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Abstract

Background: Population based epigenetic association studies of disease and exposures are becoming more
common with the availability of economical genome-wide technologies for interrogation of the methylome,
such as the Illumina 450K Human Methylation Array (450K). Often, the expected small number of differentially
methylated cytosine-guanine pairs (CpGs) in studies of the human methylome presents a statistical challenge,
as the large number of CpGs measured on the 450K necessitates careful multiple test correction. While the 450K
is a highly useful tool for population epigenetic studies, many of the CpGs tested are not variable and thus of
limited information content in the context of the study and tissue. CpGs with observed lack of variability in
the tissue under study could be removed to reduce the data dimensionality, limit the severity of multiple test
correction and allow for improved detection of differential DNA methylation.

Methods: Here, we performed a meta-analysis of 450K data from three commonly studied human tissues, namely
blood (605 samples), buccal epithelial cells (121 samples) and placenta (157 samples). We developed lists of CpGs
that are non-variable in each tissue.

Results: These lists are surprisingly large (blood 114,204 CpGs, buccal epithelial cells 120,009 CpGs and placenta
101,367 CpGs) and thus will be valuable filters for epigenetic association studies, considerably reducing the
dimensionality of the 450K and subsequently the multiple testing correction severity.

Conclusions: We propose this empirically derived method for data reduction to allow for more power in detecting
differential DNA methylation associated with exposures in studies on the human methylome.
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Background
Population studies that interrogate epigenetic signatures
associated with environmental variation and disease are
becoming increasingly common. The challenge with the
majority of epigenome wide association studies (EWAS)
of environment and disease is that the epigenetic signals,
in terms of detectable number of epigenetic changes and
the effect size of changes, between groups are relatively
small compared to those observed in EWAS of develop-
ment, tissues or cancer. Therefore careful and specific

methodological steps need to be implemented in analyses
to separate any true biological signal from stochastic vari-
ation in DNA methylation (DNAm), a phenomenon com-
monly referred to as noise [1].
One of the most common types of population based

epigenetic studies is the examination of DNAm using
the Illumina Infinium 450K array (450K) or its related
arrays [2]. The Illumina series of DNAm arrays, while
highly useful as tools for epigenetic studies, were not
designed for any specific human tissue, and a large num-
ber of cytosine-guanine pairs (CpGs) lack variability
within single tissue studies on the arrays [3–8]. CpGs that
are non-variable in a study of a specific disease or tissue
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may be variable in another context and therefore are still
valuable on the 450K. However, these tissue specific non-
variable CpGs contribute to the high dimensionality of the
450k data and partially necessitate the need for severe
multiple test correction. In an effort to rigorously deter-
mine the epigenetic signals of environmental exposure
and/or disease phenotypes, dimensionality reduction tech-
niques are often employed. These include mixture model-
ling, principal component analysis, weighted gene co-
expression network analysis and elastic net models,
among others [9–12]. While these techniques are effective
for high-dimensional data reduction, they do not take into
account the wealth of independent DNAm data available
to build empirical data reduction filters. A common data-
driven dimensionality reduction technique is to remove
non-variable CpGs from within a specific study and then
test only variable sites for association with the exposure of
interest [3–8]. While this practice can reduce severe mul-
tiple test correction penalties, it can introduce a bias to-
ward significant results [13]. A promising alternative from
gene expression analyses is to use a filter based on prior
biological knowledge from independent data, which can
be highly effective in improving sensitivity while maintain-
ing specificity [13].
Here, we have developed an empirically derived data

reduction method in the form of CpG lists which are
non-variable in independent cohorts of samples from
three commonly used human tissues: blood, buccal epi-
thelial cells and placenta. We anticipate these independ-
ently identified non-variable CpG lists will be useful for
confirmation of a lack of variability at CpGs in 450K
studies of interest. As such, our non-variable CpGs
might serve as a benchmark to cross-reference CpGs
also seen as non-variable in a study of interest so that
these CpGs can be filtered prior to differential DNAm
analysis. Removal of these independently verified non-
variable CpGs should then allow for a reduced multiple
testing space and allow for more power to detect differ-
ential DNAm in the study of interest. While this ap-
proach will be immediately useful for studies of 450K
data, it will also provide a blueprint for similar ap-
proaches with emerging technologies such as the Illu-
mina EPIC array. Our filtering approach for data
reduction is focused on CpG-by-CpG EWAS analyses,
which are very common approaches in DNAm analysis.
However, this filtering approach also has the potential to
improve the performance of other analyses where a
strong signal is expected at a small subset of CpGs and
noise in the data is a concern. In the context of the rap-
idly increasing number of DNAm datasets being pro-
duced, we have made our code available so that
independent non-variable CpG lists can be rapidly devel-
oped for other tissues of interest on the 450K and the
EPIC as data becomes available.

Methods
Data collection
The tissue datasets were collected from Gene Expression
Omnibus (GEO) [14]. In all tissues, cancer samples were
excluded, as cancer is associated with high DNAm vari-
ability [15]. For individual tissues, there were a range of
exclusion terms by which samples were filtered
(Additional file 1: Table S2). Exclusion terms were based
on whether the term indicated cancerous tissue, a tissue
other than the tissue of interest or a species other than
human. In general, data was downloaded as non-
normalized betas, but in some cases, M values were
converted to beta, and normalized data was used. Each
tissue dataset was then filtered down to the minimal
number of CpGs with DNAm values across all samples
of a tissue (blood 469,961 CpGs, buccal epithelial cells
420,374 CpGs and placenta 484,621 CpGs).

Quality control
To remove CpGs and samples that consistently did not
perform well on the 450K, CpGs were filtered if greater
than 5% of samples had fewer than three beads contrib-
uting to the signal across all samples from a tissue. Sam-
ples were removed if 2.5% of CpGs in a sample had
fewer than three beads contributing to the signal. Sam-
ples were also removed if they had low sample-sample
correlation compared to all other samples of a tissue.
One sample was filtered from placenta and four entire
studies were filtered from blood (total of 158 samples
from blood; see Fig. 1; Additional file 1: Table S2). The
final studies and samples included are listed in
Additional file 1: Table S3.

Non-variable calling
To designate a CpG as non-variable in a tissue, a thresh-
old of 5% range in beta values (DNAm level ranging
from 0 to 1) between the 10th and 90th percentile was
used [16]. While effect sizes as small as 1% are used in
EWAS [8, 17, 18], we used a slightly more stringent def-
inition of change in beta of 5% as we are asking only that
the population as a whole varies by at least 5% and are
not testing an effect size between groups. CpGs with less
than 5% reference range of beta values in a single tissue
population were considered non-variable in that tissue.

Genomic enrichment
To explore the genomic context of non-variable CpGs,
all CpGs were associated with gene features using the
annotation described previously [19] and with CpG is-
land features as provided in the Illumina annotation [2].
The count of non-variable CpGs located in each gene
feature (promoter, intragenic, 3 prime region and inter-
genic) and CpG island feature (island, north and south
shore, north and south shelf, and no island association)
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were compared to the background counts of all CpGs
measured, in each tissue. To compare the non-variable
CpG counts to the background in each region, 1000 per-
mutations of random CpG lists were used to calculate
fold change values over the background [20].

Application of data reduction method
To reproduce the published findings of AHRR DNA
methylation changes associated with smoke exposure, a
linear modelling approach was used on previously pub-
lished data [21]. In short, DNAm values were normal-
ized using BMIQ [22], and cell composition was
normalized between blood samples [23, 24]. A linear
model was run at all CpG sites and delta beta effect sizes
were calculated between smokers and non-smokers in
the full dataset of 111 blood samples. To simulate a
study with reduced power, ten permutations of 24 ran-
dom samples (12 smokers and 12 non-smokers) were se-
lected and the same linear model was run at all CpGs.
To test the data reduction method, the CpGs in the ten
smaller cohorts were filtered to 374,945 variable CpGs
by overlapping the CpGs that were non-variable in
GSE53045 (264,578 CpGs non-variable at a reference
range of 0.05) and the blood non-variable CpGs identi-
fied in the independent samples (114,204 CpGs de-
scribed above). Then, the same linear model was run on
only variable CpGs. CpGs were associated to genes as
previously described [19].

Results
Tissues showed similar levels of non-variable CpGs
DNAm data from publicly available studies was collected
for blood, buccal epithelial cells and placenta (21, 3 and
4 studies, respectively). Meta-analysis of samples for
each of the tissues showed generally high correlations
(70% of sample pairs correlated above 0.95). While there
were some samples with higher within study correlations
than across study correlations, the overall high correl-
ation of cross study samples can be taken as evidence of
the consistency of the 450K across research groups
(Fig. 1). While four studies of blood were removed due
to low correlation, no obvious explanation of the lack of
correlation could be found in the available study charac-
teristic information (Additional file 1: Table S2). The
generally high concordance of the DNAm samples from
the same tissue but different studies gives us confidence
going forward in the appropriateness of comparing vari-
ability across studies. After quality control of the data,
605, 121 and 157 samples were used from blood, buccal
epithelial cells and placenta, respectively.
A substantial number of tissue-specific non-variable

CpGs were identified, thus providing a solid baseline for
potential removal from studies of interest to reduce
dimensionality. The total number of non-variable CpGs
was similar across tissues: blood 114,204 (24%), buccal
epithelial cells 120,009 (29%) and placenta 101,367 (21%)
and showed a significant overlap of 42,315 non-variable

b

a

Fig. 1 Quality control of samples from GEO for each tissue type. a Heat maps showing sample-sample correlation values. Side colours show
the study ID of each sample, and samples are ordered by study ID. b Plots of the average sample-sample correlation for each sample to show
possible outliers and studies with overall low average sample-sample correlation
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CpGs (permutation p < 0.0001; Fig. 2a). Non-variable
CpGs existed in either fully methylated or unmethylated
state, with few non-variable CpGs observed at an inter-
mediate DNAm level. In all tissues, the 99th percentile
of non-variable CpGs had a mean DNAm greater than
0.80 or less than 0.16 (Fig. 2b). To test robustness of the
non-variable CpG lists, we compared the list of non-
variable CpGs prior to processing with a similar list gen-
erated after normalization or after cell type correction.
We found that non-variable CpG lists overlapped by
90% with all processing strategies (Additional file 1).
While exploring the biological role of non-variable

CpGs that was not the primary focus of this analysis, we
did observe that non-variable CpGs from each tissue
were significantly enriched in promoters and CpG
islands (relative enrichment = 2.46–8.20, false discovery
rate (FDR) = 0.01; Fig. 3), with maximum enrichment in
blood and lowest enrichment in placenta. Based on the
large overlap in and similar genomic localization of non-
variable CpGs between the three tissues, it is likely that
the non-variable CpGs identified have similar underlying
properties in each tissue.

Application of data reduction method to smoking cohort
To test the utility of our filtering non-variable CpGs as a
dimensionality reduction method, capable of improving
statistical power and sensitivity, we attempted to demon-
strate the gain in statistical power in reproducing a well-
accepted true positive DNAm modification associated
with smoking. In particular, one of the most

reproducible biomarkers in DNAm association studies
to date is decreased DNAm associated with smoke
exposure at two CpGs in the gene body of AHRR
[21, 25–28]. To validate our data reduction method,
we used the AHRR signal in response to smoke ex-
posure as a true positive. By reanalyzing all 111 blood
samples available with smoking status in the original
unfiltered data set (GSE53045) [21], we reproduced
the finding of significantly decreased DNAm at two
CpGs (cg05575921, cg23576855; FDR <0.05, delta beta
0.1) in AHRR. Interestingly, the non-variable CpGs
often reached statistical significance (Fig. 4a), support-
ing that targeted removal of non-variable CpGs from
EWAS improves specificity and reduces spurious
associations.
To simulate a less powered study of smoke exposure,

we randomly sampled the cohort down to 24 samples
(12 smokers, 12 non-smokers) ten times. The same lin-
ear model, as used in the full cohort, was run on each of
the ten randomly sampled smaller cohorts, but with
either all 485,512 CpGs included in the EWAS or with
filtering of 110,567 non-variable CpGs (filtered EWAS).
This resulted in several interesting insights. First, in nine
of the ten low powered EWAS sub samples, the multiple
test corrected p values of the two true positive AHRR
CpGs of interest were smaller in the filtered data set
(Fig. 4b). Second, beyond AHRR, only six out of ten sub
samples had any significantly differentially DNAm CpGs
regardless of whether we used filtered or unfiltered data
(FDR <0.05, delta beta 0.1). Third, in five of these six,
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the filtered data set EWAS resulted in more CpGs with
significant differential DNAm. The greater significance
of AHRR in the filtered EWAS suggested that filtration
of non-variable CpGs should allow for prioritization of
true positives, potentially even when the differential
DNAm signal is not as strong as AHRR in smoking.

Discussion
Here, we have developed an empirically derived dimen-
sionality reduction method for EWAS, which can reduce
noise in 450K data from tissue specific non-variable
CpGs. Our proposed method for removing our empiric-
ally identified non-variable CpGs is to first confirm if
they are also non-variable in the new dataset of interest
and remove only those CpGs which are confirmed as
non-variable, as presented in the analysis of the AHRR
signal in response to smoke exposure. This procedure
would avoid removing CpGs that were non-variable in
the data collected previously, but do in fact vary in new
data being analyzed from the tissue. Generally, previous
analyses on 450K data have either filtered based on vari-
ability within the study data or not filtered the data on
variability at all. We consider our filtration method to be

a more moderate compromise between false positive and
negatives. Our method is less biased toward false posi-
tives than filtering based on variability just in the study
data, and also less likely to result in false negatives due
to severe multiple test correction when no variability
filter is to be used at all [13].
In defining our non-variable CpG list, we were agnos-

tic to normalization methods and did not correct for
batch effects between laboratories, beyond removing
samples with low sample-sample correlations. We have
therefore left in variability in the data due to technical
factors that would have been minimized had we com-
bined the data for normalization and performed batch
correction. Our list of non-variable CpGs is thus conser-
vative, but should be robust to study specific technical
variability, increasing its utility in the community.
We have demonstrated the utility of the filtration in

the analysis of smoke exposure in GSE53045, as the suc-
cessful identification of differential DNAm at the true
positive AHRR and the identification of more CpGs gen-
ome wide with significantly differentially DNAm. We do
not propose simply observing more CpGs with differen-
tial DNAm as a good metric for the utility of our data
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reduction method, as some of the significant CpGs iden-
tified with filtration will be false positives. However, in
combination with the observation of significant differen-
tial DNAm at the true positive, AHRR, more consist-
ently with filtration, we are confident that our data
reduction method will have utility in allowing identifica-
tion of replicable differential DNAm in other datasets.
Filtering for data reduction will be particularly useful
when there is an expectation of CpGs with strong differ-
ential methylation signals (>5%); so, the expected magni-
tude of DNAm change should be carefully considered by
the researcher before applying any data reduction. In
concert with a stringent biological filter for the change
in DNAm level between groups (5–10%) [1, 29], and val-
idation of the 450K results with another technology such
as pyrosequencing [1], this tissue specific DNAm data
dimensionality reduction method may allow for better
and more stringent identification of epigenetic signa-
tures of exposure or disease.

Conclusions
While the ability to define a tissue specific non-variable
list will ultimately depend on the amount of data avail-
able for the tissue in public repositories, we expect there

are already other tissues of interest with sufficient 450K
data for which a useful list of non-variable CpGs could be
developed. We have therefore made our code for building
tissue specific non-variable lists available on GitHub
(github.com/redgar598/Tissue_Nonvariable_450K_CpGs).
We hope our analysis can be reapplied in the future
to update the non-variable CpGs lists for blood, buc-
cal epithelial cells and placenta as more samples be-
come available, and be expanded to more tissues.
Additionally, with the increased dimensionality of the
newly released Illumina Infinium EPIC array, the need
for tissue specific dimensionality reduction will be
even greater. The analysis we have outlined and made
available can easily be applied to EPIC array datasets
as more are released [30].

Additional file

Additional file 1: Table S1. Gene expression omnibus data description
and additional analysis. Terms used to exclude samples not of interest
in a given tissue. Table S2. Quality control filters for each tissue and the
resulting final study, sample and CpG numbers. Table S3. Series IDs of
the final samples used in the meta-analysis of tissue non-variable CpGs.
Additional analysis on the stability of the non-variable CpG list with
different data processing approaches. (PDF 63 kb)
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450K: Illumina 450K human methylation array; CpG: Cytosine-guanine pair;
DNAm: DNA methylation; EWAS: Epigenome wide association studies;
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