously identified by our group [18]) in patients
with type I and type II ECs compared with patients with
normal endometrium and endometrial hyperplasia.
These genes have low methylation levels in cervical le-
sions (Additional file 1: Table S1). We also demonstrated
that three-gene panels of hypermethylated BHLHE22/
CDO1/HAND?2 and BHLHE22/CDO1/TBXS5 were signifi-
cantly different between patients with and without EC.
By contrast, PTEN and TP53 mutations were commonly
found in cervical scrapings of healthy controls and those
with benign gynecologic diseases. Clonal proliferations
of nonmalignant cells and benign diseases have been

described in the bone marrow and noncancerous tissue,
and in endometriosis [29-32]. Although it these muta-
tions might reflect benign or noncancerous endometrial
lesions [10, 32], the mechanism underlying the muta-
tional changes in normal endometrium and benign uter-
ine lesions remains to be elucidated.

We also provide exploratory insights that ECs may
share common epigenetic events, and that DNA methy-
lation changes regardless of genetic heterogeneity and
clinicopathology. ECs are conventionally classified into
types I and II according to their clinicopathological char-
acteristics and heterogeneity at the genetic level. In
addition to these genetic events, the role of epigenetics
combined with mutation-driven classification remains
unknown. An important issue is whether different panels
of DNA methylation profiles might be able to distinguish
the two EC histotypes. Our previous study [18] identified
BHLHE?22, CDOI, and CELF4 methylation in cervical
scrapings as excellent molecular biomarkers for EC de-
tection. When detecting type II ECs, 14 samples, except
for one of the serous type (92.9%), showed hypermethy-
lation of this three-gene panel. Our present study further
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Table 2 Performance of genetic mutations, and methylated gene combinations, in cervical scrapings
Variables Non-endometrial cancer Endometrial cancer P value®
Number of cases 50 46
Genetic mutation
PTEN < 0.001
Mutation 7 (14.0%) 24 (52.2%)
Wild type 43 (86.0%) 22 (47.8%)
TP53 < 0.001
Mutation 19 (38.0%) 33 (71.7%)
Wild type 31 (62.0%) 13 (28.3%)
Either mutation < 0.001
Mutation 29 (58.0%) 42 (91.3%)
Wild type 21 (42.0%) 4 (8.7%)
DNA methylation
BHLHE22+CDO1 < 0.001
(cutoff value > — 02)°
High 6 (12.0%) 39 (84.8%)
Low 44 (88.0%) 7 (15.2%)
BHLHE22+CDO1+HAND2 (cutoff value > 0.22)° < 0.001
High 7 (14.0%) 40 (87.0%)
Low 43 (86.0%) 6 (13.0%)
BHLHE22+CDO1+TBX5 (cutoff value > — 0.04)° < 0.001
High 10 (20.0%) 41 (89.1%)
Low 40 (80.0%) 5 (10.9%)

2P values were calculated by the chi-square test

PCutoff values were calculated by the maximum of Youden'’s distance of receiver operating characteristic curve

confirmed that both type I and II ECs can be detected
by a BHLHE22/CDOIl-based methylation profile.
BHLHE22 (also known as BHLHBS) encodes a basic
helix—loop—helix transcription factor and has been im-
plicated in neural development, including cell growth,
cell differentiation, and cell migration [33]. CDOI is a
tumor suppressor gene, and methylation of its promoter
region has been found in numerous cancers [34, 35].
Additionally, T-box transcription factor 5 (TBXS) is a
member of a phylogenetically conserved family of genes
involved in the regulation of developmental processes.
The function of TBXS5 in cancer development is largely
unclear [36-38]. HAND2 is a progesterone-regulated
stem cell polycomb group target gene that encodes a
transcription factor expressed in the endometrial stroma
to suppress estrogen-mediated signals. One previous
study [14] reported that DNA methylation of HAND2
could be a key step in EC development and, thus, could
potentially be used as a biomarker for the early detection
of ECs.

Today, mutations in PTEN and TP53 are best docu-
mented in genetic lesions occurring in sporadic ECs. In
our present and previous studies, PTEN mutations were
detected in 63.3% of type I ECs and 31.2% of type II ECs

[5, 39]. Up to 93.6% of type II and 63.3% of type I EC pa-
tients harbored detectable TP53 mutations in their cer-
vical scraping samples. Therefore, TP53 mutations are
not restricted to type II endometrial serous carcinomas;
they are also present in a subset of type I endometrial
endometrioid carcinomas. The potential relationship be-
tween mutations in 7P53 and PTEN, as observed in
endometrial carcinoma, is still poorly known [40-42].
Furthermore, to ensure that genetic screening profiles
are more informative, we assert that the mutation-based
detection thresholds should be stricter, and that the cri-
teria to determine cutoff points should be more specific.
PTEN mutations seem to be of little importance in uter-
ine cervical lesions [43]. Our supplementary data showed
that PTEN and TP53 mutations had been found in 13%
and 9% of cervical squamous cell carcinoma cases, re-
spectively (Additional file 1: Figure S2). Recently, Salk
et al. reported that subclonal mutations in cancer evolu-
tionary processes were ubiquitous and part of normal
human aging. Therefore, great care must be taken to dis-
tinguish tumor-derived from age-associated mutations in
high-sensitivity clinical cancer diagnostics [44].

Despite its notable findings, our study had several limi-
tations. First, it was retrospective rather than prospective.
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Moreover, the samples examined were derived from pa-
tients with abnormal uterine bleeding. In a screening set-
ting, endometrial premalignant lesions and cancers will
include earlier stage cancers and asymptomatic women.
Early detection and treatment prediction require further
validation, both in prospective and unbiased cohorts. Add-
itionally, we need to explore the value of combined genetic
and epigenetic analyses of DNA obtained from cervical
scrapings during a routine Pap test in asymptomatic
women to detect hidden ECs. Second, cutoff values for can-
didate biomarker genes for research purposes might not be
directly applicable to clinical settings or the wider popula-
tion, thereby warranting further validation in larger,
population-based studies. Third, we found mutation and
methylation changes in cervical scrapings from women
with normal endometrium and benign uterine diseases.
These “background” readings could interfere with the sensi-
tivity and specificity rates of the detection of ECs, necessi-
tating some type of filtering. Finally, the highest
methylation levels we detected were in fully cancerous tis-
sues, atypical endometrial hyperplasia, or stage I diseases.
Thus, future studies should concentrate on identifying bio-
markers specific for these types of cells for early detection.

Conclusions

In conclusion, we demonstrated promising epigenetic bio-
markers in cervical scrapings for EC screening to triage
women with abnormal uterine bleeding for invasive proce-
dures. These epigenetic biomarkers could broaden the
scope of Pap testing and potentially be employed to detect
ECs in the early stage, when the disease is easiest to treat.
The value of adding genetic- to epigenetic-based bio-
markers to detect EC requires further investigation.
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from The Cancer Genome Atlas and the PanCancer Atlas studies were
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