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Tackling malignant melanoma
epigenetically: histone lysine methylation
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Abstract

Post-translational histone modifications such as acetylation and methylation can affect gene expression. Histone
acetylation is commonly associated with activation of gene expression whereas histone methylation is linked to
either activation or repression of gene expression. Depending on the site of histone modification, several histone
marks can be present throughout the genome. A combination of these histone marks can shape global chromatin
architecture, and changes in patterns of marks can affect the transcriptomic landscape. Alterations in several histone
marks are associated with different types of cancers, and these alterations are distinct from marks found in original
normal tissues. Therefore, it is hypothesized that patterns of histone marks can change during the process of
tumorigenesis.
This review focuses on histone methylation changes (both removal and addition of methyl groups) in
malignant melanoma, a deadly skin cancer, and the implications of specific inhibitors of these modifications
as a combinatorial therapeutic approach.
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Background
Histone modifications
The nucleosome, the fundamental structural unit of
chromosomes, is composed of two copies each of four
core histones (i.e., H2A, H2B, H3, and H4), around
which 147 bp of DNA is coiled [1, 2]. N-terminal tails of
histone polypeptides can be altered by a variety of
post-translational modifications, including methylation,
acetylation, phosphorylation, ubiquitylation, glycosyla-
tion, ADP-ribosylation, carbonylation, and SUMOylation
(collectively known as histone modifications) [3–6]. The
acetylation of histones is controlled by the balanced ac-
tion of histone acetyltransferases (HATs) and histone
deacetylases (HDACs). Acetylated histones have been as-
sociated with actively expressed genes. However, histone
methylation may have both repressive (H3K9, H3K27)
or enhancing (H3K4) effects on transcription, depending

on the residue that is modified [7]. Histone methylation
can occur on lysine and/or arginine residues. Lysine resi-
dues at various positions along the histone N-terminal
tail are common sites for methylation (Fig. 1). Lysine (K)
methylation occurs by stepwise addition of one to three
methyl groups, which can lead to unique functions of a
genomic region. This stepwise conversion, from an
unmethylated to a trimethylated lysine residue, is facili-
tated by histone methyltransferases (writers), and the
backward demethylation process is catalyzed by histone
demethylases (erasers). Further, a group of proteins
(readers) recognize methyl-lysines throughout the
genome [8]. Epigenetic changes along with genetic
alterations can determine cell fate, either to maintain cell
homeostasis or to promote tumorigenesis. Because
epigenetic changes are reversible, understanding such
changes is of crucial significance for drug development
and exploring therapeutic strategies [9].
Several histone methylation alterations are known to

play a role in the transition of melanocytes to melanoma
cells. These alterations are the consequence of deregula-
tion of their corresponding enzymes. In this review, we
focus on major erasers and writers of histone lysine
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methylation as regulated via two categories of demethylase
and methyltransferase enzymes and discuss compounds
available to target these enzymes and reverse their impact.

Main body
Histone demethylases
JARID1B (H3K4-demethylase)
Several enzymes demethylate histone 3 at the position 4
lysine residue. One such enzyme, H3K4 demethylase
JARID1B (PLU-1, KDM5B), plays a role in the develop-
ment of melanoma, and regulates gene transcription and
cell differentiation [10]. It has three plant homeodomain
(PHD) finger domains in its structure (Fig. 2). PHD fin-
gers are approximately 50–80 aa long and are usually in-
volved in chromatin-mediated gene regulation. Two of
these PHD fingers in JARID1B can bind to histones.
JARID1B binds to its substrate through distinct PHD
fingers. Finger PHD1 is highly specific for unmethylated
H3K4 (H3K4me0). PHD3 is more specific to H3K4me3
[11]. The H3K4 demethylase JARID1B is highly
expressed in nevi but not in melanoma; however, it
marks a small subpopulation of melanoma cells that can
cycle very slowly throughout the tumor mass and is es-
sential for continuous tumor growth [12, 13] (Fig. 3).
Interestingly, different treatments, including BRAF in-
hibitors (e.g., vemurafenib) as well as cytotoxic agents
(e.g., cisplatin), lead to enrichment of slow-cycling,

long-lasting melanoma tumor cells that express
H3K4-demethylase JARID1B [14]. Eliminating this sub-
population of tumor cells might help overcome resist-
ance to conventional treatments.
Treatment of melanoma tumors with MAPK inhibitors

increases the H3K4 demethylase JARID1B-positive
subpopulation of melanoma cells [15]. These cells are
slow-cycling and treatment-resistant. Thus, in addition to
curbing tumor growth with MAPK inhibitor, a supple-
mentary agent is needed to effectively treat this subpopu-
lation of cells. Several compounds inhibit JARID1B
activity. KDM5-C49 is a potent inhibitor of the JARID1
enzyme family; however, its cellular permeability is lim-
ited. Therefore, KDM5-C70 was developed to be used in
cellular assays and in vivo [16]. KDM5-C70 inhibits mye-
loma cells, increasing levels of H3K4me3 at the whole
genome level [16]. 2,4-PDCA (2,4-pyridinedicarboxylic
acid) acts in vitro to inhibit JARID1B and KDM4
demethylases. A high throughput screen of > 15,000
compounds conducted to identify inhibitors of JARID1B
confirmed the activity of 2,4-PDCA and also revealed a
novel compound, 2-4(4-methylphenyl)-1,2-benzisothia-
zol-3(2H)-one (PBIT) that can effectively inhibit JARID1B
in vitro with no activity toward H3K27 demethylases,
UTX or JMJD3 [17]. KDOAM-25 was recently introduced
as a potent and selective JARID1 inhibitor with the ability
to impact multiple myeloma cells [18].

Fig. 1 Major histone H3 and H4 lysine methyltransferase enzymes (H3K4, H3K9, H3K27, H3K36, H3K79, and H4K20) and their common sites
of action
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Fig. 2 Schematic structures of histone lysine demethylases (H3K4, H3K9, H3K27, H3K36), histone lysine methyltransferases (H3K4, H3K9, H3K27,
H3K36, H4K20) with SET domain, and histone methyltransferases without the SET domain (H3K79)
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LSD1 (H3K4-demethylase | H3K9-demethylase)
H3K4 methyl groups can also be removed by members
of the LSD (lysine-specific histone demethylase) family
[19, 20]. LSD1, also known as KDM1A, demethylates
histone 3 on lysine residues at positions 4 and 9 (H3K4
and H3K9). LSD1 specifically removes 1 or 2 methyl
groups from H3K4me2, converting it to H3K4me1/0.
Monomethylation of H3K4 is a histone modification that
marks enhancers throughout the genome. The histone
demethylase role of LSD1 could change the gene tran-
scription status by generating a H3K4me1 mark and ac-
tivating enhancers, or by removing another methyl
group and generating unmethylated H3K4. LSD1 has a
SWIRM domain and 2 amino oxidase domains (AODs)
in its structure (Fig. 2). A SWIRM domain is usually
present in proteins with a role in chromatin remodeling
and in expression of genes such as SMARC2 and SWI3.
LSD1 can bind to both gene promoters and distal ele-

ments. This feature of LSD1 is in line with its demethyla-
tion role on H3K4 (promoter) as well as H3K9 (distal)
[21]. Trimethylated H3K9 is a well-known heterochroma-
tin mark, which often highlights closed chromatin regions
and is present on distal regions of genes. H3K9me3-active
demethylase LSD1 is reported to disable senescence in
melanocytes. Senescence halts the proliferation of melano-
cytes and further progression to melanoma cells; this role
of LSD1 may cause Ras/Braf-induced transformation. Yu
Y. et al. showed that enforced LSD1 expression in vivo can
promote BRAFV600E-driven melanomagenesis [22]. Differ-
entiated melanoma cells have an elevated level of H3K9
methylation. The presence of this repressive histone mark

at the promoter region of pluripotency marks (e.g., SOX2)
can inhibit expression that is essential to maintaining
self-renewal and tumorigenicity. The H3K9 demethylase
activity of LSD1 can epigenetically control SOX2 tran-
scription and thus maintain cancer stem cell pluripotency
[23, 24] (Fig. 3).
Depletion of histone demethylase LSD1 in cancer cells

increases repetitive element expression that can stimu-
late anti-tumor T cell immunity and inhibit tumor
growth [25]. LSD1 inhibition also suppresses colony for-
mation and the growth of melanoma xenografts; LSD1
has not yet been pharmacologically targeted for treat-
ment of melanoma [26].
Several known inhibitors of LSD1 have been identified,

one of which is GSK2879552. This small molecule is an ir-
reversible, selective, orally bioavailable inhibitor of LSD1.
Anti-proliferative effects of this inhibitor have been re-
ported in small cell lung carcinoma (SCLC) [27]. LSD1 in-
teracts with pluripotency factors in human embryonic
stem cells (hESCs) and is also critical for hematopoietic
differentiation. Several studies have reported on effects of
LSD1 inhibitors on hematological malignancies. In acute
myeloblastic leukemia (AML) cell lines, GSK2879552
treatment inhibited proliferation [28, 29]. Treatment of
neuroblastoma or breast cancer cell lines with tranylcypro-
mine (TCP), another LSD1 inhibitor, or its analogs also re-
sulted in the inhibition of cell proliferation [30]. Although
LSD1 inhibition does not affect global levels of H3K4me1/
2, its impact is observed near the TSS of LSD1 target
genes. In GBM cell lines, the combination of TCP and an
HDAC inhibitor led to a synergistic increase of apoptosis

Fig. 3 Schematic figure demonstrating key roles of histone lysine demethylases (H3K4 and H3K9) in melanoma
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[30]. Recently, compound S2101, a new LSD1 inhibitor, is
shown to have a greater effect than TCPs. Several other
LSD1 inhibitors including T-3775440, NCD38, and RN1
are in pre-clinical stages of investigation [31–34].

JMJD2A (H3K9-demethylase | H3K36-demethylase)
H3K9/36me3 lysine demethylase JMJD2A (KDM4A)
overexpression leads to copy gain of certain loci in chro-
mosomes without global chromosome instability.
JMJD2A-amplified tumors demonstrate copy gains for
these regions [35]. Histone demethylase JMJD2A is in-
volved in regulation of cell proliferation, interacts with
RNA polymerase I, and is associated with active riboso-
mal RNA genes. Cellular localization of JMJD2A is con-
trolled through the PI3K signaling pathway [36].
JMJD2A upregulation is observed in various cancers in-
cluding the breast, colon, lung, and prostate [37–40]. Its
overexpression in prostate cancer is positively correlated
with tumor metastasis. ETV1 recruits JMJD2A to the
YAP1 (a Hippo pathway component) promoter, leading
to changes in histone lysine methylation in prostate can-
cer cells [40]. Yap1 also promotes melanoma metastasis
through its TEAD-interaction domain [41]. A potential
mechanism for this activity could be recruitment of
JMJD2A to the Yap1 promoter, thus modulating its
methylation (Fig. 3). Interestingly, another member of
the JMJD2 family, histone demethylase JMJD2C, is in-
creased in a subset of melanoma patients and promotes
growth of aggressive tumors with metastasis [22].

JMJD3 (H3K27-demethylase)
H3K27 demethylase JMJD3 (KDM6B) plays a key role in
transcriptional elongation and cell differentiation. Com-
plexes of JMJD3 and proteins involved in transcriptional
elongation, demethylate H3K27me3 on their target genes.
This demethylation can abolish transcriptional repression
of genes initially maintained by a H3K27me3 mark. JMJD3
modulates melanoma tumor microenvironment and pro-
motes tumor progression and metastasis. JMJD3 does not
alter proliferation in melanoma cells but does enhance
other tumorigenic features of melanoma cells such as clo-
nogenicity, self-renewal, and trans-endothelial migration.
JMJD3 also promotes angiogenesis and macrophage re-
cruitment [42]. Finally, JMJD3 can neutralize polycomb-
mediated silencing at the INK4b-ARF-INK4a locus in mel-
anoma. JMJD3 expression is upregulated in melanocytic
nevi in response to oncogenic RAS signaling that leads to
oncogenic-induced senescence [43, 44].

UTX (H3K27-demethylase)
Another mechanism of tumorigenesis is the activity of
polycomb repressive complex 2 (PRC2). Any disruption in
this complex can inhibit this process. Mutations in histone
methyltransferase MLL3 (a subunit of the COMPASS

complex with H3K4me1 methyltransferase activity) or
BAP1 (a tumor suppressor) in cancer cells can inhibit
H3K27 demethylase UTX and MLL3 recruitment to gene
enhancers. Thus, inhibition of H3K27 methyltransferase
PRC2 in these cells can restore normal transcription pat-
terns [45]. A recent study proposed a mechanism for the
role of UTX in suppressing myeloid leukemogenesis
through deregulation of ETS and GATA programs [46].
H3K27-demethylase UTX activates gene transcription in
melanoma at sites with poised promoters that are marked
with trimethylated H3K27. Recruitment of UTX and an-
other activating histone modifier, P300, is promoted
through MEK1-mediated phosphorylation of RNF2 [47],
indicating that UTX-mediated histone demethylation is a
histone modification that may activate melanomagenesis.
GSK-J1 is a selective inhibitor of H3K27 demethylases

JMJD3 and UTX and is inactive against a panel of other
demethylases in JMJ family [48]. GSK-J4 is an ethyl ester
pro-drug produced by masking the polarity of acidic
groups of GSK-J1. GSK-J4 administration increases total
nuclear H3K27me3 levels in cells [48]. High throughput
screening of epigenetic compounds revealed sensitivity
of neuroblastoma tumor cells to GSK-J4, a dual inhibitor
of H3K27 demethylases UTX and JMJD3 [49].

JHDM1B (H3K36-demethylase | H3K79-demethylase)
JHDM1B (KDM2B), which is a known H3K36 demethylase
member of the Jumonji C family of proteins, also plays a
role as an H3K79 demethylase and a transcriptional repres-
sor via SIRT1-mediated chromatin silencing [50]. JHDM1B
specifically recognizes non-methylated DNA in CpG
islands and recruits the polycomb repressive complex 1
(PRC1) that is required for sustaining synovial sarcoma cell
transformation [51, 52]. JHDM1B is found to be highly
expressed in glioblastoma compared to normal brain tissue
and regulates the apoptotic response of GBM cells to
TNF-related apoptosis-inducing ligand [53]. JHDM1B also
plays a major role early in the reprogramming process for
generation of induced pluripotent stem cells [54]. JHDM1B
contributes to embryonic neural development by regulat-
ing cell proliferation and cell death [55] and plays a key
role in cellular senescence and tumorigenesis [56].
A concise schematic picture of the role of major his-

tone lysine demethylases that are involved in melanoma
is provided in Fig. 3, and a list of these enzymes along
with their known inhibitors are shown in Table 1.

Histone methyltransferases
H3K4 methyltransferases
KMT2D (MLL2). Monomethylation of H3K4 is a widely
known feature of enhancers and gene promoters [57]. In
mammals, KMT2D is part of a huge complex that in-
duces monomethylation of promoter/enhancer regions
[58, 59]. KMT2D is a member of the histone lysine
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methyltransferase (HKMTase) family that can induce
genome accessibility and transcription and promotes an
open chromatin state. The Cancer Genome Atlas
(TCGA) data reveal that KMT2D is mutated in 15% of
melanoma patients. Despite no clear association in
TCGA cases between KMT2D and conventional sub-
types of melanoma such as NRAS or BRAF, a subse-
quent study showed that KMT2D deregulates specific
enhancers and genes in NRAS-mutant melanoma [60].
KMT2D is encoded by genes with the highest number of
UVB signature mutations [61] (Fig. 4).
H3K4me2 is also an active histone mark enriched in

sites toward the 5′-end of transcribing genes and present
in several melanoma cell lines. An increase in the level
of H3K4me2 has been observed in melanoma samples
compared to normal skin of the same patients [62].
Interestingly, H3K4me2 levels were found to be lower in
metastatic melanoma compared to primary tumors [63].
H3K4me3 is generally associated with promoters of ac-

tively transcribing genes [64, 65] or with genes that are
poised for activation. H3K4me3 is linked to promoter

activity. Global changes in H3K4me3 were observed in
zebrafish when comparing melanoma and normal skin
[66]. Comparison of metastatic to primary melanoma re-
vealed that decreased levels of H3K4me3 in metastases are
significantly associated with repressed expression of genes
in embryonic stem cells (ESCs), including targets of PRC.
Further, increased levels of H3K4me3 are associated with
interferon and inflammatory response genes [59]. Finally,
HDAC inhibitors that promote an open chromatin state
also increase H3K4 trimethylation in vitro [67].
ASH1L (ASH1, KMT2H). ASH1L is an H3K4/H3K36

methyltransferase. Nucleotide excision repair (NER) is a
known mechanism to prevent formation of UV-induced
melanoma tumors. The NER mechanism is in place upon
recruitment of H3K4 histone methyltransferase ASH1L
[68]. Loss of Ash1l leads to increased proliferation of kera-
tinocytes [69]. ASH1L can act as an H3K36 dimethyl-
transferase to recruit MLL to chromatin and maintain
hematopoiesis. This action supports a role of ASH1L in
MLL-mediated leukemia oncogenesis and indicates that it
could be a target for leukemia therapy [70].

Table 1 Histone lysine demethylases (KDMs) and their selective inhibitors

Enzyme Alias Structure Inhibitor Reference

H3K4 LSD1 KDM1A AOF2 SWIRM/AOD GSK2879552
Tranylcypromine (TCP)
Compound S2101
T-3775440
NCD38
OG-L002
RN1

[24–27]

JARID1A KDM5A RBP2 PHD/ARID/ZF

JARID1B KDM5B PLU-1 PHD/ARID/ZF KDM5-C49
KDM5-C70
2,4-PDCA
PBIT
KDOAM-25

[13–15]

JARID1C KDM5C SMCX PHD/ARID/ZF

JARID1D KDM5D SMCY PHD/ARID/ZF

H3K9 LSD1 KDM1A AOF2 SWIRM/AOD

JMJD1A KDM3A JHDM2A JmjC

JMJD1B KDM3B JHDM2B JmjC

JMJD2A KDM4A JHDM3A PHD/Tudor 2,4-PDCA [14]

JMJD2B KDM4B JHDM3B PHD/Tudor

JMJD2C KDM4C JHDM3C PHD/Tudor

H3K27 UTX KDM6A TPR/JmjC GSK-J1
GSK-J4

[41, 42]

JMJD3 KDM6B JmjC

H3K36 FBXL11 KDM2A JHDM1A PHD/ZF/LRR

FBXL10 KDM2B JHDM1B PHD/ZF/LRR

JMJD2A KDM4A JHDM3A PHD/Tudor

JMJD2B KDM4B JHDM3B PHD/Tudor

JMJD2C KDM4C JHDM3C PHD/Tudor

H4K20 LSD1n neuroLSD1
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WDR5 is an essential part of the KMT2 (MLL) complex
that trimethylates H3K4. An interaction exists between
this protein and the catalytic domains of KMT2. Despite
the lack of chemical compounds that directly target the
SET domain in KMT2 complexes, several compounds can
specifically disrupt the interaction between WDR5 and
MLL [71]. MM-102 specifically targets MLL-WDR5 inter-
action, inhibits cell growth, and induces apoptosis in
leukemia cells [72]. MM-401 also specifically inhibits
MLL activity by blocking MLL-WDR5 interaction [73]. A
third compound, WDR5-0103, antagonizes the interaction
of WDR5 with MLL by competing with MLL for their
mutual binding site on WDR5 [74].

H3K9 methyltransferases
Monomethylated H3K9 is shown to be enriched in the
TSS of active genes [75]. Unlike H3K9me1, both di- and
trimethylated H3K9 are often found in silenced genes;
however, monomethylated H3K9 may also mark distinct
regions of silent chromatin in the presence of a mono-
methylated H4K20 mark [76].
EHMT. Dimethylated H3K9 has a higher global level in

melanoma samples compared to the normal skin tissue
[62]. EHMT2 (G9A) mono- and dimethylates H3K9.
Methylated H3K9 recruits HP1 proteins that cause tran-
scriptional repression [77]. HP1 proteins harbor a methyl
lysine binding chromodomain that binds to methylated
H3K9 [78]. HP1 proteins in human cells include HP1α, β,
and γ that play key roles in the formation of transcription-
ally inactive heterochromatin. Interestingly, in several

cancer types (not including melanoma), inhibition of
EHMT2 resulted in the arrest of cancer cell proliferation
and a decrease in cell survival [79]. Another study pro-
posed that G9A contributes to ovarian cancer metastasis
[80]. EHMT1 (GLP) is also a histone methyltransferase
that specifically mono- and dimethylates H3K9 in
euchromatin.
SUV39. Three known members in this family have been

identified. SUV39H1 is a histone methyltransferase that
specifically trimethylates H3K9me1 and plays a crucial
role in establishment of constitutive heterochromatin at
pericentromeric and telomeric regions. Formation of vari-
ous cancer types including rhabdomyosarcoma and mel-
anoma are sensitive to the loss of SUV39H1 [81]. In
differentiated melanoma cells, silencing SUV39H1 or the
other H3K9 methyltransferase, G9A, can elevate their
self-renewal capabilities [24]. SUV39H2, a second member
of the family, has a similar structure to SUV39H1 (Fig. 2).
SUV39H2 may play a role in higher order chromatin
structure during spermatogenesis [82, 83]. SUV39H2 tri-
methylates histone lysine demethylase LSD1 and prevents
degradation of this protein due to polyubiquitination, thus
stabilizing its structure in the cell [84]. SETDB1 (ESET) is
the third member of the SUV39 family of proteins. It is
overexpressed in several cancers including human mela-
nomas [85]. SUV39 proteins, unlike the HP1 chromodo-
main of the EHMT complex that shows high affinity for
dimethyl, prefer the trimethyl state [86]. Hence, histone
lysine methyltransferase SETDB1 also primarily trimethy-
lates H3K9. SETDB1 is known to accelerate melanoma

Fig. 4 Schematic figure demonstrating key roles of histone lysine methyltransferases involved in the tumorigenesis and survival of melanoma
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progression [85] (Fig. 4). Previously, SETDB1 was reported
to be highly amplified in melanoma and to be associated
with a more aggressive phenotype through regulation of
thrombospondin 1 [87].
Chaetocin is a competitive inhibitor of S-adenosyl-

L-methionine (SAM) and was the first histone lysine meth-
yltransferase inhibitor to be identified. It specifically inhibits
lysine histone methyltransferases of the SUV39 family,
making the compound useful in the study of
heterochromatin-mediated gene repression [88]. BIX01294
is an inhibitor of GLP and G9A methyltransferase [89].
This compound does not compete with cofactor SAM but
acts as a competitive inhibitor of N-terminal peptides of H3
[90]. It selectively impairs the generation of H3K9me2 in
vitro. UNC0321 is a newer modification of BIX12094 with
a greater potency against G9A and GLP [91].

H3K27 methyltransferases
EZH2. Unlike monomethylated H3K27, which is associated
with gene activation, di-/trimethylated H3K27 act as re-
pressive marks [75, 92]. Histone lysine methyltransferase
EZH2 is mostly responsible for trimethylation of lysine 27
on histone 3 (H3K27me3). EZH2 is the catalytic subunit of
the polycomb repressive complex 2 (PRC2). PRC2 has 3
other subunits EED, SUZ12, and RBBP4. PRC2 mediates
gene repression through chromatin reorganization by
methylating H3K27. Therefore, H3K27me3 is associated
with repressed chromatin. Mutations in EZH2 could result
from the replacement of a tyrosine in its SET domain
(Tyr641). This change can reduce enzymatic activity of
EZH2 resulting in a higher affinity to mono- or dimethy-
lated H3K27 [93]. In addition, in various melanoma cell
lines, Tyr641 mutations of EZH2 have shown to alter the
substrate specificity of EZH2 to H3K27me2, causing an
increase in H3K27me3 and depletion of H3K27me2 [94].
H3K27me1/me2 produced by wild-type EZH2 could be
methylated by Tyr641-mutant EZH2 to generate elevated
levels of H3K27me3 that can promote tumorigenesis [95].
High levels of EZH2 activation are observed in neuroblast-
oma, hepatocellular carcinoma, small cell lung cancer, and
melanoma [96]. Increased expression of EZH2 is associated
with melanoma progression and decreased overall patient
survival [97]. Protein levels of EZH2 increase incrementally
from benign nevi to cutaneous malignant melanoma,
which also suggests that EZH2 may play a role in the
pathogenesis and tumorigenesis of melanoma [98–100]
(Fig. 4). EZH2 suppresses senescence in melanoma by
repressing CDKN1A expression independent of p16INK4a

expression or p53 function [98]. In addition, aggressive
melanoma cells have excessive levels of H3K27me3 accom-
panied by EZH2 overexpression [101], in which EZH2 con-
trols melanoma progression and metastasis by silencing
tumor suppressors [102].

Several available EZH2 inhibitors have been used in
numerous studies. EPZ-6438 (Tazemetostat) is an EZH2
inhibitor in phase 1 and 2 clinical trials. This drug has been
investigated for multiple cancer types, including B cell
non-Hodgkin lymphoma and advanced solid tumors [103].
EPZ011989 is a potent and orally bioavailable EZH2 inhibi-
tor [104]. GSK126 is a potent and also highly selective
inhibitor of EZH2 that decreases global H3K27me3 levels
and reactivates silenced PRC2 target genes. GSK126
inhibits proliferation of EZH2-mutant diffuse large B cell
lymphoma (DLBCL) cell lines and mouse xenografts [105].
EZH2 inhibition using this small molecule is proposed to
increase NK cell death suggesting an immunosuppressive
effect of EZH2 [106]. Treatment with another EZH2 inhibi-
tor, GSK503, in a melanoma mouse model, blocked tumor
growth and metastasis formation. In human melanoma
cells, GSK503 impaired cell proliferation and invasiveness,
along with re-expression of tumor suppressors associated
with increased patients’ survival [102]. In osteosarcoma,
GSK343, another inhibitor of EZH2, restricts cell viability
and promotes apoptosis. GSK343 inhibits EZH2 expression
and its substrate, H3K27me3. It also inhibits fuse binding
protein 1 (FBP1) expression, a c-Myc regulator [107]. In
cancers with genetic alteration in EZH2, such as various
forms of lymphoma, EPZ005687 reduces H3K27 methyla-
tion. Mutations in EZH2 result in a dependency on its
enzymatic activity for proliferation that could make
EPZ005687 a treatment for cancers in which EZH2 is
genetically altered [108].
Another approach to inhibit the PRC2 complex and

subsequently H3K27 methylation is to block another
component of this complex, such as EED. In a recent
study, a compound, EED226, was developed to block
PRC2. EED226 is a potent and selective PRC2 inhibitor
that directly binds to the H3K27me3 binding pocket of
EED. It induces regression of human lymphoma xeno-
graft tumors [109, 110].

H3K36 methyltransferases
Di-/trimethylation of H3K36 is usually associated with
transcriptional activation and double-strand break repair.
H3K36me2 can be deposited near the breaks and can re-
cruit early repair factors [111]. H3K36me3 is considered
as a hallmark of active gene transcription. It is commonly
enriched at the body of active genes and particularly at
their 3′-terminal regions. Its activity produces a methyla-
tion pattern distinct from that of other histone methyla-
tions [112]. H3K36me3 is involved in defining exons
which are enriched in nucleosomes. Nucleosomes are
more frequent in areas with this particular histone mark
[113]. H3K36 trimethylation is also shown to play a role
in homologous recombination (HR) repair in human cells
[114]. Another study proposes a less known role of
H3K36me3 in combination with other histone marks in
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contributing to the composition of heterochromatin [115].
Also, H3K36 methylation antagonizes PRC2-mediated
H3K27 methylation [116].
SETD2. SETD2 is the only known gene in human cells

responsible for trimethylation of lysine 36 of Histone H3
(H3K36) [117]. This enzyme is mutated in 11.5% of renal
clear cell carcinoma tumors [118]. The H3K36me3 mark
is associated with DNA methylation in actively transcribed
gene regions [119]. A TCGA study also suggests crosstalk
between H3K36 methylation and DNA methylation. Renal
clear cell carcinoma tumors with SETD2 mutations had
DNA hypomethylation at non-promoter regions that are
marked by H3K36me3 [118]. A similar pattern is found in
sarcoma where H3K36 mutation prevents methylation as
well as mesenchymal progenitor cell differentiation and
induces sarcoma [120]. SETD2 counteracts Wnt signaling
and signaling loss promotes intestinal tumorigenesis in
vivo. Mechanistically, SETD2 downregulation affects
alternative gene splicing leading to tumor inhibition [121].
NSD1. NSD1 binds near various promoter elements and

interacts with H3K36 and RNA Pol II, to regulate tran-
scription [122]. H3K36me2 methyltransferase NSD1 is a
modulator of PRC2 function and demarcates H3K27me2
and H3K27me3 domains in ESCs [123]. NSD1 inactivating
mutations define a hypomethylated subtype in different
cancer types such as head and neck squamous cell carcin-
oma (HNSC) and lung squamous cell carcinoma (LUSC)
[124–126]. This subtype is also characterized by low T cell
infiltration into the tumor microenvironment, suggesting
an identification of this subtype prior to immunotherapy
[125]. NSD1 inactivation along with SETD2 mutation that
causes a distorted H3K36 is a key feature of clear cell renal
cell carcinoma [127]. NSD1 mutations may have a
genome-wide impact on DNA methylation [128]. NSD1
expression in patient-derived metastatic cell lines is sig-
nificantly higher compared to normal melanocytes; how-
ever, NSD1 upregulation does not apply to primary
tumors developing to metastatic lesions [129].
N-propyl sinefungin (Pr-SNF) is shown to interact

preferentially with SETD2 and act as an inhibitor of this
protein [130]. However, no compounds that can target
NSD proteins selectively have been identified. Due to
the high similarity of the SET domain of NSDs to that of
GLP and G9A, BIX01294 would be capable of inhibiting
H3K36 methyltransferase NSD1/2/3 [131].

H3K79 methyltransferases
DOT1L. H3K79 is a histone mark associated with active
chromatin and transcriptional elongation [132]. DOT1L is
the only enzyme identified that methylates H3K79. Interest-
ingly, DOT1L has no SET domain in its protein structure
(Fig. 2). It is linked to both active and repressed genes.
However, H3K79 methylation is mainly a mark of active
transcription. DOT1L methylates at 3 levels, mono-di-, and

trimethylation. H3K79 methylation has a crucial role in het-
erochromatin formation and chromosome integrity [133].
An oncogenic role of DOT1L histone H3 lysine 79
(H3K79) methyltransferase in MLL-rearranged leukem
ogenesis has been established. Unlike leukemia, DOT1L
plays a repressive role in UV-induced melanoma develop-
ment. DOT1L is frequently mutated in human melanoma,
leading to a reduced level of H3K79 methylation. DOT1L
depletion will cause UV-induced DNA damage not to be
efficiently repaired, thus encouraging progression of melan-
oma [134] (Fig. 4).
Pinometostat (EPZ5676) is a selective, small molecule

inhibitor of DOT1L. MLL-rearranged cells and xenograft
models treated with this inhibitor showed reduced levels
of H3K79me2 [135, 136]. This drug is currently in phase
1 clinical trials and has modest clinical activity [137,
138]. EPZ004777 is a specific, SAM-competitive inhibi-
tor of DOT1L. It selectively kills leukemia cells with
MLL rearrangements. A chemical analog of this drug,
SGC 0946, with improved solubility and potency has
also been developed [139].

H4K20 methyltransferases
PR-Set7 (SET8). H4K20me1 is linked to transcriptional
activation, a modification that is present in highly tran-
scribed genes. Histone H4 lysine methyltransferase
PR-Set7 (SET8) mono-methylates H4K20 [140, 141].
This enzyme plays a role in several processes including
DNA damage response, chromatin compaction, DNA
replication, transcriptional regulation, and tumorigenesis
[140, 142]. Loss of SET8 could cause cell cycle defects
and promote DNA damage [143]. Depletion of SET8 in
melanoma cells under treatment with the NEDD inhibi-
tor, pevonedistat, indicated that preventing degradation
of SET8 is essential for effective impact of this drug in
melanoma suppression because of its role in DNA
re-replication and senescence [144].
SUV420H1/H2. Dimethylation of H4K20 is the most

abundant methylation state and is present in about 80% of
H4 histones [145]. H4K20me2 plays a role in cell cycle
control and DNA damage response whereas H4K20me3
takes part in transcriptional repression and is a hallmark
of silenced heterochromatin regions. Loss of trimethylated
H4K20 is considered a common mark of cancer. Both
these methyltransferases have a Zn-binding post-SET
domain [146]. SUV420H1 and SUV420H2 play roles in
NHEJ-directed DNA repair by di- and trimethylation of
H4K20 [146]. Further, overexpression of SUV420H1 may
lead to activation of ERK through enhancement of ERK
phosphorylation and transcription [147] (Fig. 4).
A-196 is a selective inhibitor of SUV420H1 and

SUV420H2. This drug induces a genome-wide decrease
in H4K20me2/me3 and increases H4K20me1 [148].
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A concise schematic picture of the role of major his-
tone lysine methyltransferase involved in melanoma is
provided in Fig. 4, and a list of these enzymes along with
their known inhibitors is shown in Table 2.

Discussion
Future direction
Despite the emergence of several new targeted therapies
and immunotherapy drugs, tumor resistance to these novel
therapies is a major hurdle that reflects a need for more ef-
ficient therapeutic strategies. Numerous studies have been

published in recent years to clarify the role of histone
methylation and associated enzymes in tumorigenesis. Be-
cause of the reversible nature of histone methylation,
demethylase and methyltransferase enzymes as well as
chemical compounds that inhibit the activities of the en-
zymes and can therefore change the level of methylation at
specific histone sites are under comprehensive investigation
as targets for cancer therapy. Current understanding of the
role of these enzymes suggests that they regulate transcrip-
tion activation and repression based on the histone in-
volved and the specific amino acid residue being modified.

Table 2 Histone lysine methyltransferases (KMTs) and their selective inhibitors

Enzyme Alias Structure Inhibitor Reference

H3K4 MLL1 KMT2A TRX1 SET/PHD/FYRC/BD MM102*
MM-401*
WDR5-0103*

[66–68]

MLL2 KMT2B MLL4 SET/PHD/FYRC/BD

MLL3 KMT2C HALR SET/PHD/FYRC

MLL4 KMT2D MLL2 SET/PHD/FYRC

MLL5 KMT2E SET/PHD

SET1A KMT2F SETD1A SET/RRM

SET1B KMT2G SETD1B SET/RRM

ASH1L KMT2H ASH1 SET/PHD

SET7/SET9 KMT7 SETD7 SET

H3K9 G9A KMT1C EHMT2 SET/TAD/ANK BIX01294
UNC0321

[83, 85]

GLP KMT1D EHMT1 SET/TAD/ANK

SUV39H1 KMT1A H3-K9-HMTase 1 SET/CD Chaetocin [82]

SUV39H2 KMT1B H3-K9-HMTase 2 SET/CD

SETDB1 KMT1E H3-K9-HMTase 4 SET/Tudor/MBD

RIZ1 KMT8 PRDM2 PR/ZF

H3K27 EZH2 KMT6 SET/SANT EPZ-6438 (Tazemetostat)
EPZ011989
GSK126
GSK503
GSK343
EPZ005687
CPI-1205
CPI-169
EI1
EED226**

[96–99, 101–104]

H3K36 SET2 KMT3A SETD2 SET/SRI N-propyl sinefungin
(Pr-SNF)

[124]

NSD1 KMT3B STO SET/PHD BIX01294 [125]

SMYD2 KMT3C ZMYND14 SET/MYND

ASH1L KMT2H ASH1 SET/PHD/BD

H3K79 DOT1L KMT4 LRR EPZ5676 (Pinometostat)
EPZ004777
SGC 0946

[129–133]

H4K20 PR-Set7 KMT5A SETD8 SET

SUV420H1 KMT5B CGI85 SET A-196 [142]

SUV420H2 KMT5C SET

NSD1 KMT3B STO SET/PHD

*These compounds target MLL-WDR5 interaction
**This compound blocks EED, another component of PRC2 to inhibit H3K27 methylation
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Various compounds that target the epigenome, such as
HDAC inhibitors (e.g., the entinostat, NCT00185302) or
DNMT inhibitors (e.g., the decitabine, NCT00030615),
have been used in clinical trials to treat melanoma pa-
tients, but the use of histone methylating/demethylating
agents requires substantial additional investigation. As
discussed in this review, different histone demethylases
play a role in cell transformation, although H3K4 and
H3K9 demethylases are most consistently reported [12–
14, 22–24]. This result could be due to an insufficient
body of evidence for lesser known erasers, but investiga-
tion of JARID1 or LSD1 inhibitors in extensive in vivo
experiments, and eventually, in clinical trials, could be of
clinical significance.
A different approach to clinical application of histone

demethylase function might be used in these enzymes in
removing methylation in regions of the genome that are
unmethylated in normal cells. An enzyme recently used in
this manner is LSD1. This enzyme was used in fusion with
dCas9 to modulate histone methylation. It has been ap-
plied on certain gene enhancers in the genome to suppress
specific gene transcription without disrupting local gen-
omic architecture [149]. Lack of impact to the genomic
structure is key because disruption of the chromatin struc-
ture can change DNA-protein interactions at the global
level with unpredictable consequences. The use of such
enzymes in combination with gene editing technology
could allow development of novel treatment modalities
involving removal of active histone marks on promoter
regions of oncogenes or repressive histone marks on distal
elements of tumor suppressor genes, both of which are
common features seen particularly in cutaneous
melanoma.
As we have summarized here, past literature leads us to

several epigenetic patterns that seem to be frequently
repeated in distinct types of cancer, including the role of
histone methylation modifiers on the promoters of major
known drivers of a particular type of cancer. These drivers
(i.e., MITF, c-Myc in melanoma) have been recently asso-
ciated with clusters of non-coding regions on the genome
called super enhancers that are usually marked with en-
hancer marks such as H3K4me1 as well as H3K27ac
[150]. Inactivation of these frequently methylated histone
tails could help to restore cell homeostasis.
Lastly, epigenome-wide studies have partly elucidated

the function of combinations of histone methylation
marks in melanoma, although understanding of the mel-
anoma epigenome is still unclear. These studies reveal that
in a given region of DNA, more than one histone methyla-
tion mark could be active in regulating gene expression.
Further, the 3D structure of the genome can juxtapose
certain regions of the DNA harboring specific histone
marks and other regions, thereby activating or repressing
genes that may be mega-bases down or upstream.

As per the available information, a comprehensive
therapeutic approach, involving minimal disruption of
the genome architecture, seems to be essential. Such a
therapeutic strategy could help reverse or halt the func-
tion of a combination of histone modifications that lead
to cell transformation.
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