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Abstract

Background: Epigenome-wide association studies using DNA methylation have the potential to uncover novel
biomarkers and mechanisms of cardiovascular disease (CVD) risk. However, the direction of causation for these
associations is not always clear, and investigations to-date have often failed to replicate at the level of individual loci.

Methods: Here, we undertook module- and region-based DNA methylation analyses of incident CVD in the
Women’s Health Initiative (WHI) and Framingham Heart Study Offspring Cohort (FHS) in order to find more robust
epigenetic biomarkers for cardiovascular risk. We applied weighted gene correlation network analysis (WGCNA) and
the Comb-p algorithm to find methylation modules and regions associated with incident CVD in the WHI dataset.

Results: We discovered two modules whose activation correlated with CVD risk and replicated across cohorts. One of
these modules was enriched for development-related processes and overlaps strongly with epigenetic aging sites. For
the other, we showed preliminary evidence for monocyte-specific effects and statistical links to cumulative exposure
to traditional cardiovascular risk factors. Additionally, we found three regions (associated with the genes SLC9A1,
SLC1A5, and TNRC6C) whose methylation associates with CVD risk.

Conclusions: In sum, we present several epigenetic associations with incident CVD which reveal disease
mechanisms related to development and monocyte biology. Furthermore, we show that epigenetic modules may act
as a molecular readout of cumulative cardiovascular risk factor exposure, with implications for the improvement of
clinical risk prediction.

Background
Genetic approaches to cardiovascular disease (CVD)
research have led to important breakthroughs in mecha-
nistic understanding and therapeutic strategies. However,
the mechanisms for gene variant-disease relationships are
often difficult to determine, and their effects may often be
mediated by epigenetic regulation [1]. DNA methylation
is one such mechanism that can reflect both genetic vari-
ation and environmental exposures and potentially drive
their effects on CVD outcomes [2].
A series of recent epigenome-wide association stud-

ies (EWAS) have examined relationships between DNA
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methylation at cytosine-phosphate-guanine (CpG) sites
and various subtypes of CVD, including prior myocar-
dial infarction (MI) [3], acute coronary syndrome [4],
and atherosclerosis [5]. These cross-sectional studies may
reveal important mechanistic insights, but are susceptible
to reverse causation, i.e. methylation being influenced by
the presence of CVD. Indeed, Mendelian randomization
approaches across multiple phenotypes have suggested
that reverse causation is more common [6, 7] than the
causal methylation effect that is often implicitly assumed.
One approach to this problem is to examine epigenetic
associations with cardiovascular risk factors. Multiple
investigations have explored these relationships genome-
wide [8, 9] and have even uncovered prognostic CpG sites
for incident coronary heart disease (CHD) in the process
[10, 11]. A few studies looking directly at incident CVD
as a binary variable have found relationships with global
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DNA methylation (as approximated by LINE-1 methyla-
tion levels) and with a specific cluster of CpG sites in the
ZBTB12 gene [12, 13].
Studies linking CVD and methylation have additionally

shown a notable lack of replication, especially at the level
of single CpG sites [14]. One approach to this problem is
to aggregate CpGs and test their phenotype associations
at the group level. Differentially methylated region (DMR)
searches may improve detection by combining sites based
on physical proximity on the genome [15, 16]. An alter-
native grouping strategy is to search for correlation-based
clusters, which may boost biological signal and improve
the interpretability of results [17]. This approach was orig-
inally developed for use with gene expression data, but
has been successfully applied to higher-dimensional DNA
methylation microarray datasets [18, 19].
To address the problem of reverse causation by CVD

while achieving more robust results, we set out to ana-
lyze relationships between group-level CpG methylation
and incident CVD using time-to-event models in two
cohorts. We used module- and region-based techniques
to improve detection and provide more interpretable
results. We sought context for two specific modules of
interest using gene- and chromatin-based annotations,
and compared module activations to past and current car-
diovascular risk factor levels to better understand their
potential biological mechanisms.

Methods
Study participants and phenotype collection
Data for the discovery set came from a combined
case-control and pseudo case-cohort sampling of 2129
women from the Women’s Health Initiative study, a larger
prospective cohort beginning in 1993 that included over
160,000 postmenopausal women from across the USA
[20]. Included subjects had no self-reported CVD at base-
line, and cases were chosen based on incident centrally
adjudicated angina, revascularization, or CHD event dur-
ing follow-up. Inclusion criteria for methylation measure-
ment resulted in an oversampling of African American
and Hispanic participants. Blood samples used for mea-
surement of DNA methylation and clinical biochemistry
were taken at Exam 1. Data are available in the dbGaP
public repository (accession: phs000200.v11.p3; down-
loaded on September 27, 2017).
Data for the validation set came from a substudy of

the Framingham Heart Study that measured DNAmethy-
lation in 2726 subjects from the Offspring Cohort. The
Framingham Offspring Cohort was originally established
in 1971 to follow 5209 descendants of the original Fram-
ingham Heart Study participants and their spouses [21].
Fasting blood samples for both methylation and clinical
biochemistry were collected from participants at Exam 8,
which took place from 2005-8. Blood samples were also

provided for clinical biochemistry measurements in pre-
vious exams, constituting the “past exposures” examined
here. Data are available in the dbGaP public repository
(accession: phs000007.v29.p10; downloaded on Septem-
ber 27, 2017). Adjudicated cardiovascular event data was
collected through 2015, and events were defined here as
any of MI, angina pectoris, stroke (approximately 90%
being ischemic), or death from CHD (Framingham event
codes 1–29).
Blood-based biochemical markers (total cholesterol,

low-density lipoprotein cholesterol (LDL), high-
density lipoprotein cholesterol (HDL), triglycerides,
glucose, hsCRP, and systolic blood pressure) were
log10-transformed for all analyses. In addition, median
imputation was used to fill missing values for BMI (20
individuals in total), medication use, and smoking status
(thus assuming no medication use and no smoking where
these values were missing). Diabetes was defined as either
use of diabetes medication or a measured fasting blood
glucose level of >125 mg/dL. While directly available in
WHI, pack-years of smoking was approximated in FHS by
multiplying the number of years since starting smoking
by the current number of packs per day.

DNAmethylation data processing
In both cohorts, DNA methylation data were collected
using the Illumina HumanMethylation450 microarray
platform [22] and downloaded as raw intensity files. Pre-
processing was performed using the minfi and wateR-
melon packages for R [23, 24]. As a quality control step,
samples were removed if they showed weak overall sig-
nal based on visual inspection of an intensity plot, if they
had more than 10% of probes undetected at a detec-
tion threshold of p<1e−16, or if the reported sex did
not match the predicted sex based on methylation pat-
terns. Probes were removed if they met any of the fol-
lowing criteria: more than 10% of samples undetected
at a detection threshold of p<1e−16, location in the X
or Y chromosomes, non-CpG probes, cross-hybridizing
probes, probesmeasuring SNPs, and probes with an anno-
tated SNP at the CpG site or in the single-base exten-
sion region. Samples were normalized using the Noob
method for background correction and dye-bias normal-
ization, followed by the BMIQ method for probe type
correction [25, 26]. For each dataset, principal compo-
nents analysis was performed on the set of control probes
using code adapted from the CPACOR method of Lehne
et al. to account for technical variation [27]. Blood cell
counts for 6 blood cell types (CD4+ T cells, CD8+ T
cells, B cells, natural killer cells, monocytes, and granu-
locytes) were estimated using a common reference-based
method [28]. After quality control and filtering steps,
422,952 (WHI) and 425,326 (FHS) CpG sites remained
for downstream analysis, formatted as beta values (ratio
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of methylated signal to total microarray signal). The vast
majority of these sites (422,688) were available in both
datasets.

Weighted gene correlation network analysis
Weighted gene correlation network analysis (WGCNA)
was used to find highly correlated modules of CpG sites
[17]. The full set of 422,952 CpGs passing quality con-
trol from WHI were used as input. For computational
tractability, blockwise module detection was performed,
which treats blocks of features separately for network cre-
ation andmodule detection, followed by eventual merging
of highly similar modules. To allow for reasonable com-
putation time, the initial pre-clustering analysis (used to
inform the choice of blocks) was performed in a ran-
dom subset of 100 subjects. A block size of 20,000 was
used, and a soft-thresholding power of 8 was chosen
to balance approximately scale-free network properties
with network connectivity. Unsigned networks were used,
based on the fact that the biological consequences of
an increase vs. decrease in DNA methylation are much
less clear than those of gene transcripts. Whole-module
behavior was assessed using the first component from a
principal components analysis, performed separately for
each module. Scree plots were used to inform the vari-
ance explained by each module as well as to justify the
use of a single eigenvector as a proxy for module behavior.
Module preservation assessment was completed in FHS to
confirm cross-dataset robustness of modules. The mod-
ulePreservation function calculates permutation-based
Zsummary statistics reflecting the preservation of density
(of within-module adjacencies) and connectivity (mainte-
nance of within-module node correlations) whenmodules
are evaluated in a test set [29]. EigenCpGs were then cal-
culated (according to the principal component weights
from WHI), followed by assessment of associations with
incident CVD.
Module associations with cardiovascular disease were

assessed using Cox proportional hazards regressions, with
eigenCpGs as the independent variable and time-to-event
measures for incident CVD as the dependent variable.
Minimal models adjusted for estimated blood cell counts
as well as technical covariates (DNA pull batch in WHI;
analysis center + 7 control-probe principal components
in FHS—see EWAS section for details). Fully adjusted
models adjusted additionally for biological covariates (age,
BMI, smoking status, and pack-years of smoking; sex in
FHS; race in WHI). Proportional hazards checks were
implemented (cox.zph function in R), and no violations
of the Cox regression assumptions were detected at
p < 0.05 for any of the modules in WHI or FHS. Mixed
models to account for family structure in FHS were also
explored, but were found to generate highly similar results
(Additional file 1: Table S1).

Epigenome-wide associations of DNAmethylation with
incident CVD events
For the EWAS analysis, each CpG site was assessed using
the same regression framework as in the module-based
models, separately in both WHI and FHS. Methylation
beta values replaced eigenCpGs as the independent vari-
able, and the full set of technical and biological covariates,
including cell type composition estimates, was used. To
remove the influence of beta-value outliers, samples were
excluded for each CpG if their beta value was outside
of the interval [25%ile - 3 ∗ IQR, > 75%ile + 3 ∗ IQR].
QQ plots and calculation of the genomic inflation factor
λ revealed that genomic inflation was not initially ade-
quately controlled in FHS, but after additional adjustment
for 7 CPACOR principal components (chosen based on a
Scree plot assessment of CPACOR results), a reasonable
inflation of λ = 1.09 was achieved. CPACOR uses princi-
pal components analysis on the set of control probes from
the methylation array in order to estimate and control for
potential batch effects without disturbing biological signal
[27]. Proportional hazards checks were implemented as in
the module-based analysis for the top EWAS hits in WHI,
and no systematic departure from the Cox regression
assumptions were detected.
Comb-p, implemented as a Python module, was used

to call differentially methylated regions (DMRs). The
algorithm takes as input p values from the EWAS,
removing the requirement for additional covariate adjust-
ment. Comb-p first calculates an autocorrelation function
(ACF), for which a maximum distance of 1 kb and a step
size of 50 bases were used. Next, it uses the ACF to adjust
each p value using a Stouffer-Liptak-Kechris correction
[30], followed by identification of contiguous regions of
sites with adjusted p values below some threshold (here,
p<0.1 with no more than 500 bases between neighbor-
ing sites in a region). Finally, the ACF is recalculated out
to the maximum region size (a step size of 50 was used
here as well) and regional p values are calculated using the
Stouffer-Liptak test. For Sidak multiple testing correction
of DMRs [31], Comb-p calculates the number of effective
tests separately for each DMR as the number of loci tested
divided by the number of loci in the region, thus approxi-
mating a correction for the total number of regions while
accounting for region size.
DMRs were examined to evaluate whether their con-

stituent CpGs contained any residual SNPs-under-probe
that escaped filtering based on the Illumina Human-
Methylation450 annotation. These checks were per-
formed manually using the UCSC Genome Browser [32]
and a dbSNP-based annotation track displaying common
(≥1% minor allele frequency) variants.
Mendelian randomization (MR) analyses were under-

taken for the 4 DMR CpGs that participated in mQTLs in
whole blood in the mQTLdb [33]. Relevant mQTL SNPs



Westerman et al. Clinical Epigenetics          (2019) 11:142 Page 4 of 14

were retrieved from mQTLdb and used as input to the
MR-Base platform [34]. MR analysis was run using MR-
Egger, weighted median, inverse variance weighted, and
weighted mode methods where possible, and the Wald
ratio method where only one SNP was available. Outcome
summary statistics for MI and CHD were taken from
GWAS in the CARDIoGRAMplusC4D consortium [35].
LD-based clumping was used to prune correlated SNPs
prior to analysis, with default values used for all other
parameters. For follow-up of one SNP of interest, tissue-
specific eQTL data were explored in the GTEx Portal
(release v7).

Module enrichment analyses
Gene ontology-based enrichment analysis of modules was
performed using the gometh function from the miss-
Methyl package for R [36]. In this procedure, CpG sites
are annotated to genes using the HumanMethylation450
microarray annotation from Illumina, resulting in a binary
vector indicating whether each gene is associated with any
of the CpG sites of interest (for example, CpGs consti-
tuting a module). Prior probabilities for each gene being
selected are estimated based on the total number of asso-
ciated CpG sites on the array. Enrichment analysis is then
performed for each gene ontology category using Walle-
nius’ noncentral hypergeometric distribution, which gen-
eralizes the basic hypergeometric distribution to account
for biased sampling.
Locus-based enrichment analyses were performed

using basic two-tailed hypergeometric tests for over-
lap between module membership and annotation cate-
gory membership. CpG annotations with respect to both
CpG islands (Island, North shore, Open sea, etc.) and
genes (TSS1500, 3’ UTR, Body, etc.) were retrieved from
the standard Illumina HumanMethylation450 microar-
ray annotation. CpG sites were annotated for Polycomb-
group target status using embryonic stem cell SUZ12
binding regions retrieved from Lee et al. [37]. A similar
approach was taken to calculate enrichment of epigenetic
age CpGs in module sets, replacing annotation category
membership with membership in the corresponding epi-
genetic age biomarker.

Inference of cell type specificity
Epigenomic annotations were used to test for relative
enrichment of module CpGs in cell type-specific regu-
latory regions. Annotations for broad peaks in DNase
sensitivity as well as ChIP-seq signal for H3K4me1 and
H3K4me3 were obtained for 6 blood cell types (mono-
cytes, natural killer cells, T cells, B cells, and hematopoi-
etic stems cells from males and females) from the NIH
Roadmap Epigenomics Project database [38]. For each
combination of epigenomic feature and cell type, CpGs
from the HumanMethylation450 array were classified as

to their membership in a peak region. Relative enrich-
ments of in-peak CpGs for modules were then calculated
as the ratio of #CpGin−peak

#CpGtotal module
to #CpGin−peak

#CpGtotal all
and pre-

sented as log2(relative enrichment) for ease of visualiza-
tion. Cell type specificity of different modules can then
be compared by examining relative enrichments across
cell types, especially with respect to highly represented
regulatory annotation types (e.g., DNase hypersensitiv-
ity sites for a module enriched in enhancers). We note
that this method borrows from the permutation-based
eFORGE tool methodology [39], which could not be used
here due to the size of the blue module. However, we
confirmed similarity of our results to those from the
eFORGE method for the brown module (Additional file 1:
Figure S3).
Cell type-module interaction analyses were undertaken

using a similar approach to that of the CellDMC algo-
rithm for cell type-specific differentially methylated cyto-
sine discovery [40]. Current implementations of CellDMC
do not support time-to-event models. Partially adjusted
models were built in FHS as was done for the ini-
tial module-CVD replication, while including interaction
terms between the brown module and each of 5 esti-
mated cell type fractions (leaving out estimated granulo-
cytes). The reported interaction term of interest was that
between the brown module and monocyte fractions as
influences time-to-event for CVD.

Risk factor integration
Risk factors were incorporated into the module-based
analysis in a series of steps. First, Pearson correlations
between risk factor levels and module eigenCpGs were
calculated to provide a high-level understanding of the
strength of their relationship. Risk factors inWHI were all
measured at Exam 1 (concurrently with the methylation
measurement), while risk factors in FHSwere collected for
all exams prior to and including Exam 8 (the time of the
methylationmeasurement). In FHS, correlations with past
risk factor levels as well as a “cumulative” exposure level
(equal to the mean of each set of risk factor levels from
Exams 1 to 7) were also calculated.
Next, linear models were used to assess these same

module-risk factor correlations in FHS while adjusting for
potential confounding variables. These models predicted
module eigenCpGs using either cumulative (Exams 1–7)
or current (Exam 8) risk factors, while adjusting for the
same set of technical and biological covariates as in the
EWAS (described above). In this step, both eigenCpGs
and risk factors were standardized before modeling in
order to facilitate effect size comparisons across risk fac-
tors and across modules.
Finally, the relationship between cumulative risk factors,

the brown module, and incident CVD was examined,
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using the same Cox regression setup as in the EWAS to
perform a basic mediation analysis for BMI, hsCRP, and
triglycerides. Here, cumulative risk factor exposure (as
defined above) acted as the exposure, brown methylation
module activation (represented by the brown eigenCpG)
acted as the mediator, and incident CVD acted as the out-
come. Having established the strong exposure-mediator
links, three subsequent Cox models were examined:
cumulative risk factors only, brown eigenCpG only, and
both simultaneously. All models adjusted for the full set of
technical and biological covariates as well as the “current”
level (i.e., at Exam 8) of the risk factor in question.

Results
Weighted correlation network approach finds CVD-related
modules
Population characteristics are described in Table 1. The
discovery set, Women’s Health Initiative (n=2023), had a
median age of 65 at blood draw and is entirely female,
while being selected for an approximately equal ratio of
subjects who did and did not experience an incident CVD
event following the methylation measurement timepoint.
The replication set, Framingham Heart Study Offspring
Cohort (n=2587), had a median age of 66 at blood draw
(Exam 8) and is approximately half female, with 305 sub-
jects experiencing incident CVD events. Cardiovascular
events were defined here as encompassing CHD, stroke,
and death from CVD (see the “Methods” section for
further details).

We first set out to find biologically relevant mod-
ules in an unsupervised manner (agnostic to incident
CVD information) using the WGCNA algorithm for
422,952 CpGs in WHI passing quality control filters
(study overview in Additional file 1: Figure S1). After
weighted correlation network construction, topological
overlap calculation, and subsequent clustering, 110 mod-
ules were uncovered, ranging in size from 28 to 35,361
CpGs. Thesemodules were assigned unique color labels as
identifiers.
Principal component eigenvectors for eachmodule were

calculated in order to examine the characteristics of these
modules as a whole. The first principal component of
each module tended to explain approximately half of the
total variance, while the rest contributed only small frac-
tions (see Additional file 1: Figure S2 for selected Scree
plots). Thus, these first eigenvectors, or “eigenCpGs”, were
subsequently used to describe module behavior. Cox pro-
portional hazards models were used to assess the rela-
tionships between these module eigenCpGs and incident
CVD. In partially adjusted models (adjusted for techni-
cal factors and estimated white blood cell proportions),
three modules were found to be associated at multiple
test-corrected false discovery rate (FDR) < 0.2 (Table 2;
correction based on 110 modules). Adjustment for bio-
logical covariates (age, BMI, sex/race, and smoking behav-
ior) attenuated these relationships to marginal statistical
significance (all 0.01 < p < 0.1; direct risk factor associ-
ations shown in Fig. 3). These modules showed strong

Table 1 Population description

FHS WHI

Sample size 2587 2023

% female 55% 100%

Age at blood draw 66 (60–73) 65 (59–70)

Mixed ancestry No Yes

Body mass index (BMI) 27.7 (24.5–31) 29.1 (25.5–33.3)

% smoke currently 9% 10%

Smoking pack-years 0 (0–0) 0 (0–12.5)

No. of prior CVD events 331 0

No. of incident CVD events 305 1009

Total cholesterol (Chol; mg/dL) 185 (161–211) 230 (206–259)

LDL-cholesterol (LDL; mg/dL) 104 (84–126) 150 (126–175)

HDL-cholesterol (HDL; mg/dL) 55 (44–68) 51 (43–60)

Triglycerides (TG; mg/dL) 102 (74–142) 127 (92–177)

Fasting glucose (Glu; mg/dL) 101 (94–110) 96 (88.6–108)

High-sensitivity C-reactive protein (hsCRP; mg/dL) 1.5 (0.8–3.2) 3.1 (1.4–6.5)

Systolic blood pressure (SBP; mmHg) 127 (116–139) 131 (120–143)

Continuous values shown as median (interquartile range). Ninety-two subjects experienced both prior and incident CVD events
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Table 2 Modules associated with incident CVD at FDR < 0.2

EigenCpG Enrichment analysis

Module Size Var. expl. (%) p GO terms CpG Islands Gene-based

Blue 29441 44.61 0.00027 Development N_shore 1stExon/TSS/5’ UTR

Brown 953 53.08 0.00455 Immune activation Open sea

Purple 568 44.88 0.00500 T cell activation Open sea Body

(FDR < 10−4) enrichment for different sets of GO terms,
ranging from immune activation (myeloid or T cell) to
developmental processes.
All three modules showed very strong preservation in

FHS (all Zsummary statistics > 50, where 10 is a typi-
cal threshold for strong preservation), when evaluated
using established density and connectivity preservation
techniques [29]. Of these, two associations with incident
CVD (blue and brown) replicated strongly in FHS, while
purple showed nominal replication (p = 0.0203) in par-
tially adjusted models (Additional file 1: Table S1). Fully
adjusted models including age as a covariate attenuated
(brown) or abolished (blue and purple) these associations
in FHS.
Though the existence of past CVD events (experienced

prior to sample collection for DNA methylation measure-
ment) could represent a confounder in the FHS dataset,
sensitivity analyses adjusting for past events did not
appreciably reduce the strength of thesemodule-trait rela-
tionships. Also of potential relevance to this replication is
the demographic heterogeneity between the two cohorts.
To address this possibility, we performed additional anal-
yses including interaction terms between eigenCpGs for
each module and either sex (in FHS) or race (in WHI).
None of these analyses produced significant interaction
terms at p < 0.05.

Genome-wide associations between DNAmethylation and
incident CVD events
To investigate more specific DNA methylation signals, we
performed an epigenome-wide association study (EWAS)
for incident CVD. Of single sites from the EWAS, 3
reached a genome-wide Bonferroni threshold, but none
replicated strongly in FHS (Additional file 1: Table S2).
In order to improve statistical power, we focused on dif-
ferentially methylated regions (DMRs) with respect to
incident CVD status. Single-site EWAS p values were
used as input to the Comb-p algorithm, which seeks
regions enriched for low p values while accounting
for autocorrelation based on genomic distance. Comb-
p was applied separately to EWAS results from WHI
and FHS.
Two hundred six DMRs were found in WHI after Sidak

multiple testing correction for each DMR based on its
length. Of these, 3 were both found in FHS and replicated

at a Bonferroni level (Table 3; Fig. 1). These regions were
annotated to two cellular transport genes (SLC9A1 and
SLC1A5) and TNRC6C, which codes for a scaffolding pro-
tein involved in miRNA-mediated translational repres-
sion. Of the three WGCNA modules identified above,
brown CpG sites constituted part of 2 DMRs (at SLC9A1
& SLC1A5), while a single CpG from the blue module was
also a member of the SLC9A1 DMR.
Of CpGs in these 3 identified DMRs, 4 (2 in SLC1A5

and 1 each in SLC9A1 and TNRC6C) were involved in
methylation-quantitative trait loci (mQTL) based on the
mQTLdb [33]. For these 4 CpGs, a Mendelian randomiza-
tion analysis was undertaken using the MR-Base platform
[34] to assess the potential causality of their methylation
for myocardial infarction (MI) and coronary heart dis-
ease CHD). While no associations were found for 3 of
the 4 CpGs, a modest single-SNP relationship linked a
cis-mQTL for cg22304262 with MI (p = 0.013) and CHD
(p = 0.072). This SNP, rs8105903, was also found to mod-
ify SLC1A5 expression levels in whole blood based on the
GTEx database [41]. Taken together, these data are consis-
tent with a small effect of DNAmethylation at SLC1A5 on
CVD, possibly acting through regulation of SLC1A5 gene
expression.

Exploration of the brown and blue modules
Based on the results from the module- and region-
centric analyses, we investigated the brown and blue
modules further for biological significance. The brown
module was associated with immune-related genes as
noted above, andwas enriched strongly for “open sea” sites
(p = 1.1e−42) and annotated enhancers (p = 1.7e−33).
In contrast, the blue module was associated with
development-related genes, and was enriched moderately
for sites near genic transcription start sites and strongly
for CpG islands (p < 2.2e−16) (Fig. 2a, b).
Given these observations, we examined relative enrich-

ments of enhancer- and promoter-associated histone
marks across different blood cell subtypes to better under-
stand the cell type specificity of this signal. Epigenetic
peaks were annotated using data from the Roadmap
Epigenomics Project [38] and relative enrichments were
calculated as the fraction of module CpGs found in peaks
divided by the fraction of all CpGs found in peaks (see the
“Methods” section for details).
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Table 3 Comb-p regions with multiple test-corrected p < 0.05 in WHI and Bonferroni p < 0.05 in FHS

Discovery Replication

Location # CpGs Annotated gene Genomic region p Adj. P p

chr1:27440462-27440721 3 SLC9A1 Body 1.75e−08 2.85e−05 1.03e−04

chr19:47287777-47288263 6 SLC1A5 CpG shelf near TSS 5.91e−e-04 3.80e−10

chr17:76037034-76037562 6 TNRC6C CpG island in 5’ UTR 1.67e−05 1.33e−02 1.89e−04

We observed the greatest enrichment of brown CpGs
in 2 enhancer-associated chromatin annotations, DNase
hypersensitivity sites (DHS) and H3K4me1 histone peaks,
from monocytes compared to other blood cell subtypes
(Fig. 2c). This could point towards monocyte-related
biology and inflammatory processes as an important
shared mechanism for cardiovascular risk between the
two cohorts examined here. To validate this observation,
an additional analysis based on the CellDMCmethod [40]
was undertaken, based on the idea that cell type-specific

epigenetic changes will result in statistical interactions
between cell types and epigenetic quantities. Adapting
this method to the epigenetic module level and applying it
using partially adjusted Cox models in FHS, no meaning-
ful statistical interaction between monocyte fractions and
brown module activation were observed (positive interac-
tion; p = 0.83). In contrast to themonocyte-related enrich-
ments for the brownmodule, blue CpGs were enriched for
DHS and promoter-associated H3K4me3 histone peaks
from hematopoietic stem cells (HSCs), providing a link to
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peaks (ratio of in-module fraction to all-CpG fraction) for a given epigenetic mark across many blood cell types, for each of the modules of interest

the observed enrichment of development-related genes in
this set.
The module CpG sets were also compared to two exist-

ing methylation-based age predictors from Horvath and
Hannum et al., as well as the recent morbidity-directed
phenoAge [42–44]. While enrichments for brown CpGs

were moderate to nonexistent, blue CpGs were strongly
enriched for all three of these sets, most highly for
the original DNAm age developed by Horvath (46/353;
p = 3.4e−5; hypergeometric test), despite the fact that this
model was developed based on only ~21,000 CpGs shared
between multiple versions of the Illumina methylation
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microarray platform. Furthermore, 28 of these 46 CpGs
had associated positive coefficients in the DNAm age
predictor. This subset has been previously observed to
contain a disproportionate amount of Polycomb-group
target genes, which are known to associate with devel-
opmental processes and to be generally hypermethylated
with age [45]. Using SUZ12 binding regions [37] as a proxy
for Polycomb-group targets, we confirmed their enrich-
ment in the blue module (p = 1.37e−07). Surprisingly, the
blue eigenCpG showed only a modest correlation with age
itself (r = 0.09).

Module-risk factor relationships
Next, we examined correlations between these module
eigenCpGs and traditional cardiovascular risk factors.
Though no extremely strong module-risk factor corre-
lations were observed (all |r|<0.25), they tended to be
stronger for the brownmodule, especially in FHS (Fig. 3a).
Age showed the greatest association, while lipid and
glycemic parameters also showed moderate associations.
To further probe relationships between the brown mod-
ule and risk factors in FHS, we retrieved historical risk
factors measured in previous Offspring Cohort exams.
Visual inspection revealed a notably stronger correlation
between the module eigenCpG and cumulative (mean
of all previous exams) compared to current risk factor
exposure. This pattern applied for systolic blood pressure
(strongly), triglycerides, glucose, BMI, and LDL (which

correlated in the “expected” direction cumulatively, but
non-intuitively at Exam 8) (Fig. 3b).
To better investigate this phenomenon, we tested asso-

ciations between the brown module and each of the
cumulative risk factors after adjustment for potential con-
founders. Specifically, for each risk factor, linear models
were used to predict the brown eigenCpG value from
either the current or cumulative risk factor level while
adjusting for the full set of EWAS covariates other than
BMI (age/sex/smoking/cell counts/study center/7 ctrl-
probe PCs). Only for the brown module did cumulative
risk factor exposure show strong associations, which were
generally equal to or stronger than those of the current
risk factors, most notably for BMI, hsCRP, and triglyc-
erides (Table 4). Though more recent medication use
could possibly explain discrepancies between biological
relationships with current and past risk factors, adjust-
ment for hypertension and lipid medication use did not
notably affect the results of these models.
Finally, we used the basic mediation approach of Baron

and Kenny [46] to test whether brown module activa-
tion may mediate a portion of the effects of cumulative
risk factor exposure on cardiovascular risk. A series of
Cox models were created in FHS for these three most
strongly associated risk factors (BMI, hsCRP, and triglyc-
erides). Covariates in all models included current values
for the risk factor in question, as well as technical factors,
estimated cell counts, age, and sex. Current risk factors
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Fig. 3 Risk factor-module relationships. a Pearson correlations between a series of traditional cardiovascular risk factors and module eigenCpGs
(blue and brown) are shown in each study population. b Pearson correlations between historical risk factor levels in FHS (across previous exams,
x-axis) and current brown module activation are shown. Gray panels indicate that the risk factor in question was not available for the corresponding
exam (LDL and hsCRP) or was not analyzed with respect to past exams (smoking and age)
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Table 4 Module-risk factor relationships (current and cumulative) after adjustment for covariates

Brown Blue

Risk factor Current Cumulative Current Cumulative

BMI 0.036 (4.3e−06) 0.051 (2.3e−10) 0.026 (0.0061) 0.019 (0.051)

Glu 0.021 (0.011) 0.027 (0.0011) − 0.00065 (0.95) − 0.0045 (0.66)

hsCRP 0.021 (0.0077) 0.039 (1e−06) 0.025 (0.011) 0.014 (0.15)

TG 0.018 (0.02) 0.042 (5e−07) 0.021 (0.03) 0.015 (0.14)

HDL − 0.021 (0.015) − 0.017 (0.056) − 0.038 (0.00031) − 0.03 (0.0067)

LDL − 0.012 (0.13) 0.0089 (0.29) − 0.00072 (0.94) 0.027 (0.0088)

Chol − 0.014 (0.11) 0.019 (0.021) − 0.013 (0.2) 0.012 (0.24)

SBP 0.012 (0.15) 0.024 (0.0084) − 0.011 (0.27) − 0.0015 (0.89)

Regression results are presented as beta (p value). Models are adjusted for age, sex, smoking status and pack-years, estimated cell counts, study center, and 7 control probe
principal components

did not show notable relationships with incident CVD
in any of the models. Having established the exposure-
mediator relationships (Table 4), we tested the association
with CVD risk of (1) cumulative risk factors, (2) mod-
ule eigenCpGs, and (3) both quantities together (Table 5;
example causal diagram using hsCRP in Additional file 1:
Figure S4). In general, the significance of the module rela-
tionships with CVD tended to decrease in the presence
of cumulative risk factor values. This fits with a model in
which, rather than mediating cardiovascular risk, module
activation acts as a biomarker for the actions of cumula-
tive risk factor exposures by some other mechanism. As
only subjects with current risk factor values were included
in each model, sample sizes were largely identical across
models.

Discussion
Here, we performed a primarily module-based epigenetic
analysis of incident cardiovascular events in order to find
robust, prospective biomarkers and uncover novel mecha-
nisms contributing to disease risk.We began by construct-
ing correlation-based clusters in the methylation data
from WHI using the WGCNA algorithm. This network-
based feature clustering approach can potentially improve
the signal-to-noise ratio of high-dimensional DNAmethy-
lation data while facilitating more clear biological inter-
pretation of results [47]. As WGCNA does not consider
class labels (i.e. incident CVD status), the 110 modules
uncovered were not a priori expected to be related to
CVD and rather reflected unbiased patterns in the data.
After correction for multiple testing, the first principal
components (eigenCpGs) of three of these modules were
found to be related to incident cardiovascular events. A
gene ontology-based enrichment analysis of the genes
annotated to these modules found strong enrichment for
either immune-related or development-related processes.
The finding of immune-related processes is intuitive given

that DNA from blood measures primarily immune cells,
while the development-related enrichment could possibly
reflect influences during early life [48]. Notably, these two
module “types” (immune and development) have been
uncovered in a prior network-based DNA methylation
analysis related to asthma [19], suggesting that similar
module types are a potentially general feature of blood-
based methylation patterns and that these patterns may
not be fully cardiovascular-specific, reflecting instead a
predisposition toward general inflammatory disease pro-
cesses. Both in WHI and in replication in FHS, two
modules (blue and brown) showed strong relationships
with incident CVD that were attenuated after adjustment
for age (direct correlations of these modules with age are
presented in Fig. 3).
We examined the set of module eigenvector loadings

as a proxy for the relative importance of their compo-
nent CpGs, in a similar approach to the standard calcu-
lation of gene-module correlations (or “kME” statistics)
in WGCNA analyses. As we did not observe any obvi-
ous peaks distinguishing particularly important groups
of CpGs, we undertook an epigenome-wide association
study (EWAS) in order to identify potentially stronger
locus-specific signals. Though we did not find any sin-
gle sites replicating in FHS after stringent correction for

Table 5 CVD risk models using cumulative risk factor exposure
and brown module activation

Risk factors only Brown only Full model

Risk factor Cumulative Module Cumulative Module

BMI 0.061 (0.009) 0.012 (0.1) 0.057 (0.015) 0.01 (0.16)

hsCRP 0.64 (< 0.001) 0.014 (0.054) 0.62 (< 0.001) 0.012 (0.12)

TG 1.7 (< 0.001) 0.016 (0.039) 1.7 (< 0.001) 0.012 (0.1)

Regression results are presented as beta (p value). Models are adjusted for age, sex,
smoking status and pack-years, estimated cell counts, study center, and 7 control
probe principal components
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multiple tests, a subsequent region-based analysis using
the Comb-p algorithm revealed three regions replicat-
ing strongly across the two cohorts examined here. One
was found on chromosome 1 in the body of the SLC9A1
(also known as NHE-1) gene, which codes for an inte-
gral membrane ion transporter involved in intracellular
pH maintenance. SLC9A1 has been shown to be required
for the increased adhesion, migration, and phagocyto-
sis of oxidized LDL seen in monocytes in response to
stimuli including leptin, adrenaline, and hyperglycemia
[49]. Another region discovered was on chromosome 19
near the transcription start site (TSS) of SLC1A5, which
codes for a neutral amino acid transporter. Though strong
evidence does not yet exist linking SLC1A5 to cardio-
vascular mechanisms, its CpGs have shown associations
with diabetes, blood pressure, and mortality [50–52],
and we note that its companion amino acid transporter,
SLC7A5, is known to regulate metabolic and inflamma-
tory reprogramming of monocytes in response to stim-
ulation by lipopolysaccharide (LPS). Notably, CpG sites
in both SLC9A1 and SLC1A5 were discovered and repli-
cated in a recent EWAS for BMI (including the FHS
cohort) [53], though the specific SLC9A1 site from that
study was not one of the three constituent CpGs in the
region found here. These two SLC transporter DMRs con-
tained CpGs belonging to blue (1 in SLC9A1) and brown
(1 in SLC9A1, 5 in SLC1A5) modules. The third region
was found near the TSS of TNRC6C on chromosome
17. This gene codes for a component of the miRNA-
mediated translational repression cascade, has shown up
in a genome-wide association study (GWAS) for heart
failure (not one of the phenotypes included in our CVD
definition here) [54], and was identified as a potential
target gene in the monocyte-to-macrophage transition
upon exposure to CSF-1 [55]. Common to these three
DMRs is a potential involvement in monocyte biology
specific to a stimulus response. This concept of “priming”
for subsequent response to stimulus has been observed
with respect to both monocyte activity in CVD [56]
and DNA methylation in general [57]. While a two-step
Mendelian randomization analysis here found modest
potential causal evidence for CVD for only one DMR
constituent CpG (in SLC1A5), a lack of available mQTL
SNPs for the full set of relevant CpGs prevented a full
exploration.
Based on the module- and region-level replication in

FHS, we further explored the characteristics of the brown
and blue modules. Enrichment analyses of gene-based
and locus-based annotations demonstrated that these two
modules occupy distinct biological niches. Broadly, the
brown module (consisting of about 1000 CpG sites) is
enriched for enhancers and other non-proximal regions
near immune-related genes, while the blue module (a
notably large module of almost 30,000 CpG sites) is

enriched for CpG islands near the TSS of development-
related genes. One could speculate that these modules
also represent different mechanisms of cardiovascular
risk: one related to inflammatory burden and the other
to long-term effects of early-life exposures, both of which
are well-established as contributing to cardiovascular risk
[48, 58]. Analyses based on cross-tissue epigenome anno-
tations added an additional dimension to these insights
by suggesting differential importance of blood cell sub-
types for these modules. A cell type specificity analysis,
adapted from the eFORGE algorithm [39], revealed the
enrichment of monocyte-specific regions of open chro-
matin (DNase hypersensitivity sites and H3K4me1 peaks)
in the brownmodule. This observation reinforces the idea
of monocyte-specific activity suggested by the replicated
DMRs as well as that of “monocyte priming” [56]. Based
on the tendency of blue module CpGs to be proximal
to gene TSS, we focused on enrichment for a promoter-
associated marker, H3K4me3, and found a distinct signal
related to hematopoietic stem cells. This finding supports
a potential mechanism linking early-life exposure to con-
sequences in adult life [59, 60]. We also observed that the
blue module was strongly enriched for components of a
popular epigenetic age marker [42] as well as for bind-
ing regions of the Polycomb-group member SUZ12. As
Polycomb-group targets are known to be related to devel-
opmental processes [45], this finding contributes addi-
tional support to the module’s role as a bridge between
development, aging, and disease risk.
It is not clear whether these methylation modules asso-

ciate with cardiovascular risk upstream, downstream, or
independently of traditional cardiovascular risk factors
(including age, blood pressure, BMI, smoking, and lipid
levels). To explore these relationships, we began by cal-
culating correlations between risk factor levels and blue
and brown module activations. Blue correlations were
largely weak, while brown correlations were somewhat
stronger, following the hypothesis that the blue module
is more relevant to early-life, rather than adult, expo-
sures as compared to brown. However, as a semi-stable
biological quantity, methylation may have the ability to
act as a “molecular recorder” of past exposures, ranging
from heavy metals to stress [61, 62]. We thus retrieved
risk factor measurements from seven prior exams in FHS
to compare “cumulative” (calculated as the mean of past
exam values) versus current correlations with brown acti-
vation. Surprisingly, we observed stronger correlations
with cumulative values across almost all risk factors. To
address the possibility of confounding in these relation-
ships, we tested linear models predicting brown eigenCpG
values from current or cumulative risk factors adjust-
ing for the full set of EWAS covariates. Here, we again
observed multiple instances of stronger cumulative rela-
tionships, especially for BMI, hsCRP, and triglycerides.
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Though such a finding could be partially explained by the
greater stability in a mean over seven values compared to
one, we note that we did not observe this same pattern
with respect to the blue module, where associations with
current risk factors tended to be stronger. Our observa-
tion agrees with a conceptual model in which known risk
factors, such as the three noted here, act partially through
their cumulative impact over time on immune cell DNA
methylation and thus inflammatory processes known to
be related to CVD pathogenesis.
To more directly test this proposal, we used a basic

mediation approach in which we sequentially tested the
relationships between cumulative risk factor levels, brown
eigenCpG values, and both factors together in predict-
ing incident CVD. Though neither factor exerted a strong
effect on the relationship of the other, module activa-
tion associations were more weakened after adjustment
for cumulative risk factors than the converse. Thus, our
models replicate previous findings that cumulative risk
factor exposure correlates with CVD risk [63] while sug-
gesting that brown methylation module activation may
be sensing, rather than mediating, this effect. One con-
crete example supporting this observation is the DMR
near SLC1A5 containing primarily brown CpGs, one of
which (cg02711608) was suggested in Mendelian ran-
domization analysis to be causally downstream of blood
pressure [51].
A few limitations should be acknowledged in inter-

preting the results of this study. First, its observational
nature made it impossible to clearly determine causality of
the relationships between methylation and cardiovascu-
lar risk. While the examination of incident CVD reduced
concerns about reverse causation, the discovered asso-
ciations may only be markers of other disease-causing
processes (such as cumulative risk factor exposure, as
discussed above). Second, assessment of methylation in
blood samples prevented the understanding of potentially
causal epigenetic effects in other CVD-relevant tissues.
Although some studies report promising findings with
respect to blood as a proxy tissue [64, 65], and although
development-related epialleles may persist across tissues,
there is a gap in our ability to discover non-blood-related
epigenetic patterns in this analysis. Finally, experimen-
tal follow-up will be necessary to confirm these findings
and establish their potential for supporting therapeutic
interventions.

Conclusions
The modules and regions discovered in this investigation
provide insights into the complex relationships between
DNA methylation and cardiovascular disease risk. We
show that epigenetic modules track with diverse biolog-
ical sources of CVD risk, ranging from development- to
immune-related processes, and may provide a molecular

readout of past exposure to cardiovascular risk factors.
We further discover specific differentially methylated
regions that show limited evidence for a causal impact
on CVD but may be related to monocyte activation in
response to biological stimuli. This work opens the door
to further investigation of the epigenetic basis of CVD
risk as well as the ability of DNA methylation to act as a
biomarker of prior exposures that may be important for
disease-relevant prognosis and interventions.
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