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Abstract

Background: Prevention of unnecessary biopsies and overtreatment of indolent disease remains a challenge in the
management of prostate cancer. Novel non-invasive tests that can identify clinically significant (intermediate-risk
and high-risk) diseases are needed to improve risk stratification and monitoring of prostate cancer patients. Here,
we investigated a panel of six DNA methylation biomarkers in urine samples collected post-digital rectal exam from
patients undergoing prostate biopsy, for their utility to guide decision making for diagnostic biopsy and early
detection of aggressive prostate cancer.

Results: We recruited 408 patients in risk categories ranging from benign to low-, intermediate-, and high-risk prostate
cancer from three international cohorts. Patients were separated into 2/3 training and 1/3 validation cohorts. Methylation
biomarkers were analyzed in post-digital rectal exam urinary sediment DNA by quantitative MethyLight assay and
investigated for their association with any or aggressive prostate cancers.
We developed a Prostate Cancer Urinary Epigenetic (ProCUrE) assay based on an optimal two-gene (HOXD3 and GSTP1)
LASSO model, derived from methylation values in the training cohort, and assessed ProCUrE’s diagnostic and prognostic
ability for prostate cancer in both the training and validation cohorts.
ProCUrE demonstrated improved prostate cancer diagnosis and identification of patients with clinically significant disease
in both the training and validation cohorts. Using three different risk stratification criteria (Gleason score, D’Amico criteria,
and CAPRA score), we found that the positive predictive value for ProCUrE was higher (59.4–78%) than prostate specific
antigen (PSA) (38.2–72.1%) for all risk category comparisons. ProCUrE also demonstrated additive value to PSA
in identifying GS ≥ 7 PCa compared to PSA alone (DeLong’s test p = 0.039), as well as additive value to the
PCPT risk calculator for identifying any PCa and GS ≥ 7 PCa (DeLong’s test p = 0.011 and 0.022, respectively).

Conclusions: ProCUrE is a promising non-invasive urinary methylation assay for the early detection and prognostication
of prostate cancer. ProCUrE has the potential to supplement PSA testing to identify patients with clinically significant
prostate cancer.
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Introduction
The introduction of circulating prostate specific antigen
(PSA) test has increased the rate of diagnosis of prostate
cancer (PCa) by as much as 50%. However, the majority
of PCa patients diagnosed through PSA screening
present with low-risk, localized, Gleason score (GS) 6
tumors. Although PSA has a high negative predictive
value (NPV) for PCa, its lack of specificity, limited
impact on reducing morbidity, and the harms of
over-diagnosing indolent disease have raised concerns
about PSA screening [1].
To reduce overtreatment and associated morbidity, the

U.S. Preventive Services Task Force (USPSTF) recently
recommended against PSA screening to prevent
unnecessary biopsies of “clinically insignificant” PCa
(CI-PCa) which included patients with benign and
low-risk disease [1]. However, following these recom-
mendations, there was a substantial decrease (42.9%) [2]
in the detection of GS ≥ 7 disease, indicating the reduc-
tion in PSA screening could delay diagnosis of “clinically
significant” PCa (CS-PCa) consisting of intermediate-
and high-risk disease. The revised recommendations
now include advising men under 70 about the potential
benefits and limitations of PSA based screening.
However, their impact on the diagnosis of CS-PCa is
currently unknown.
Several nomograms have been developed to estimate

PCa aggressiveness following biopsy, such as the
well-established D’Amico criteria [3] which includes
PSA, GS, and clinical T stage. Due to the limited num-
ber of variables, patients with the same D’Amico risk
category may have vastly different outcomes. Alterna-
tively, the recently developed UCSF-Cancer of the Pros-
tate Risk Assessment (CAPRA) score [4] is more
informative due to ease of calculation and inclusion of
key clinical variables including age, PSA, percent of
cores positive in biopsy (%core), clinical T stage, and
Gleason patterns. There is also the Prostate Cancer Pre-
vention Trial (PCPT) PCa risk calculator [5], which
takes into account ethnicity, family history, PSA, age,
and digital rectal exams (DREs) results to calculate the
risk of finding any cancer or high-risk (GS ≥ 7) cancer
upon biopsy. These nomograms are used to distinguish
low-risk versus high-risk PCa patients for management
decisions after biopsy.
Low-risk PCa patients may be recommended enroll-

ment into an active surveillance (AS) protocol where
they are monitored with DREs, PSA tests, multipara-
metric (mp) MRI where available, and periodic biop-
sies instead of definitive treatment [6]. Although AS
is a preferable management option for patients with
CI-PCa, many AS patients with indolent tumors still
undergo additional unnecessary biopsies and suffer
associated morbidities.

Consequently, there is an urgent need to develop
non-invasive biomarkers to complement PSA screening
for the early identification of aggressive PCa and to
guide decision making for initial diagnostic prostate bi-
opsy or repeat biopsies of low-risk patients on AS. To
address this, the Movember foundation introduced the
Global Action Plan (GAP) 1: Urine biomarker initiative,
which brought together 12 research teams from seven
different countries. Our study, as part of this initiative,
investigated non-invasive DNA methylation biomarkers
for improved prognostication of PCa.
Aberrant DNA methylation is a hallmark of PCa

[7, 8]. Tumor-specific gene methylation alterations
are ideal biomarkers due to their stability and ease
of detection from patient samples with limited
amounts of DNA such as urinary sediments. Detec-
tion of DNA methylation biomarkers in urine sedi-
ment is non-invasive and may be able to supplement
PSA screening to identify CS-PCa patients.
We have previously discovered and/or characterized

tumor-specific DNA methylation of six genes (APC,
GSTP1, HOXD3, KLK10, TBX15, and TGFβ2) in radical
prostatectomy tumor samples [9–11]. Increased methy-
lation of these genes was found to be associated with
higher GS and adverse clinical prognosis. We also exam-
ined these biomarkers in post-DRE urine samples from a
Canadian AS PCa patient cohort [12]. In the current
study, we investigated the utility of these urinary DNA
methylation biomarkers for diagnosis and prognostica-
tion of CS-PCa in three international patient cohorts.

Results
Cohort characteristics
The clinicopathologic characteristics for patient cohorts
are summarized in Table 1. To mitigate any inherent
biases in patient recruitment, all patients were com-
bined, randomized, and separated into training (2/3 of
patients) and validation (1/3 of patients) cohorts [13, 14]
(Table 2).
Age and PSA were significantly correlated with each

other, as well as prostate volume, and %core. (Add-
itional file 1: Table S1, Spearman’s ρ p < 0.01).

Detection of urinary DNA methylation biomarkers and
association with clinicopathologic variables
We assessed DNA methylation of our panel of bio-
markers in the urinary sediment of patients recruited.
Methylation frequencies (patients with percent methyl-
ated of reference (PMR) > 0) ranged from 39.5% (161/
408 patients) for GSTP1 to 92.6% (378/408 patients) for
HOXD3. PMR distribution for individual markers among
benign and PCa patients is shown in Fig. 1. Five of the
six gene methylation showed significant increase in PCa
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Table 1 Clinical characteristics from the University of East
Anglia, UK (UEA), GU Biobank at UHN, Canada (UHN), Trinity
College at Dublin, Ireland (Dublin)

Patient clinical characteristics UEA UHN Dublin

n (%) 194 (48) 155 (38) 59 (14)

Benign 109 (56) 46 (30) 27 (46)

PCa 85 (44) 109 (70) 32 (54)

Gleason score

6 17 (20) 64 (59) 15 (47)

7 42 (49) 32 (29) 9 (28)

8–10 26 (31) 13 (12) 8 (25)

Clinical T stage

T1 38 (45) 91 (83) 20 (63)

T2 14 (16) 16 (15) 11 (34)

T3 19 (22) 2 (2) 1 (3)

T4 14 (16) 0 0

% Biopsy cores positive for PCa

Median 57% 20% 21%

Range 7–100% 5–100% 6–100%

Interquartile range 33%–100% 9%–38% 13%–43%

N/A 9 1 0

Age at enrollment

Median 67 64 65

Range 42–85 37–83 46–80

Interquartile range 62–73 57–69 58–71

PSA at presentation

Median 8.4 5.8 5.9

Range 0.2–277.3 0.01–67.31 0.5–248

Interquartile range 5.8–12.2 3.97–9.07 3.85–8.64

Prostate volume

Median 59.54 47

Range 21.08–244.6 16.05–127.0

Interquartile range 42.52–86.52 34–57

N/A 92 18 59

Perineural invasion

Yes 28 11 4

No 80 17 55

N/A 86 127 0

CAPRA risk

CAPRA low 10 (12) 57 (52) 13 (41)

CAPRA intermediate 32 (38) 36 (33) 14 (44)

CAPRA high 43 (51) 16 (15) 5 (16)

D’Amico risk

D’Amico low 8 (9) 52 (48) 9 (28)

D’Amico intermediate 29 (34) 39 (36) 13 (41)

D’Amico high 48 (56) 18 (17) 10 (31)

Table 2 Cohort characteristics of the training and validation
cohorts

Patient clinical characteristics Training Validation

n (%) 268 (65.4) 140 (34.6)

Benign 123 (44) 59 (41)

PCa 145 (52) 81 (57)

Gleason score

6 60 (41) 36 (44)

7 55 (38) 28 (35)

8–10 30 (21) 17 (21)

Clinical T stage

T1 101 (70) 48 (59)

T2 25 (17) 16 (20)

T3 11 (8) 11 (14)

T4 8 (6) 6 (7)

% Biopsy cores positive for PCa

Median 29% 33%

Range 5–100% 5–100%

Interquartile range 13%–55% 14%–63%

N/A 8 6

Age at enrollment

Median 66 66

Range 42–85 37–85

Interquartile range 59–71 59–72

PSA at presentation

Median 6.9 7.04

Range 0.01–248 0.04–377.00

Interquartile range 4.55–10.36 4.79–11

Prostate volume

Median 7 49

Range 18.0–121.6 18.0–121.6

Interquartile range 39.15–68.68 37–65.1

N/A 114 58

Perineural invasion

Yes 30 13

No 97 55

N/A 153 75

CAPRA risk

CAPRA low 47 (32) 33 (41)

CAPRA intermediate 56 (39) 26 (32)

CAPRA high 42 (29) 22 (27)

D’Amico risk

D’Amico low 41 (28) 28 (35)

D’Amico intermediate 57 (39) 24 (30)

D’Amico high 47 (32) 29 (36)
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compared to benign (Additional file 1: Table S2 Mann
Whitney U p < 0.05).
Methylation levels of all six genes were significantly

correlated with each other (Spearman’s ρ p < 0.01). APC,
GSTP1, KLK10, TBX15, and TGFB2 showed significant
association with age and %core (Additional file 1: Table
S1; Spearman’s ρ p < 0.05). Additionally, GSTP1, KLK10,
and TBX15 were associated with PSA (Spearman’s ρ p <
0.05). HOXD3 did not correlate with any clinical variables.

Building an optimal predictor gene model and ProCUrE
assay
To investigate whether combinations of biomarkers were
more informative compared to individual markers for
detection of any PCa and/or aggressive PCa, we applied
least absolute shrinkage and selection operator (LASSO)
and constructed an optimal two-gene (HOXD3 and GSTP1)
classifier model (ProCUrE) in the training cohort compar-
ing between benign vs CAPRA-HR patients. Receiver oper-
ating characteristic (ROC) curve analysis of ProCUrE
showed an area under curve (AUC) of 0.795 (bootstrapped
1000 iterations) (Fig. 2), which was higher than any individ-
ual marker; thus, we did not analyze individual markers in
the validation cohort. An optimal cut-off threshold for
ProCUrE was established with the maximum combined
sensitivity (57.1%) and specificity (97%). Patients with
methylation levels above this threshold are considered posi-
tive for ProCUrE status (ProCUrE +ve).

Assessment of ProCUrE for improved PCa diagnosis
To determine ProCUrE’s value for PCa diagnosis, we
tested its association with PCa. ProCUrE +ve status was

significantly associated with PCa positive biopsies in
both the training (Additional file 2: Figure S1A) and
validation cohorts (Fig. 3a) (χ2 p < 0.01) while
age-adjusted PSA (see definition in the “Material and
methods” section) [15, 16] was not (Fig. 3a; χ2 p >
0.05). ProCUrE status identified 31.6% PCa patients
with 11.9% false positive cases, while age-adjusted
PSA detected 75.3% PCa patients but also had a high
number (69.5%) of false positives. The positive pre-
dictive value (PPV) for ProCUrE was higher than for
age-adjusted PSA (78.1% vs 59.8%) (Table 3A). These
results demonstrate that ProCUrE +ve patients are
more likely to harbor PCa.

Assessment of ProCUrE for early prognostication of PCa
To investigate ProCUrE’s value for PCa prognostication,
we assessed the ability of individual markers, ProCUrE,
and clinical variables to differentiate CI-PCa and
CS-PCa patients as determined by GS. Using univariable
logistic regression analysis, ProCUrE, PSA, and age
showed significant association with CS-PCa. Due to the
difference in range of each variable, interquartile range
odds ratios (IQR OR) were estimated. The IQR OR of
ProCUrE in the validation cohort (OR = 1.58, 95% CI =
1.28–1.96) were of similar size to PSA (OR = 1.98, 95%
CI = 1.46–2.68), and age (OR = 1.66, 95% CI = 1.13–2.45)
for CS-PCa (Table 4A). Multivariable logistic regression
of significant variables age, PSA, and ProCUrE showed
that ProCUrE was an independently significant variable
for CS-PCa in the validation cohort (Table 4B). These
results show that ProCUrE is a robust prognosticator of
CS-PCa.

Fig. 1 Distribution of percent of methylated reference (PMR) values for individual biomarkers among benign and PCa (Cancer) patients. Number
of patients = 408. APC, HOXD3, TGFβ2, GSTP1, and KLK10 are able to significantly differentiate benign and PCa (Mann Whitney U p < 0.05). Circles
indicate outliers within 1.5× IQR, stars indicate outliers > 1.5× IQR. Mann Whitney U p values can be found in Additional file 1: Table S2
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We examined ProCUrE among patients stratified into
different risk categories based on GS, D’Amico criteria
and CAPRA score. χ2 analysis showed that both Pro-
CUrE and age-adjusted PSA could differentiate between
patients harboring no disease and/or CI-PCa versus
CS-PCa in both the training cohort (Additional file 2:
Figure S1B–D) and validation cohort (Fig. 3b–d) (χ2 p <
0.05). ProCUrE was able to differentiate low-risk vs
intermediate- and high-risk PCa patients based on GS
and CAPRA score, but not D’Amico criteria (Fig. 3b–d).
Furthermore, ProCUrE’s prognostic value was consist-
ently more robust as demonstrated by a more strin-
gent p value (χ2 p < 0.01) compared to age-adjusted
PSA (χ2 p < 0.05) in the validation cohort.
ProCUrE exhibited higher PPV than age-adjusted PSA

for several different prognostic assessments (PPV: 76%
vs 70.5% for CAPRA, 76% vs 72.1% for D’Amico, and

76% vs 63.9% for GS risk, Table 3B–D) indicating its
overall robust ability to identify CS-PCa. Additionally,
we found that ProCUrE significantly differentiated
high-grade PCa, including GS ≥ 7(4 + 3), and GS ≥ 8
from all other patients, with higher PPV (37.5% and
31.3%, respectively) compared to age-adjusted PSA
(24.5% and 16.7%, respectively) (Fig. 3, Table 3B–D).
These results indicate that patients who are ProCUrE

+ve have a higher likelihood of harboring CS-PCa and
high-grade (GS ≥ 8) tumors.

Additional discriminative value of ProCUrE to PSA
To determine whether ProCUrE could add discrimin-
atory value to PSA testing, we performed concordance
statistics (c-statistic) analysis of PSA alone and ProCUrE
with PSA combined in the training cohort using logistic
regression. The c-statistic with PSA and ProCUrE

A

B

Fig. 2 a Receiver operating characteristic (ROC) curves for individual biomarkers and ProCUrE, stratifying between benign (n = 123) and CAPRA
high-risk (n = 42) patients in the training cohort. PSA was not included in this figure since PSA is used to calculate CAPRA and will always have a
very strong association with CAPRA high risk. b AUC (bootstrapped 1000 iterations), sensitivity, and specificity for each gene and ProCUrE. ROC
**p < 0.01; ***p < 0.001
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combined (0.775) is significantly improved over PSA
alone (0.729) (DeLong test p = 0.039), indicating that
ProCUrE has additional discriminatory value to PSA for
detecting CS-PCa (Table 5). Only GS risk was analyzed
since CAPRA score and D’Amico criteria is calculated
using PSA.

Additional discriminative value of ProCUrE to PCPT
To determine whether ProCUrE could add additional
value to current clinical nomograms, we used the PCPT
risk calculator for risk assessment in a subset of 144 pa-
tients (out of 408 patients in total) that had family his-
tory, ethnicity, and DRE results available.
We assessed the diagnostic (detection of any PCa) and

prognostic (detection of GS ≥ 7 PCa) value of PCPT
(AUC = 0.741; 0.771, respectively) and ProCUrE (AUC =
0.746; 0.730, respectively) individually. Further, using
c-statistic, we calculated the additive value of ProCUrE
to PCPT for diagnosis of PCa using logistic regression,
which increased from c = 0.741 for PCPT alone to c =
0.817 for PCPT with ProCUrE. Similarly, for the detec-
tion of CS-PCa (as determined by GS) addition of Pro-
CUrE to PCPT increased from c = 0.771 to c = 0.822.

Both values represent a significant increase (DeLong’s
test p = 0.011 for diagnostic, p = 0.022 for prognostic
value) and indicate that the information provided by
ProCUrE could further improve current PCPT parame-
ters for prognosticating PCa patients prior to biopsy.

Discussion
Our study developed a urinary DNA methylation
biomarker-based actionable assay, ProCUrE, to identify
CS-PCa that would warrant treatment. ProCUrE signifi-
cantly improves risk stratification with a higher PPV
compared to age-adjusted PSA. Patients who are positive
for ProCUrE will be more likely to harbor aggressive
tumors and thus ProCUrE has the potential to supple-
ment PSA or other tests that focus on NPV. Import-
antly, ProCUrE has additive value to PSA assessment
and to PCPT risk calculator for the detection of aggres-
sive (GS ≥ 7) cancers.
PSA testing cannot reliably distinguish patients that

have CS-PCa disease from those that do not require
treatment. Therefore, invasive confirmation biopsy is ne-
cessary for PCa diagnosis and prognostication. A
non-invasive adjunct test to PSA, such as ProCUrE, that

A B

C D

Fig. 3 Diagnostic and prognostic ability of ProCUrE and age-adjusted PSA in the validation cohort. a The percent false- and true-positive for
ProCUrE or age-adjusted PSA separating benign and PCa patients. b The percent of patients positive for ProCUrE or age-adjusted PSA for
clinically insignificant (benign and low-risk) vs clinically significant (intermediate- and high-risk) based on Gleason score. c, d The percent of
patients positive for ProCUrE or age-adjusted PSA for clinically insignificant (benign and low-risk) vs clinically significant (intermediate- and high-
risk) and low-risk vs intermediate- and high-risk as determined by CAPRA score and D’Amico. N = 140, χ2*p < 0.05, **p < 0.01, ***p < 0.001
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can identify patients with CS-PCa would reduce
overtreatment and prevent morbidity associated with
unnecessary biopsies.
ProCUrE is comprised of the promoter methylation of

HOXD3 and GSTP1 genes. HOXD3 is a member of the
homeobox gene family of transcription factors which
play important roles in morphogenesis and cell adhesion
[17, 18], while GSTP1 is a member of the GST family of
metabolic enzymes which function in regulation of cell
cycle, DNA repair, and apoptosis [19]. Increased

methylation levels of HOXD3 and GSTP1 are observed
in prostate tumors and are correlated with aggressive
PCa and/or adverse clinical outcomes [9, 18, 20, 21].
GSTP1 methylation has been previously investigated in
urine sediments and was found to be PCa specific when
compared to benign patients [22].
In a recent study of urinary methylation biomarkers,

APC and GSTP1 methylation in conjunction with clin-
ical variables demonstrated 100% NPV for distinguishing
GS ≥ 7 PCa [23]. Although this study demonstrated that
urine-based DNA methylation markers could be used to
prognosticate PCa aggressiveness, their results showed a
high (26%) false positive rate compared to only 13.8%
false positive rate observed for ProCUrE. Thus, their
combined panel of APC and GSTP1 is less than favor-
able to address the current challenges for managing
PCa, specifically, to minimize overtreatment of low-risk
patients. Currently available non-invasive tests for PCa
diagnosis and prognosis include the Prostate Health
Index [24], SelectMDx [25], mpMRI [26], and PCA3.
Similar to ProCUrE, SelectMDx is a post-DRE
urine-based, two-gene (HOXC6 and DLX1) expression
assay that can detect CS-PCa (GS > 6) (AUC = 0.77).
The Prostate Health Index (PHI) [27] is a FDA-approved
blood test that measures total, free and -2proPSA with
greater specificity than free and total PSA for CS-PCa
[28]. MpMRI has a high NPV (95%) for GS ≥ 7 tumors
[26]. However, high cost and limited availability remain
a limitation for implementing mpMRI as a screening
tool. The Progensa PCA3 test is the only FDA approved
urine-based test for PCa diagnosis. With its high NPV
for PCa (90%) [29], PCA3 can prevent unnecessary re-
peat biopsies. The Mi-Prostate score combines PCA3
and TMPRSS2:ERG fusion with the multivariable Pros-
tate Cancer Prevention Trial risk calculator (PCPT) for
prediction of PCa (AUC = 0.762) and high-risk PCa
(AUC = 0.779) which is comparable to our ProCUrE
assay in the training cohort (AUC = 0.795 for benign vs
high-risk PCa, Fig. 2) [30] Additionally, we demonstrated
that ProCUrE, when combined with PCPT, has even
greater AUCs for diagnosis (0.817) and prognostication
(0.822) of PCa than the Mi-Prostate score. However, it
should be noted that this comparison was calculated on
a subset of the total number of patients that had DRE,
family history, and ethnicity information available.
All of the aforementioned tests are promising for PCa

diagnosis or prognostication. However, all of these tests
focus on NPV for PCa or high-risk PCa. Patients who
are above the selected thresholds for these tests remain
uncertain with respect to their disease status. Working
in conjunction with the above tests or PSA, our Pro-
CUrE assay fulfills a niche by focusing on PPV to offer a
distinct advantage in identifying PCa patients with clin-
ically significant tumors. Thus, patients who cannot be

Table 3 Diagnosis (A) and prognostication (B–D) of PCa

PPV NPV

A

Benign vs PCa

ProCUrE 78.10% 49.10%

Age-adjusted PSA 59.80% 47.40%

B

GS clinically insignificant vs clinically significant

ProCUrE 59.40% 76.40%

Age-adjusted PSA 38.20% 84.20%

GS6 vs GS ≥ 7

ProCUrE 76.00% 53.70%

Age-adjusted PSA 63.90% 70.00%

Benign, GS6, GS7(3 + 4) vs GS ≥ 7 (4 + 3)

ProCUrE 37.5% 86.8%

Age-adjusted PSA 24.5% 94.7%

Benign, GS6, GS7 vs GS ≥ 8

ProCUrE 31.3% 94.3%

Age-adjusted PSA 16.7% 100.0%

C

CAPRA clinically insignificant vs clinically significant

ProCUrE 59.40% 73.60%

Age-adjusted PSA 42.20% 86.80%

CAPRA low risk vs intermediate and high risk

ProCUrE 76.00% 48.10%

Age-adjusted PSA 70.50% 75.00%

D

D’Amico clinically insignificant vs clinically significant

ProCUrE 59.40% 68.90%

Age-adjusted PSA 43.10% 76.30%

D’Amico low risk vs intermediate and high risk

ProCUrE 76.00% 38.90%

Age-adjusted PSA 72.10% 55.00%

Positive (PPV) and negative (NPV) predictive values for ProCUrE and age-
adjusted PSA in the validation cohort separating benign vs PCa (A); clinically
insignificant (benign and low-risk) vs clinically significant (intermediate- and
high-risk) and low-risk vs clinically significant (intermediate- and high-risk) as
determined by GS, CAPRA score, D’Amico criteria. (χ2 p values for these
comparisons could be found in Fig. 3)
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ruled out as having indolent tumors could be tested with
ProCUrE to assess whether they have aggressive disease.
ProCUrE could also be combined with tests such as
SelectMDx to build a more comprehensive multivariable
urine test in the future. This will improve current
clinical PCa patient management once validated in
independent studies.
Our study has certain limitations, including the fact

that patient cohorts recruited for our study had differ-
ences in size and composition (e.g., UEA cohort had
patients with higher PSA, GS, T stage compared to other
cohorts) and as such, they could not be analyzed as
three independent cohorts, despite using consensus
recruitment criteria. Histopathological-based cancer
diagnosis of biopsies was performed at three different
participating centers which may have contributed to

some variation in Gleason grading between cohorts.
However, our strategy of combining patients from all
three cohorts and subsequently randomizing into
training and validation cohorts, overcomes these
caveats as it ensured that the training and validation
sets would include patients representing a broad
spectrum of prostate status, from benign with low
PSA to very high risk PCa.
Other potential caveats are that benign patients with

abnormalities such as high PSA may have contributed to
the lack of significance for age-adjusted PSA with PCa
diagnosis. Patients who are false positive for ProCUrE
+ve status may actually harbor occult tumors. In this
regard, follow-up data collection is ongoing for future
biopsies and/or MRIs, which will enable assessment of
ProCUrE for prediction and confirmation of CS-PCa.
Additionally, clinical stage information for the UEA and
Dublin cohorts did not differentiate T2a, T2b, and T2c
tumors. Therefore, D’Amico criteria was calculated with
all T2 patients assigned as intermediate risk. This may
have contributed to the lack of significance for ProCUrE
to stratify patients based on D’Amico criteria. In previ-
ously published studies, we described a 4-gene methyla-
tion Classifier Panel (APC, GSTP1, CRIP3, HOXD8) in
PCa patients monitored by active surveillance (AS) for
the prediction of risk-reclassification [12, 31]. We were
unable to screen two genes (CRIP3 and HOXD8) from

Table 4 Prediction of CS-PCa (as determined by GS) by individual markers, clinical variables, and ProCUrE

A

Univariable 1st quartile 3rd quartile Difference OR 95% CI. p value

ProCUrE − 2.0006 − 1.0828 0.91789 1.58*** 1.28 1.96 < 0.0001

APC 0 0.37652 0.37652 1.24*** 1.10 1.39 0.0003

HOXD3 0.43965 5.2043 4.7646 1.54*** 1.24 1.90 < 0.0001

GSTP1 0 0.1216 0.1216 1.06** 1.02 1.10 0.0013

KLK10 0 0.12665 0.12665 1.07** 1.02 1.11 0.0048

TGFβ2 0 0.309 0.309 1.03* 1.00 1.06 0.0481

TBX15 0 0.21295 0.21295 1.16*** 1.08 1.24 < 0.0001

PSA 4.565 10.48 5.915 1.98*** 1.46 2.68 < 0.0001

Age 59 71 12 1.66** 1.13 2.45 0.0105

PSA density 0.09 0.2 0.11 2.35*** 1.51 3.68 0.0002

Prostate volume 40 70 30 0.70 0.47 1.06 0.0926

B

Multivariable OR 95% CI. p value

ProCUrE 1.358* 1.051 1.754 0.0194

PSA 0.816 0.373 1.785 0.6108

Age 2.718** 1.295 5.707 0.0082

PSA density 2.878** 1.455 5.694 0.0024

Using univariable and multivariable logistic regression, the ability of individual methylation markers, ProCUrE, and clinical variables to differentiate CI-PCa and CS-
PCa as determined by GS was assessed in the training cohort. Since the scale of each variable is different, interquartile range odds ratios were estimated (logistic
regression model *p < 0.05, **p < 0.01, ***p < 0.001)

Table 5 C-statistic for distinguishing clinically significant disease
based on GS

CI-PCa vs CS-PCa (GS) C-statistic

PSA 0.729

ProCUrE 0.684

Combined 0.775*

C-statistics was used to determine any additive value of ProCUrE to PSA for
discriminating CI-PCa vs CS-PCa as determined by GS in the training cohort.
Only GS risk was analyzed since CAPRA score and D’Amico criteria is calculated
using PSA. DeLong’s test *p = 0.039

Zhao et al. Clinical Epigenetics          (2018) 10:147 Page 8 of 12



this four-gene classifier panel in the current study due
to limitations of DNA samples availability. Similar to our
findings in the AS PCa patient cohort, we found that
methylation frequencies of APC and GSTP1 in urinary
sediment were lower compared to those reported in
tissue samples. Lastly, it is difficult to assess the additive
value of ProCUrE to PSA for identifying patients based
on the CAPRA score and D’Amico criteria, since both
nomograms are calculated using PSA leading to strong
association with PSA with these risk groups. Both
CAPRA and D’Amico criteria are limited in that they
require prostate biopsy to calculate risk. ProCUrE is
advantageous in this regard since risk assessment can be
performed prior to biopsy.

Conclusion
A non-invasive urine-based assay that can distinguish
PCa patients with aggressive, clinically significant
disease from those with benign and/or low risk disease
would be valuable in reducing morbidity associated
with over-diagnosis and preventing under-diagnosis of
patients that would benefit from definitive treatment.
Our ProCUrE assay could be used to supplement PSA
screening and monitoring so those with aggressive
disease would be identified early and those without will
avoid unnecessary treatment.

Materials and methods
Patient cohorts
Participants were prospectively recruited between April
2012 and September 2015, from the University of East
Anglia/Norfolk and Norwich University Hospital, UK
(UEA cohort, n = 194), the University Health Network,
Canada (UHN cohort, n = 155), and Trinity College,
Ireland (Dublin cohort, n = 59), together as part of the
Movember GAP1 Multi-Center Urine Biomarker
(MoGAP-MUB) cohort. Patients underwent prostate
TRUS biopsy due to increased PSA and/or abnormal
DRE (PSA follow-up time 0–122 months). Benign pa-
tients with normal age-adjusted PSA were recruited
due to symptoms of BPH or had microhematuria
detectable on dipstick only (i.e., not gross hematuria).
Less than 10% (39/408) patients had prior biopsies, all
other patients were recruited at initial biopsy.
Post-DRE first catch urine samples were either col-
lected prior to biopsy or at least 1-month post-biopsy.
Samples were mostly collected within 12 months from
the date of biopsy. There were two patients that had >
12-month difference between biopsy and sample collec-
tion (range 14–146 months) and three patients with
unknown biopsy dates. The patient with sample
collected 146 months post-biopsy and all patients with
unknown biopsy dates were benign patients. Informed
consent was obtained following protocols approved by

the research ethics boards of all centers and Sinai
Health System, Toronto, Canada.
The cut-off for normal PSA (referred to as

age-adjusted PSA) was determined following British
Association of Urological Surgeon guidelines [15, 16].
Patients were classified based on the following criteria:
Benign indicates patients with negative biopsy.
GS, D’Amico criteria, and CAPRA score were utilized

to stratify risk in PCa patients:
GS: low risk (GS ≤ 6), intermediate risk (GS7), and

high risk (GS ≥ 8).
D’Amico criteria: low risk (GS ≤ 6 and T1–T2a and

PSA < 10 ng/mL), intermediate risk (GS7 or T2b or PSA
10–20 ng/mL), and high risk (GS ≥ or > or PSA > 20 ng/
mL) [3].
The CAPRA score is defined as the sum of the

following variables: age at diagnosis (< 50 = 0, ≥ 50 = 1),
PSA at diagnosis(ng/mL) (≤ 6 = 0, 6.1–10 = 1, 10.1–20 =
2, 20.1–30 = 3, > 30 = 4), biopsy Gleason pattern (no
pattern ≥ 4 = 0, secondary pattern ≥ 4 = 1, primary pat-
tern ≥ 4 = 3), clinical T stage (T1 or T2 = 0, ≥ T3 = 1;
%core: < 34% = 0, ≥ 34% = 1) [4]. CAPRA risk categories
are as follows: low risk (0–2 points), intermediate risk
[3–5], and high risk (≥ 6).
Calculation of PCPT risk score
PCPT risk was calculated using the Cleveland Clinic

Risk Calculator Library – PCPT Risk Calculator v2.0 [5].

Urine collection/processing
Up to 50 mL of first catch urine was collected from each
patient following DRE and centrifuged at 1200×g for
5 min. Urine sediments were separated from supernatant
and resuspended in 1 ml of PBS and stored at − 80 °C.
Urinary sediment DNA was extracted using the AllPrep
DNA/RNA mini-kit (Qiagen Inc.) Bisulfite conversion
was as previously described [12].

MethyLight analysis
Multiplex MethyLight, a methylation-specific qPCR
assay was used to determine the methylation levels of
APC, GSTP1, HOXD3, KLK10, TBX15, and TGFβ2 [32].
ALU-C4 (ALU) was used as a methylation-independent,
sodium bisulfite conversion-dependent internal input
DNA control.
Primer/probe concentrations, cycling parameters, and

data acquisition/analysis were as previously described,
using Applied Biosystems 7500 (Life Technologies) [12].
Gene methylation was scored as percent methylated of

reference (PMR) according to Eads et al. [33] CpGe-
nome Universal Methylated DNA (EMD Millipore) was
used as the positive control and to generate standard
curves. Quality control criteria included genes of interest
(GOIs) standard curve R2 > 0.95, ALU R2 > 0.99, and
slope range from − 3.28 to − 4.86. Any sample with a

Zhao et al. Clinical Epigenetics          (2018) 10:147 Page 9 of 12



higher cycling threshold (lower quantity) for ALU than
the least concentrated standard curve point for which all
GOI amplified was excluded from analysis. Samples were
analyzed in duplicate and were reanalyzed if replicates
had a difference in PMR of > 10%. Data development
and analysis were carried out in accordance with the
Minimum Information for Publication of Quantitative
real-time PCR Experiments (MIQE) guideline [34].

Calculation for ProCUrE
Least absolute shrinkage and selection operator
(LASSO) was applied to construct gene models using
benign vs CAPRA high-risk (CAPRA-HR) patients in
the training cohort. LASSO was used to eliminate genes
that had insufficient contribution to the model. The
remaining genes (APC, GSTP1, HOXD3, KLK10, TGFβ2)
with non-zero coefficients as determined by LASSO
were tested for every possible combination using the
generalized linear model in the training cohort to deter-
mine their AUC, Akaike information criterion (AIC),
and Bayesian information criterion (BIC). An optimal
two-gene model consisting of HOXD3 and GSTP1,
which had the highest AUC with the lowest AIC and
BIC, was selected for further analysis. We developed
Prostate Cancer Urinary Epigenetic (ProCUrE) assay,
based on the formula:

Intercept þ Coefficient GSTP1ð Þ � PMR GSTP1ð Þ
þ Coefficient HOXD3ð Þ � PMR HOXD3ð Þ

where the intercept is − 0.8395549, the coefficient for
HOXD3 is 0.1397128, and the coefficient for GSTP1 is
0.8632709.
Additional comparisons (benign vs PCa, CI vs CS-PCa

as determined by GS, CAPRA and D’Amico) were per-
formed in the training cohort (Additional file 2: Figure
S2). However, none of these comparisons yielded a
model with as robust discriminative value (higher AUC)
as observed with benign vs CAPRA-HR comparison.
Therefore, we opted for the model constructed using be-
nign vs CAPRA-HR for further analysis.

Statistical analysis
Spearman’s ρ rank was used to compare PMR, age, %core,
prostate volume (cc), and PSA at diagnosis. ROC curve
analysis was used to determine ProCUrE’s sensitivity and
specificity at every cut-off value. The value with the high-
est sum of sensitivity and specificity was chosen as the op-
timized threshold. The same numerical values derived
from the training cohort were used in the validation co-
hort: threshold derived from ROC analysis (threshold
value = 0.574264899821094) and intercept and coeffi-
cients derived from generalized linear modeling. χ2 tests
were used to determine any significant association with

overall cancer status or CS-PCa (≥ intermediate-risk can-
cer as determined by GS, CAPRA, or D’Amico criteria).
Univariable and multivariable logistic regression was

performed to estimate odds ratios and corresponding
95% confidence intervals to assess the ability of individ-
ual markers, ProCUrE, and clinical variables to identify
CS-PCa patients using the lrm function of the “rms” R
package (5.1–2). C-statistic was calculated using ROC
curves [35]. DeLong’s test [36] was used to compare sig-
nificance for c-statistic as part of the roc.test function of
the pROC R package (v1.13.0).
LASSO analysis was carried out using the “glmnet”

function of the “glmnet” R package (v2.0-13) [37] to
determine the optimal value of the penalty coefficient
lambda, with 10-fold cross-validation performed using
the “cv.glmnet” function. Optimal lambda was chosen as
the cross-validated lambda at the minimum binomial de-
viance. Model assessment was performed using the
“ROCR” R package, AUC was determined via bootstrap-
ping with 1000 iterations.
For all described methods, two-sided p values of < 0.05

were considered significant. All tests were conducted
with IBM SPSS software (SPSS Inc. Released 2014.
PASW Statistics for Windows, Version 22.0) or R ver-
sion 3.4.0 [38]. Reporting recommendations for tumor
marker prognostic studies (REMARK) guidelines were
followed in analysis [39].

Additional files

Additional file 1: Table S1. Correlations. Spearman’s rank correlations
for the PMR values of each biomarker, ProCUrE, and clinical variables
Spearman’s ρ *p< 0.05; **p< 0.01. Table S2. Average PMR values of individual
gene methylation for benign and PCa patients. All genes except TBX15 was
able to significantly differentiate between benign and PCa (Mann Whitney U
p< 0.05). Table S3. Diagnosis (A) and prognostication (B-D) of PCa in the
training cohort. (DOCX 27 kb)

Additional file 2: Figure S1. Diagnostic and prognostic ability of
ProCUrE and age-adjusted PSA in the training cohort. Figure S2. Receiver
operating characteristic curve analysis of training cohort for (A) benign vs
PCa, clinically insignificant vs clinically significant PCa as determined by
(B) GS, (C) CAPRA, and (D) D’Amico. (DOCX 291 kb)
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