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Targeted bisulfite sequencing identified a
panel of DNA methylation-based
biomarkers for esophageal squamous cell
carcinoma (ESCC)
Weilin Pu2†, Chenji Wang1†, Sidi Chen2, Dunmei Zhao1, Yinghui Zhou1, Yanyun Ma3, Ying Wang4, Caihua Li4,
Zebin Huang4, Li Jin2, Shicheng Guo5*, Jiucun Wang2* and Minghua Wang1*

Abstract

Background: DNA methylation has been implicated as a promising biomarker for precise cancer diagnosis.
However, limited DNA methylation-based biomarkers have been described in esophageal squamous cell
carcinoma (ESCC).

Methods: A high-throughput DNA methylation dataset (100 samples) of ESCC from The Cancer Genome Atlas
(TCGA) project was analyzed and validated along with another independent dataset (12 samples) from the Gene
Expression Omnibus (GEO) database. The methylation status of peripheral blood mononuclear cells and peripheral
blood leukocytes from healthy controls was also utilized for biomarker selection. The candidate CpG sites as well as
their adjacent regions were further validated in 94 pairs of ESCC tumor and adjacent normal tissues from the
Chinese Han population using the targeted bisulfite sequencing method. Logistic regression and several machine
learning methods were applied for evaluation of the diagnostic ability of our panel.

Results: In the discovery stage, five hyper-methylated CpG sites were selected as candidate biomarkers for further
analysis as shown below: cg15830431, P = 2.20 × 10−4; cg19396867, P = 3.60 × 10−4; cg20655070, P = 3.60 × 10−4;
cg26671652, P = 5.77 × 10−4; and cg27062795, P = 3.60 × 10−4. In the validation stage, the methylation status of
both the five CpG sites and their adjacent genomic regions were tested. The diagnostic model based on the
combination of these five genomic regions yielded a robust performance (sensitivity = 0.75, specificity = 0.88,
AUC = 0.85). Eight statistical models along with five-fold cross-validation were further applied, in which the SVM
model reached the best accuracy in both training and test dataset (accuracy = 0.82 and 0.80, respectively). In
addition, subgroup analyses revealed a significant difference in diagnostic performance between the alcohol use
and non-alcohol use subgroups.
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Conclusions: Methylation profiles of the five genomic regions covering cg15830431 (STK3), cg19396867,
cg20655070, cg26671652 (ZNF418), and cg27062795 (ZNF542) can be used for effective methylation-based
testing for ESCC diagnosis.

Keywords: Esophageal squamous cell carcinoma, DNA methylation, Biomarker, Diagnosis, Targeted
bisulfite sequencing

Background
Esophageal cancer is one of the most aggressive cancers
and one of the leading causes of cancer death worldwide
[1–3]. Esophageal cancer can be classified as esophageal
adenocarcinoma (EAC) or esophageal squamous cell
carcinoma (ESCC) by histology [4, 5]. The incidence of
EAC is higher in Western countries, while the ESCC
subtype is predominant in Asians, especially in China
(88.84%), suggesting that the studies of ESCC in the
Chinese population is of great importance [6–10]. Cur-
rently, most of ESCCs are diagnosed at advanced stages,
and studies have revealed that the 5-year survival rate is
much higher in the early stage than in the advanced
stages of ESCC, indicating the urgent need for effective
early diagnosis methods [11–13].
DNA methylation is a key epigenetic modification in

the mammalian genomes with many essential functions,
including the repression of gene expression and genomic
imprinting [14–17]. Numerous studies have suggested
that the altered DNA methylation patterns in tumor
tissues may silence the tumor suppressor genes and
activate the oncogenes through hyper/hypo methylation
[18, 19]. In addition, DNA methylation alterations have
been found to occur early in the carcinogenesis and
therefore could be applied as a promising biomarker for
cancer early detection [20–22]. Till now, numerous
DNA methylation-based biomarkers have been identified
in several types of cancers, including lung cancer,
colorectal cancer, prostate cancer, gastric cancer, etc.
[23–26]. What is more, SHOX2 methylation-based
screening biomarker has been commercialized in lung
cancer [27]. However, despite of several diagnostic
panels for ESCC detection, these studies were limited by
the relatively small sample size, inaccurate methylation
detection methods, and lack of validation datasets.
Biomarkers with these limitations may pose a burden for
the further prospective studies with large sample sizes.
Therefore, due to the limitations of the current

biomarkers, we want to extract more cost-efficient
biomarkers with high sensitivity and specificity for ESCC
early diagnosis. In addition, with the fast development of
liquid biopsy of cancer diagnosis, the diagnostic
biomarkers are urgently needed and applied for the
large-scale prospective studies. Here, we integrated the
ESCC methylation datasets from the public database for

biomarker screening and validated a biomarker panel
consisting of five candidate CpG sites in 94 pairs of
ESCC and normal tissues from the Chinese Han popula-
tion. Due to the relatively high specificity in ESCC
diagnosis, the biomarker panel might be further applied
in the liquid biopsy of ESCC along with the other
biomarkers with high sensitivity.

Results
Integration of TCGA datasets and GEO datasets for
biomarker discovery
Public DNA methylation microarray datasets of ESCC
were carefully searched. The esophageal carcinoma
methylation dataset from TCGA was first identified, with
84 ESCC tumors and 3 ESCC adjacent normal tissue
samples, as well as 78 EAC tumors and 13 EAC adjacent
normal tissues. In order to achieve better statistical
power, we combined the ESCC and EAC adjacent
normal tissues as the control samples due to their simi-
larity, which could be validated using PCA analysis
(Additional file 1: Figure S1). As a result, 84 ESCC
tumor tissues as well as 16 adjacent normal tissues were
employed for the discovery stage analysis. In addition, the
GSE52826 dataset from the Gene Expression Omnibus
(GEO) database, with a relatively small sample size (4 ESCC
tumors and 8 control tissues), was also utilized as the valid-
ation dataset [28]. Based on our feature selection procedure
and the primer design filtering for constructing the multi-
plex PCR reaction system, which was described in the
“Methods” section (Fig. 1), cg15830431 (P = 2.20 × 10−4),
cg19396867 (P = 3.60 × 10−4), cg20655070 (P = 1.71 × 10−3),
cg26671652 (P = 5.77 × 10−4), and cg27062795 (P = 3.60 ×
10−4) were selected for further validation. Among them,
cg19396867 and cg20655070 were not in the regulatory re-
gions of specific genes, while cg15830431 (STK3, CpG
Island), cg26671652 (ZNF418, CpG Shore), and
cg27062795 (ZNF542, CpG Island) were either in CpG
islands or the CpG shores of a gene. We showed that these
5 selected CpG sites were significantly hyper-methylated in
the ESCC tumor tissues, compared to the adjacent normal
tissues. Moreover, the methylation status of these 5 CpG
sites was also validated in GSE52826 dataset and showed
similar results. In addition, all 5 CpG sites showed hypo-
methylated states in the PBMC (peripheral blood mono-
nuclear cells) and PBL (peripheral blood leucocytes) from
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healthy samples (Additional file 2: Table S1). Based on the
above analysis, we believed that these 5 CpG sites would
be the candidate non-invasive biomarkers for ESCC. As a
result, we built a prediction model based on the logistic re-
gression using all 5 predictors without adjustment for age,
gender, and other covariates, which provided a way to
discriminate between ESCCs and normal tissues
(sensitivity = 0.89, specificity = 0.81, AUC= 0.87). To fur-
ther evaluate and validate the diagnostic ability of these 5
CpG sites, we then conducted the validation study in 94
paired ESCC and adjacent normal tissue samples obtained
from patients from the Chinese Han population.

Methylation status validation of the five CpG sites with
targeted bisulfite sequencing
The characteristics of the ESCC patients are shown in
Table 1. Quality control procedures were first applied to
the targeted bisulfite sequencing data. We found that

the bisulfite conversion rate of each sample was higher
than 98%, and no significant difference was found be-
tween the tumors and adjacent normal tissues, indicat-
ing the bisulfite conversion was efficient and reliable
(Fig. 3a). In addition, the samples and the CpG sites with
high missing rate (> 30%) and low coverage (< 20×) were
also filtered out as described in the “Methods” section.
After the quality control procedures, 174 of the 188
samples (94 pairs of ESCC tumor/adjacent normal
tissues) still remained for further study. The principal
component analysis (PCA) was conducted for all sam-
ples and showed a clear discrimination between ESCC
tumors and adjacent normal tissues (Additional file 3:
Figure S2). Differential methylation analyses were con-
ducted for the five CpG sites as well as nearby CpG
sites, suggesting a major difference between the ESCCs
and adjacent normal tissues (Fig. 2). A logistic regression
model was then applied and showed significant hyper-
methylation of the five selected CpG sites in the ESCCs

Fig. 1 Flow chart of the study design. Candidate biomarkers were
selected from the high-throughput DNA methylation microarrays from
the TCGA project and further validated with the ESCC methylation data
from the GEO dataset, as well as PBMC and PBL from healthy controls.
In addition, the PBL and PBMC methylation datasets from healthy
samples were also utilized for biomarker filtering. Based on our
preliminary screening, the candidate methylation biomarkers for
ESCC were then further validated with targeted bisulfite sequencing in
independent Chinese Han ESCC patients

Table 1 Characteristics of the ESCC patients included in
this study

Characteristics Patient distribution
N = 94

Age 64 (IQR = 57 to 70)

Sex

Male 69

Female 25

Cigarette usea

Yes 58

No 36

Alcohol useb

Yes 34

No 58

T stagec

T2 14

T3 72

T4 5

N stagec

N0 44

N1 38

N2 7

N3 3

M stagec

M0 90

M1 1

ESCC esophageal squamous cell carcinoma
aYes represents the former and current smokers
bYes represents individuals who presently consume or formerly consumed
alcoholic beverages
cTNM stages were assessed by the seventh edition of the TNM
classification criteria
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(Table 2, cg15830431, P = 1.25 × 10−6; cg19396867, P =
2.71 × 10−11; cg20655070, P = 8.04 × 10−10; cg26671652,
P = 4.82 × 10−11; cg27062795, P = 1.23 × 10−12). As a re-
sult, we then averaged the methylation status of all the
nearby CpG sites in a genomic region as representatives
of the candidate regions for further analysis (Fig. 3b–f ).
Based on the mean methylation status of the five gen-
omic regions, the prediction ability of each region

separately was evaluated through logistic regression
without adjustment for age, gender, and other covariates.
The sensitivity of each region ranges from 0.64 to 0.74,
while the specificity ranges from 0.82 to 0.90 and the
AUC ranges from 0.76 to 0.84 (Table 3). Moreover, in
the logistic model taking all of the five regions as predic-
tors, we obtained the sensitivity of 0.75 and specificity of
0.88, as well as the AUC of 0.85 (Fig. 3g).

a b c

d e

Fig. 2 The methylation status of the CpG sites in the five genomic regions. a–e represent the methylation status of the CpG sites in regions
covering STK3, cg19396867, cg20655070, ZNF418, and ZNF542, respectively. The x-axis represents the genomic positions of the CpG sites in the
targeted regions. The y-axis represents the mean methylation percentage in the ESCC tumor tissues as well as the normal tissues for each of the
CpG sites. The error bar represents the confidence interval of the methylation percentage in the ESCC tumor tissues as well as the normal tissues
for each of the CpG sites

Table 2 The methylation status of the five CpG sites in the TCGA dataset and the validation dataset

CpG site Gene Position Relation to CpG_Island McaMb McoMb P valuec log10(OR)
d 95% CId Sens Spec AUC

TCGA cg15830431 STK3 chr8:99952591 Island 0.28 0.09 2.20E−04 4.11 1.91–7.43 0.65 0.94 0.82

cg19396867 NAa chr19:40314862 N_Shore 0.45 0.20 3.60E−04 1.85 0.78–3.21 0.85 0.75 0.79

cg20655070 NAa chr19:40315011 Island 0.44 0.19 1.71E−03 1.61 0.67–2.72 0.64 0.88 0.75

cg26671652 ZNF418 chr19:58446312 N_Shore 0.35 0.16 5.77E−04 1.95 0.67–3.61 0.86 0.75 0.78

cg27062795 ZNF542 chr19:56879613 Island 0.43 0.17 3.60E−04 2.93 1.65–4.44 0.86 0.81 0.80

Validation cg15830431 STK3 chr8:99952591 Island 0.20 0.07 1.25E−06 3.04 1.82–4.53 0.66 0.77 0.71

cg19396867 NA chr19:40314862 N_Shore 0.37 0.12 2.71E−11 2.83 1.93–3.91 0.65 0.88 0.80

cg20655070 NA chr19:40315011 Island 0.31 0.09 8.04E−10 3.01 2.02–4.22 0.62 0.89 0.77

cg26671652 ZNF418 chr19:58446312 N_Shore 0.32 0.11 4.82E−11 3.20 2.18–4.39 0.58 0.93 0.79

cg27062795 ZNF542 chr19:56879613 Island 0.43 0.12 1.23E−12 2.55 1.77–3.50 0.72 0.82 0.83

The sensitivity and specificity, as well as AUC, were both with a logistic regression prediction model without adjustment for gender, age, and smoking status and
alcohol status
Sens sensitivity, Spec specificity, AUC area under the curve
aNA indicated that the CpG site is located outside of the coding region of the gene
bMcaM represents the mean methylation percentage of the cases, and the McoM represents the mean methylation percentage of the controls
cP value is calculated through the Wilcoxon rank-sum test followed by FDR (false discovery rate) adjustment for multiple correction
dOR and 95% CI were determined by logistic regression
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The diagnostic ability of the five genomic regions based
on machine learning methods
In order to get a better estimation of the diagnostic abil-
ity of the selected biomarkers, several machine learning
methods, including logistic regression, random forest
(RF), supporting vector machine (SVM), neural network
(NN), Naïve Bayes (NB), linear discriminant analysis
(LDA), mixture discriminant analysis (MDA), and flex-
ible discriminant analysis (FDA), were utilized to build
the diagnostic models for ESCC classification. The mean
methylation percentages of the CpG sites in each

genomic region were utilized for analysis. The five-fold
cross-validation method was also conducted to give a ro-
bust estimation of the performance of the models. As
shown in Table 4, in the training stage, the sensitivity of
all the models ranged from 0.63 to 0.76 and the specifi-
city ranged from 0.77 to 0.89. The logistic regression
model and the SVM model both performed well with re-
gard to accuracy. In the testing stage, the sensitivity of
the models ranged from 0.63 to 0.73 and the specificity
ranged from 0.78 to 0.88. The SVM model again
achieved the highest accuracy, indicating the robustness

a b c

d

g

e f

Fig. 3 The mean methylation status of each genomic region and bisulfite conversion efficiency between ESCC tumors and normal tissues as well
as the overall ROC (Receiver Operating characteristics) curve. a represents the bisulfite conversion efficiency between ESCC and adjacent normal
tissues. Bisulfite conversion efficiency was calculated by using the number of transformed C to T divided by the number of C in each sample.
b–f represent the mean methylation status of the genomic regions covering STK3, cg19396867, cg20655070, ZNF418, and ZNF542, respectively.
Each point represents mean methylation percentage in a genomic region of a sample. The boxplot showed overall methylation percentage
of different groups in each genomic region. g represents the overall ROC curve, which was calculated through a logistic regression model,
incorporating the mean methylation percentage of the five genomic regions as the variables and without the adjustment for gender, age, and
smoking status and alcohol status
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and effectiveness of the model. In addition, we found
that the diagnostic performance was similar between the
training and testing stage in all the models, suggesting
the reliability of our results.

Evaluation of diagnostic models in the ESCC subgroup
analysis
Previous studies have found several risk factors for the
incidence of ESCC, including age, gender, smoking sta-
tus, and alcohol status [29–32]. As a result, we con-
ducted subgroup analyses according to these risk factors.
The mean methylation percentage of each targeted re-
gion was utilized for subgroup analysis. In the young/old
subgroups, the median age of each patient was taken as
the criteria for dividing the samples. We found that
there was no significant difference between the sensitivity,
specificity, and the AUC between the two subgroups
(Additional file 2: Table S2). The overall AUC using all the
variables in the two subgroups was 0.86 for both
(Additional file 4: Figure S3A-B). In the male/female sub-
groups, we found that the diagnostic model performed
better for the female subgroup than the male subgroup

(Additional file 2: Table S3), and the overall AUC of the fe-
male subgroup was much higher than that of the male sub-
group (AUC 0.89 vs. 0.84, Additional file 4: Figure S3C-D).
In addition, in the smoker/non-smoker subgroup ana-
lysis, there was no significant difference between the
diagnostic performances (Additional file 2: Table S4 and
Additional file 4: Figure S3E-F). However, a significant
difference was identified in the analysis of the alcohol/
non-alcohol subgroups. Compared with the alcohol use
subgroup, the AUCs in four of the five genomic regions
were elevated in the non-alcohol subgroup, especially the
two genomic regions covering ZNF418 and ZNF542
(Additional file 2: Table S5). The overall AUC obtained
with all the genomic regions of the non-alcohol subgroup
was substantially higher than that of the alcohol sub-
group (0.89 vs. 0.79, respectively; Additional file 4:
Figure S3G-H). In addition, we found that our female
samples were all included in the non-alcohol subgroup. In
order to eliminate the confounding factor of gender in the
alcohol/non-alcohol subgroup analysis, we then selected
the male samples only for subgroup analysis. Concor-
dantly, we found that the diagnostic ability was still

Table 3 The mean methylation status of the five genomic regions in the validation datasets

Genomic regiona No. CpG sitesb CpG site included Gene McaMc McoMc P valued log10(OR)
e 95% CIe Sens Spec AUC

chr8:99952469-99952722 19 cg15830431 STK3 0.35 0.16 4.20E−09 2.82 1.83–4.03 0.64 0.82 0.76

chr19:40314817-40314928 6 cg19396867 NA 0.36 0.12 9.60E−11 2.90 1.97–4.03 0.61 0.90 0.79

chr19:40314939-40315133 17 cg20655070 NA 0.31 0.12 1.80E−09 3.61 2.42–5.06 0.60 0.90 0.77

chr19:58446187-58446437 19 cg26671652 ZNF418 0.50 0.26 1.10E−13 3.46 2.52–4.54 0.74 0.86 0.84

chr19:56879517-56879735 25 cg27062795 ZNF542 0.41 0.14 5.20E−13 2.81 1.94–3.86 0.71 0.84 0.83

The sensitivity, specificity as well as the AUC were both with a logistic regression prediction model without adjustment for gender, age and smoking status and
alcohol status
Sens sensitivity, Spec specificity, AUC area under the curve
aGenomic region represents the genomic coverage of the reads with targeted bisulfite sequencing, and the genomic coordinates shown here is based on the
hg19 version of the genome
bNo. CpG sites represents the number of the CpG sites in each region
cMcaM represents the mean methylation percentage of the cases in each region, which consists of several CpG sites, while the McoM represents the mean
methylation percentage of the controls in each region
dP value is calculated through the Wilcoxon rank-sum test following with FDR (false discovery rate) adjustment for multiple correction
eOR and 95% CI were conducted through logistic regression

Table 4 Diagnosis accuracy, sensitivity, and specificity of different classification models with five-fold cross-validation

Methods Train Test

Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy

Logistic regression 0.75 0.89 0.82 0.73 0.86 0.79

Random forest 0.73 0.77 0.75 0.73 0.78 0.75

Supporting vector machine 0.74 0.89 0.82 0.73 0.87 0.80

Naïve Bayes 0.63 0.89 0.76 0.63 0.88 0.75

Neural network 0.76 0.87 0.81 0.72 0.81 0.76

Linear discriminant analysis 0.73 0.88 0.80 0.71 0.87 0.79

Mixture discriminant analysis 0.74 0.89 0.81 0.71 0.84 0.77

Flexible discriminant analysis 0.73 0.88 0.80 0.71 0.87 0.79

The mean methylation percentage of each genomic region was considered as the independent variable for constructing the models, which means that all of the
models were based on these five independent variables without adjustment for gender, age, smoking status, and alcohol status. Sensitivity, specificity, and
classification accuracy were the mean value in five-fold cross-validations with 1000 replications
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substantially better in the non-alcohol subgroup than in
the alcohol subgroup, indicating that the observed differ-
ence was not introduced by the gender bias (0.90 vs. 0.79,
respectively; Additional file 2: Table S6). The vast
difference in the diagnostic performance in the alcohol/
non-alcohol subgroup indicates that alcohol use may con-
tribute to the epigenetic changes in ESCC as well as to the
pathogenesis of ESCC [30].

Discussion
DNA methylation plays a key role in the gene expression
regulation and therefore has great potential as a non-
invasive biomarker for cancer diagnosis and prognosis.
ESCC patients who receive an early diagnosis will have
longer survival times and lower mortality. Previous
studies have found several candidate methylation bio-
markers for ESCC detection and prognosis as well as
treatment response. In our study, we integrated the
methylation dataset from TCGA project and the GEO
dataset for biomarker discovery and removed the candi-
date biomarkers with hyper-methylation status in PBMC
and PBL cells of healthy controls to ensure its validity
for future non-invasive diagnosis. Finally, a novel DNA
methylation biomarker panel consisting of five CpG sites
was then identified. Moreover, we validated these five
CpG sites in 94 pairs of ESCC tumors and their adjacent
normal tissues from Chinese patients with a targeted
bisulfite sequencing method, enabling us to not only de-
tect the methylation status of five CpG sites but their
genomic regions as well. As a result, we then obtained
the mean methylation percentage of each targeted
region, which is a more robust estimation of the methy-
lation status than the single CpG site itself. The methyla-
tion testing of these five genomic regions has a fairly
high accuracy, sensitivity, and specificity in different
models, suggesting that the methylation testing of these
five genomic regions may be promising biomarkers
for the detection of ESCC. In addition, the subgroup
analyses identified that the diagnostic performance of
the methylation testing is much better in the non-
alcohol-consuming patients than in the ESCC patients
who consume alcohol, suggesting the importance of
taking the epidemiological data into considerations
when performing ESCC diagnosis. Further studies
may be required to explore the association between
the methylation status of these five genomic regions
and the use of alcohol.
Of the five genomic regions, two genomic regions cov-

ering cg19396867 and cg20655070 were not in the regu-
latory regions of specific genes. However, the H3k4me3,
H3k4me1, and H3k27ac status of these two regions from
the ENCODE project showed that these regions might
be associated with the enhancers, indicating that the re-
gions might also have important regulatory functions

(data not shown). In contrast, cg15830431 (STK3,
CpG Island), cg26671652 (ZNF418, CpG Shore), and
cg27062795 (ZNF542, CpG Island) were either in the
CpG islands or the CpG shores of a gene. The serine/
threonine kinase 3 (STK3) gene encodes a serine/
threonine protein kinase and functions as a growth
suppressor, which is one of the key components of
the Hippo signaling pathway involving apoptosis. A
previous study has found that the deletion of STK3 in
mouse liver results in tissue overgrowth and tumor
development, demonstrating its importance in sup-
pressing carcinogenesis [33]. Also, hyper-methylation
of STK3 has been found in soft tissue sarcoma as well
as head and neck squamous cell carcinoma, which is
in accordance with the present study [34, 35]. How-
ever, in our expression analysis with the RNA-seq
dataset from TCGA, we found that the expression of
STK3 was upregulated in the ESCC tumor tissues,
which is inconsistent with our assumptions and needs
further analysis (Additional file 5: Figure S4). ZNF418
(zinc finger protein 418) is a member of the zinc
finger-containing transcription factor family, which
has been implicated as critical regulators for develop-
ment and diseases. ZNF418 has been shown to be a
transcriptional repressor, which may act as a negative
regulator in the MAPK signaling pathway, and we
also found the downregulation of ZNF418 in the
ESCC tumor tissues in TCGA dataset, indicating the
possible activation of MAPK pathway by decreased
expression of ZNF418 in the ESCC pathogenesis
(Additional file 5: Figure S4) [36]. ZNF542 (zinc
finger protein 542) is a pseudogene, which also may
be involved in transcriptional regulation. Studies have
found hyper-methylation of ZNF542 in oropharyngeal
squamous cell carcinoma and sporadic colorectal can-
cer [37, 38]. Moreover, a pan-cancer study analysis
based on the TCGA methylation datasets identified
the hyper-methylation status of ZNF542 in 12 cancer
types [39]. Moreover, the expression profiles of
ZNF542 were in accordance with the methylation sta-
tus, which was significantly downregulated in the
ESCC tumor tissues (Additional file 5: Figure S4).
Several studies have recently conducted a search for

the miRNAs and metabolomics, as well as DNA
methylation-based biomarkers for ESCC diagnosis. Zhou
X et al. have found a panel consisting of six microRNAs
in serum which could serve as the biomarker for ESCC
diagnosis [40]. Moreover, miR-1246, miR-18a, miR-25,s
and miR-21 were all validated as the promising diagnos-
tic biomarkers for ESCC previously [41–44]. Several
mRNA-based biomarkers were also confirmed as candi-
date biomarkers for ESCC [45–47]. Jing X et al. found
that the urine metabolomics were the promising diag-
nostic biomarkers for ESCC [48]. As for the DNA
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methylation-based biomarkers, Hiroaki N et al. have
found that HOXB2 and SEPT9 were two candidate
diagnostic biomarkers for the prediction of lymph node
metastasis of ESCC [49]. In addition, the methylation
status of PAX1, ZNF582, HIN1, TFPI-2, DACH1, and
SOX17 were all reported as the candidate diagnostic bio-
markers for ESCC [50, 51].
Compared with the other kinds of biomarkers, DNA

methylation alterations may occur in advance of the
alterations of mRNA and protein levels in the
carcinogenesis thus might have a better early diagnosis
potential. Here, in our study, we integrated the public
high-throughput microarray datasets and applied the
targeted bisulfite sequencing method to explore the
methylation status of our candidate CpG sites as well as
their adjacent genomic regions. With the fast
development of next generation sequencing (NGS), the
targeted bisulfite sequencing method is becoming the
recommended method for methylation detection be-
cause of high accuracy and high throughput and cost-
effectiveness. Previous studies have revealed that the
adjacent CpG sites on the same DNA molecules would
share similar methylation patterns due to the locally co-
ordinated activities of the DNA methyltransferases
(DNMTs) or ten-eleven translocation (TET) proteins,
which are methylation haplotypes, epi-alleles, or epi-
haplotypes [52–54]. Because of the increased CpG sites
in the region, the methylation haplotypes may be less
susceptible to the complex and random environment
stimulus and would be a more stable representative for
methylation quantification [55].
Till now, the majority of the ESCC patients were diag-

nosed at later stage, and conventional endoscopy is ex-
pensive and depends on the availability of specialist
clinical expertise and the diagnostic accuracy is relatively
low [56]. As a result, better diagnostic methods for
ESCC are urgently needed. Recently, a novel method
which involves swallowing a sponge on a string has been
proposed for ESCC diagnosis [57, 58]. The sponge is
then gently pulled back out, taking a sample of cells
from the person’s esophagus. In this case, our panel
could be served as the diagnostic biomarkers. In
addition, with the need for non-invasive diagnosis soar-
ing up, our diagnostic panel could also be utilized for
the liquid biopsy for ESCC in coordination with the
other kinds of biomarkers.
The early diagnosis of esophageal squamous cell car-

cinoma is challenging due to its high heterogeneity. A
single biomarker by itself may not be adequate for
accurate diagnosis, which suggests that a panel consist-
ing of multi-biomarkers is essential. Though our DNA
methylation-based biomarkers have reached a fair
accuracy in distinguishing the ESCC tumors from nor-
mal tissues, some of the ESCC tumor tissues still

remained misclassified. Integration analysis of multi-
omics datasets, ranging from genomics and epigenomics,
as well as proteomics, may reveal more heterogeneity in
ESCC and identify more biomarkers for accurate non-
invasive diagnosis.

Conclusion
Integration analysis of ESCC high-throughput DNA
methylation datasets from TCGA project and GEO data-
base identified five hyper-methylated CpG sites as candi-
date biomarkers for ESCC diagnosis, which were further
validated in an independent analysis of 94 pairs of ESCC
tumors and normal tissues using the targeted bisulfite
sequencing method. Methylation profiles of the five
genomic regions covering cg15830431 (STK3), cg19396867,
cg20655070, cg26671652 (ZNF418), and cg27062795
(ZNF542) may be effective DNA methylation-based testing
for ESCC diagnosis.

Methods
Biomarker discovery based on the public datasets
Public high-throughput DNA methylation microarray
datasets were searched, and the comprehensive methyla-
tion dataset of esophageal cancer from the TCGA pro-
ject was the first obtained. There were 84 ESCC and 3
normal tissues in this level 3 dataset. In addition, we also
found that there are 78 EAC and 13 adjacent normal tis-
sues in the TCGA dataset (level 3). To increase the
sample size for a more robust biomarker discovery, the
adjacent normal tissues of the EAC and ESCC were
combined for analysis. Finally, 84 ESCC as well as 16
normal tissues were obtained from TCGA for discovery
analysis. In addition, a GSE record named GSE52826
was found, with 4 ESCC and 8 normal tissue samples,
which were utilized for preliminary validation.
To strengthen the robustness of the candidate bio-

markers, we conducted the differential methylation re-
gion (DMR) analysis (Additional file 6: Figure S5). We
first took the adjacent six CpG sites as a methylation
block, and the range of the block should be shorter than
1000 bp due to the low methylation linkage equilibrium.
We then applied the sliding window methods according to
the genomic position of each CpG site and slides one CpG
site each time. Therefore, some CpG sites were overlapped
in the adjacent DMRs. Finally, we extracted 105,673
methylation regions which fulfilled our criteria. After that,
we calculated the methylation status between the ESCC
and the control tissues for each DMR. In summary, we ob-
tained 411 DMRs, covering 1355 unique candidate CpG
sites based on our standards (McaM > 0.40, McoM < 0.20,
FDR < 0.01, fold change > 2). Subsequently, these 1355
candidate CpG sites were further filtered based on their
methylation status and 713 candidate CpG sites were still
retained (McaM > 0.25, McoM < 0.20, Diff > 0.15, fold
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change > 2, FDR < 0.01). Simultaneously, the methylation
differences of the candidate CpG sites in the GEO dataset
were also obtained for further validation (McaM > 0.15,
McoM < 0.15, Diff > 0.10, fold change > 2, P value < 0.05).
After that, only 275 candidate CpG sites were included.
Due to the fact that it is inevitable to contain DNAs from
some of the peripheral blood cells when performing liquid
biopsy, to reduce the noises brought by the methylation
status of the peripheral blood cells, it is of great importance
that the methylation rate of the candidate biomarker
should be very low in the adjacent normal tissues as well
as in the peripheral blood so that it can be used for non-
invasive cancer diagnosis in the future. As a result, we then
filtered the candidate CpG sites with high methylation per-
centage in the peripheral blood mononuclear cells (PBMC,
N = 111) and peripheral blood leucocytes (PBL, N = 527) of
the healthy normal samples from the GEO database (the
PBMC dataset came from the GSE53045 dataset, and the
PBL dataset was the combination of GSE36054 and
GSE42861). In addition, the CpG sites located far from the
CpG islands were also filtered out. Moreover, we further
removed the CpG sites with SNPs in their primers and the
CpG sites whose corresponding genes have been studied in
ESCC carcinogenesis. In total, 175 candidate CpG sites
were finally selected. Based on the CG percent, PolyT, and
the number of SNPs in the primers of our targeted regions,
we obtained the overall score representing the difficulty
levels for all the candidate regions. In total, we selected the
top five candidate regions with the best chances to be amp-
lified and conducted in the multiple PCR experiment and
removed the other candidate regions for further validation.
Finally, five of our candidate biomarkers were selected for
further validation: cg15830431, cg19396867, cg20655070,
cg26671652, and cg27062795.

Patients, samples, and DNA
ESCC samples and their paired adjacent normal tissues
for validation study were obtained from the First Affili-
ated Hospital of Soochow University and Fourth Military
Medical University between the years of 2011 and 2015.
The patients who did not undergo any neo-adjuvant
therapy before the surgery were recruited only. All
tumor tissues were evaluated by pathologists and ful-
filled the criteria of tumor percent > 50%. All procedures
performed in this study were in accordance with the
ethical standards of the institutional research committee
and with the 1964 Helsinki declaration and its later
amendments. The studies were approved by the institu-
tional review boards of Soochow University at Jiangsu
Province and Fudan University, Shanghai, China.
Written informed consent was obtained from each study
subject. In addition, all of the subjects were re-examined
and confirmed by professional pathologists for histo-
pathological diagnosis. All tissues were immediately

frozen at − 80 °C after surgical resection. Face-to-face in-
terviews were conducted by professional investigators
with a comprehensive questionnaire, including clinical
information on tobacco smoking, alcohol consumption,
and family history. The smokers were defined as ever
using the tobacco products at least once a day for
6 months, and the alcohol drinkers were defined as ever
using the alcohol products at least once a week for
6 months.

Targeted bisulfite sequencing assay
DNA extraction and bisulfite conversion were performed
as previously described [59, 60]. Based on the genomic
coordinates of the five candidate CpG sites, we carefully
designed the primers in order to detect them in a panel
(Additional file 2: Table S7). The net-PCR was per-
formed firstly to amplify the targeted DNA sequence.
Then, the designed DNA fragments were sequenced by
Illumina Hiseq 2000. BSseeker2 is one of the most com-
monly used tools for analyzing the bisulfite sequencing
results and was applied in our study for mapping
bisulfite-treated reads as well as for methylation calling
[61]. After calling methylation, we obtained the bisulfite
conversion rate for each sample, and the samples with
bisulfite conversion rate < 98% were firstly filtered out.
After the preliminary analysis, we then calculated the
average coverage as well as the missing rate for each
CpG site. The CpG sites with average coverage less than
20× and/or with missing rate > 0.20 were further filtered
out. In addition, the samples with missing rate > 0.30
were filtered out finally.

Statistical analysis and machine learning
In the discovery stage, we applied the Wilcoxon rank-
sum test for testing the differential methylation status
between cancer and normal tissues of each CpG site.
Further, differential methylation status in tumor and
normal tissues of the candidate CpG sites were tested
with a logistic regression method. False discovery rate
(FDR) correction was used for multiple test correction.
In addition, the logistic regression (Package stats), sup-
port vector machine (SVM, Package e1071), random for-
est (Package randomForest), Naïve Bayes (Package
e1071), neural network (Package nnet), linear discrimin-
ant analysis (LDA, Package mda), mixture discriminant
analysis (MDA, Package mda), and the flexible discrim-
inant analysis (FDA, Package mda) were used for classi-
fying the ESCC and normal tissues. To obtain a robust
evaluation of the prediction ability with these bio-
markers and methods, five-fold cross-validation was also
applied. In addition, sensitivity, specificity, and accuracy
were obtained from the logistic regression model. All
statistical analyses were all conducted using R 3.2.1 [62].
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