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Abstract

Background: Newly established blood DNA methylation markers that are strongly associated with smoking might
open new avenues for lung cancer (LC) screening. We aimed to assess the performance of the top hits from
previous epigenome-wide association studies in prediction of LC incidence.
In a prospective nested case-control study, DNA methylation at AHRR (cg05575921), 6p21.33 (cg06126421), and
F2RL3 (cg03636183) were measured by pyrosequencing in baseline whole blood samples of 143 incident LC cases
identified during 11 years of follow-up and 457 age- and sex-matched controls without diagnosis of LC until the
end of follow-up. The individual and joint associations of the 3 markers with LC risk were estimated by logistic
regression, adjusted for potential confounders including smoking status and cigarette pack-years. The predictive
performance was evaluated for both the individual markers and their combinations derived from multiple
algorithms.

Results: Pronounced demethylation of all 3 markers was observed at baseline among cases compared to controls. Risk
of developing LC increased with decreasing DNA methylation levels, with adjusted ORs (95% CI) of 15.86 (4.18–60.17), 8.
12 (2.69–4.48), and 10.55 (3.44–32.31), respectively, for participants in the lowest quartile of AHRR, 6p21.33, and F2RL3
compared to participants in the highest 2 quartiles of each site among controls. The individual 3 markers exhibited similar
accuracy in predicting LC incidence, with AUCs ranging from 0.79 to 0.81. Combination of the 3 markers did not improve
the predictive performance (AUC = 0.80). The individual markers or their combination outperformed self-reported
smoking exposure particularly in light smokers. No variation in risk prediction was identified with respect to age, follow-up
time, and histological subtypes.

Conclusions: AHRR, 6p21.33, and F2RL3 methylation in blood DNA are predictive for LC development, which might be
useful for identification of risk groups for further specific screening, such as CT examination.
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Background
Lung cancer (LC) accounts for approximately 20% of all
cancer deaths worldwide [1]. The mortality rate is close
to the incidence rate (ratio of mortality to incidence is
0.87) [1, 2], reflecting the poor prognosis that results
from the predominant diagnosis of late-stage disease. It
thus has been a long-standing goal to establish an effect-
ive non-invasive screening tool for LC. DNA methyla-
tion markers detected in body fluids have rapidly

emerged as promising candidates [3–5]. Many studies
have demonstrated the diagnostic efficiency of DNA
hypermethylation of a variety of well-known cancer-
related genes, such as p16, RASSF1, APC, MGMT,
DAPK, GATA5, and HOX9, in various biofluids, includ-
ing bronchial aspirates, sputum, serum, plasma, and cell-
free circulating DNA [3, 4, 6]. A commercial product,
Epi proLung SHOX2 methylation assay, has already be-
come available [7].
Recently, epigenome-wide association studies (EWAS)

have opened a new avenue for LC screening, in that hun-
dreds of highly reproducible blood DNA methylation
markers were linked to smoking [8], the major risk factor
of LC. The top signal from previous EWAS was
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cg05575921 in the aryl-hydrocarbon receptor repressor
(AHRR) gene [8], known as a tumor repressor and key
regulator for metabolizing carcinogens from tobacco
smoke, such as dioxin toxicity [9, 10]. AHRR (cg05575921)
was also found to be hypomethylated and overexpressed
in the lung tissue of smokers [11]. Cg03636183 in coagula-
tion factor II (thrombin) receptor-like 3 (F2RL3) was the
first EWAS-discovered locus [12], which was likewise con-
sistently confirmed by multiple EWAS since then [8]. The
F2RL3 gene (also known as PAR-4) codes a protein in-
volved in inflammatory reactions and blood coagulation
[13]. Hypercoagulation is a common process observed in
tumorigenesis, including LC [14]. Cg06126421 located at
intergenic region of 6p21.33 was another top-ranked locus
associated with smoking [8]. Our previous investigations fo-
cused on these top-ranked loci have demonstrated that
F2RL3 methylation is a strong predictor for both LC inci-
dence and mortality [15], and smoking-induced hypomethy-
lation at cg05575921 in AHRR and cg06126421 in 6p21.33
are strongly associated with increased risk of overall cancer
death [16]. To further corroborate and expand evidence of
smoking-associated DNA methylation in prediction of LC
risk, we assessed the individual and joint associations of
blood DNA methylation at AHRR, 6p21.33, and F2RL3 with
LC incidence in a case-control study nested in the Epide-
miologische Studie zu Chancen der Verhütung, Früherken-
nung und optimierten Therapie chronischer Erkrankungen
in der älteren Bevölkerung (ESTHER) cohort.

Methods
Study population and data collection
ESTHER, a population-based cohort study, was established
to investigate new avenues of prevention, early detection, and
optimal treatment of chronic diseases in the elderly [17]. The
cohort consists of 9949 participants (50–75 years of age at
baseline), recruited by their general practitioners during rou-
tine health checkups between July 2000 and December 2002
in Saarland, Germany, and followed up thereafter. At base-
line, participants completed a standardized self-administered
questionnaire (collecting information on sociodemographic
characteristics, lifestyle factors, and history of major dis-
eases) and donated biological samples (blood, stool, urine).
In addition, comprehensive medical data, such as medical
diagnoses and drug prescriptions, were obtained from the
general practitioners’ reports. All participants provided
written informed consent. The study was approved by the
ethics committees of the University of Heidelberg and of
the state medical board of Saarland, Germany.
For the current analysis, a nested case-cohort study

was conducted within the ESTHER cohort. A total of
150 incident LC cases (International Classification of
Diseases-10 (ICD-10)-code C34) were identified during
follow-up between 2000 and end of 2012 through record
linkage with the Saarland Cancer Registry, which registers

≥95% of all LC cases in the underlying population. Three
controls, matched to each case by age and sex, were se-
lected from ESTHER participants without diagnosis of LC
until the end of 2012. Seven cases without sufficient DNA
available for laboratory measurements were excluded. The
time interval between blood sample collection at enroll-
ment and diagnosis of LC ranged from 1 month to 11 years
[median (interquartile range), 5.2 years (2.9–7.9)].

Methylation assessment
Whole blood DNA methylation at AHRR [cg05575921
(Chr5: 373378; GRCh37/hg19)], 6p21.33 [cg06126421 (Chr6:
30720081; GRCh37/hg19)], and F2RL3 [cg03636183 (chr19:
17000586; GRCh37/hg19)] was quantified by pyrosequencing
on the PyroMark Q96 MD apparatus (Qiagen GmbH, Hil-
den, Germany). Samples were randomized in 96-well plates
(with cases and controls equally represented in each plate)
and analyzed in a blinded fashion in the same laboratory.
Each assay included non-cytosine-phosphate-guanine (CpG)
cytosines as internal controls to verify efficient bisulfite con-
version. The primers for the pyrosequencing analyses are
provided in Additional file 1: Table S1. The quantitative per-
formance of the pyrosequencing assays was assessed by
measuring DNA methylation standards of known propor-
tions of unmethylated (whole genome amplified) and fully
methylated (Universal Methylated Human DNA Standards,
Zymo Research Europe GmbH, Freiburg, Germany) genomic
DNA and optimized by means of an annealing temperature
gradient. DNA methylation standards were included in each
plate run. PCR products were rendered single stranded ac-
cording to an established protocol. Three picomoles of se-
quencing primer was used to perform the pyrosequencing
reaction on the PyroMark Q96 MD apparatus (Qiagen
GmbH, Hilden, Germany). The percentage methylation at
each CpG was calculated using the PyroMark CpG Software
v.1.0.11 build 14 (Qiagen GmbH, Hilden, Germany).

Statistical analysis
Participants were assigned into training and validation sets
according to time points of laboratory measurement. The
training set consisted of 78 cases and 222 controls who
were enrolled during initial 9 months of recruitment (July
2000–March 2001) and had DNA samples firstly available
and measured first. The validation set consisted of 65 cases
and 235 controls who were enrolled in the later period of
recruitment (April 2001–December 2002) and had DNA
methylation measurements approximately 6 months later.
The characteristics of the study populations by case-control
status are described separately for the training and valid-
ation sets. Differences between cases and controls were
assessed by chi-square test for categorical variables and by
Wilcoxon-Mann-Whitney test for continuous variables.
The associations of individual methylation markers

(AHRR_cg05575921, 6p21.33_cg06126421, F2RL3_cg036
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36183) with LC incidence were estimated by unconditional
logistic regression in both training and validation samples,
with adjustment for age and sex only in model 1; additionally
for smoking status (never smoker, former smoker, current
smoker) and lifetime cumulative smoking intensity (pack-
years) in model 2; and further for the following potential
confounders in model 3 (fully adjusted model): body mass
index (BMI, kg/m2), physical activity [inactive, low, medium/
high (defined as follows: inactive, <1 h/week of physical ac-
tivity; medium/high, ≥2 h/week of vigorous physical activity
or ≥2 h/week of light physical activity; low, other)], systolic
blood pressure (mmHg), total cholesterol level (mg/dL), and
prevalence of hypertension (yes/no), cardiovascular disease
(yes/no), diabetes (yes/no), and cancer (yes/no) at baseline.
DNA methylation at the 3 CpGs were entered into the
models either as continuous variables (calculating odds ra-
tios for a decrease in methylation by 1 standard deviation)
or as categorical variables (participants classified according
to quartiles of each CpG site among controls in the training
set and using the 3rd and 4th quartile altogether as the refer-
ence). Dose-response relationships between methylation at
the 3 CpGs and LC incidence were assessed by restricted
cubic spline (RSC) regression [18], again controlling for the
above listed confounders. Potential interactions between
DNA methylation at the target sites and those covariates
were evaluated by including pertinent product terms in the
fully adjusted models. No statistically significant interactions
were detected. The associations of the individual methylation
markers with incident LC were furthermore examined sep-
arately among heavy smokers (participants with ≥30 pack-
years of smoking who were either current smokers or had
quit smoking ≤15 years ago) and light smokers (participants
with <30 pack-years of smoking or former smokers who had
quit smoking >15 years ago).
The performance of the 3 individual methylation markers

in predicting incident LC was examined by areas under the
curve (AUC) in the training set and then tested in the valid-
ation set through applying regression coefficients derived
from analyses in the training set. Multiple algorithms for
combining the 3 markers were employed as follows: (a)
additive and non-additive combinations of the markers
were included in a logistic regression model containing the
following terms: β1 ×MAHRR + β2 ×M6p21.33 + β3 ×MF2RL3

+ β4 × Interaction1 + β5 × Interaction2 + β6 × Interaction3,
where β refers to the logistic regression coefficient of each
CpG, M refers to the methylation level of the correspond-
ing site, and Interaction refers to non-linear interactions be-
tween each pair of sites; (b) methylation of the 3 markers
was integrated into a smoking index according to an algo-
rithm introduced by Teschendorff et al. [19]; (c) given that
≥80% cases occurred in the lowest quartiles of 3 CpGs
(Venn diagram in Fig. 1), a methylation score based on 3
markers was built, with values of 3, 2, 1, and 0, respectively,
for participants in the lowest quartiles of all 3 CpGs, of 2 of

the 3 CpGs, of 1 of the 3 CpGs, and others; (d) optimal cut
points of each CpG were determined by Youden’s J Index
[20], and 3 binary methylation variables were simultaneously
fitted in a regression model. Again, all combination algo-
rithms were first derived in the training set and subsequently
tested in the validation set. All analyses were repeated and
stratified by smoking history (heavy and light smokers as de-
fined above), by 2 major age groups (<65 and ≥65 years), by
time distance from blood sample collection to diagnosis (ini-
tial 5 years after recruitment and later years), and by histo-
logical subtypes of LC [small cell lung cancer (SCLC) and
non-small cell lung cancer (NSCLC; adenocarcinoma/squa-
mous cell carcinoma/others)]. Stratified analyses were con-
ducted in the whole dataset (training and validation set
combined), with correction for potential overoptimism by
leave-one-out cross-validation.
All statistical analyses were conducted using SAS 9.3

(SAS Institute, Cary, NC), and 2-sided p values of <0.05
were considered statistically significant.

Results
The distributions of sociodemographic characteristics, life-
style factors, and history of major chronic diseases among
LC cases and controls at baseline enrollment are presented
in Table 1. In the training set, mean age was 64 years for
both cases and controls. There were many more males
(>70%) and then females (<30%) among both cases and
controls. Current smokers, low education, and physical in-
activity were more common among cases than among con-
trols. No statistically significant differences were seen for
BMI, family history of cancer, and prevalence of chronic
diseases. Similar distributions of the characteristics among
cases and controls were also observed in the validation
sample. The time interval between blood sample collection
and diagnosis ranged from 2 months to 11 years [median
(interquartile range), 5.5 (3.2–8.1)] for 78 cases in the train-
ing set and from 1 month to 10 years [median (interquartile
range), 4.9 (2.6–7.3)] for 65 cases in the validation set.
DNA methylation levels at AHRR_cg05575921,

6p21.33_cg06126421, and F2RL3_cg03636183 were mu-
tually correlated (Additional file 1: Figure S1), and consist-
ent patterns were observed in both the training and the
validation set (Spearman correlation coefficients, 0.62–
0.79). Figure 1 depicts methylation levels of the 3 markers
among current, former, and never smokers as well as
among LC cases and controls. For all 3 markers, current
smokers showed lower methylation levels than never
smokers, and former smokers had intermediate methyla-
tion levels (Fig. 1a, b). In addition, at baseline, cases exhib-
ited strikingly lower methylation levels than controls
(Fig. 1c, d). Venn diagrams in Fig. 1d, e, respectively, illus-
trate that 62 of 78 cases in the training set and 54 of 65
cases in the validation set had methylation levels in the
lowest quartiles of any of the 3 markers among controls.

Zhang et al. Clinical Epigenetics  (2016) 8:127 Page 3 of 12



Fig. 1 (See legend on next page.)
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Table 2 shows the individual associations of the 3
methylation markers with LC incidence in the validation
set. Age- and sex-adjusted odds ratios (ORs) (95% confi-
dence interval (CI)) for participants with methylation
levels in the lowest quartiles of AHRR_cg05575921,
6p21.33_cg06126421, and F2RL3_cg03636183 were
23.93 (9.61–59.57), 15.55 (6.89–35.10), and 19.25 (8.59–
43.15), respectively, compared to those in the higher 2
quartiles of each site of controls. Adjustment for smok-
ing status and pack-years reduced the corresponding OR
estimates to 17.17 (4.91–60.03), 6.92 (2.63–18.18), and
10.84 (4.03–29.19). Further controlling for a variety of
potential confounding factors did not substantially alter
the associations, with 16-, 8-, and 11-fold risk of devel-
oping LC observed correspondingly. In addition, a de-
crease in methylation by 1 standard deviation of each
site was associated with approximately doubled LC risk.
Dose-response analyses disclosed a monotonous de-
crease of LC incidence with increasing methylation at all
3 CpGs (Fig. 2). Similar results were also derived in the
training samples for analyses of AHRR and F2RL3
methylation (Additional file 1: Table S2). Table 3 shows
the associations of current and past smoking with inci-
dent LC, which were attenuated from an OR of 3.07
(0.93–10.15) for current smokers and 1.58 (0.54–4.60)
for former smokers to null results when controlling for
any of the 3 methylation markers. These patterns sug-
gest that the association between smoking exposure and
LC development might be partly mediated by methyla-
tion at those 3 CpGs. Smoking-status stratified analyses
yielded stronger associations of the 3 CpGs with LC in-
cidence in light smokers than in heavy smokers
(Additional file 1: Table S3).
The predictive performance of the 3 methylation

markers and their combinations are presented in Table 3
and Additional file 1: Table S4. Applying regression
coefficients derived from the training set, the AUCs of
the 3 individual markers in the validation set were
similar, ranging from 0.789 to 0.812, and larger than
AUCs of self-reported smoking exposure [smoking
status (AUC = 0.715) or pack-years (AUC = 0.764) in the
validation set]. When combining the 3 markers,
statistically significant interaction was detected between
6p21.33_cg06126421 and F2RL3_cg03636183 (p <
0.0001). The training set yielded a combination algo-
rithm as (−0.0685) × cg05575921 + 0.4673 × cg06126421
+ 0.3173 × cg03636183 + (−0.00612) × cg06126421 × cg03

636183. Application of this algorithm in the validation
set resulted in an AUC (95% CI) of 0.800 (0.737–0.861).
Corresponding receiver operating characteristic (ROC)
curves derived from methylation markers as well as from
self-reported smoking exposure are presented in Fig. 3.
Combining the 3 markers by the other methylation algo-
rithms outlined in the methods section yielded very
similar predictive performance (AUCs, 0.788–0.819;
Additional file 1: Table S4). In smoking-status stratified
analyses, neither self-reported smoking exposure (life-
time pack-years) nor methylation markers were able to
predict occurrence of LC among heavy smokers (overop-
timism corrected AUCs, 0.504–0.587; Additional file 1:
Table S5). However, among light smokers, the methyla-
tion markers (AHRR_cg05575921, F2RL3_cg03636183,
and the 3 marker combinations) showed substantially
superior performance compared to pack-years (AUCs,
0.704–0.747 vs. 0.561, p values <0.05; Additional file 1:
Table S5 and Fig. 4). Consistent performance of either
individual or combined markers was also observed in
age-specific and follow-up time-specific analyses
(Table 4). The AUCs for NSCLC (AUC = 0.823), in
particular for adenocarcinoma (AUC = 0.830), were
tentatively larger compared to SCLC (AUC = 0.739).
However, these differences did not reach statistical
significance (p > 0.05).

Discussion
In this nested case-control study, we demonstrated
prospective associations of hypomethylation at AHRR,
6p21.33, and F2RL3 with LC incidence, which persisted
after controlling for lifetime cumulative smoking expos-
ure and various other potential confounders, whereas
the strong association of current smoking with incident
LC disappeared after adjustment for any of the 3 methy-
lation markers. Each of the 3 individual markers as well
as their combination was highly predictive of LC risk,
with an AUC of approximately 0.80. Similarly high
predictive accuracies of either individual or combined
markers were also observed in specific subgroups de-
fined by age, follow-up time, and histological subtypes.
The 3 target loci of the current study were the top sig-

nals related to tobacco smoking in previous EWAS con-
ducted in various independent populations [19, 21–28].
Demethylation at both AHRR_cg05575921 (≤77%) and
6p21.33_cg06126421 (≤60%) was found to be associated
with a 2.5-fold risk of dying from any cancer in our

(See figure on previous page.)
Fig. 1 Methylation distribution at baseline by smoking status and lung cancer status. a, b Present methylation levels of AHRR_cg05575921,
6p21.33_cg06126421, and F2RL3_cg03636183 among current, former, and never smokers at baseline, respectively, in the training and validation
set. c, d Present methylation levels of AHRR_cg05575921, 6p21.33_cg06126421, and F2RL3_cg03636183 among lung cancer cases and controls,
respectively, in the training set and validation set. e, f Illustrate distribution of lung cancer cases inside and outside the first quartile of
methylation among controls at AHRR_cg05575921, 6p21.33_cg06126421, and F2RL3_cg03636183, respectively, in the training and validation set
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Table 1 Characteristics of the study population

Characteristics Training set Validation set

Cases (N = 78) Controls (N = 222) p valueb Cases (N = 65) Controls (N = 235) p valueb

No. (%)a No. (%)a No. (%)a No. (%)a

Age (years) 64 (5.7) 64 (6.1) 64 (5.9) 64 (6.3)

Sex

Male 58 (74.4) 167 (75.2) 48 (73.9) 169 (71.9)

Female 20 (25.6) 55 (24.8) 0.88 17 (26.1) 66 (28.1) 0.76

Smoking statusc

Never smoker 5 (6.5) 86 (39.8) 9 (13.9) 100 (44.8)

Former smoker 29 (37.7) 90 (41.7) 26 (40.0) 88 (39.5)

Current smoker 43 (55.8) 40 (18.5) <0.0001 30 (46.2) 35 (15.7) <0.0001

Body mass index (kg/m2)d

Under weight (<18.5) 1 (1.3) 0 1 (1.6) 1 (0.43)

Normal weight (18.5–<25.0) 25 (32.5) 55 (24.8) 19 (29.2) 62 (26.4)

Overweight (25.0–<30.0) 29 (37.7) 115 (51.8) 32 (49.2) 119 (50.6)

Obesity (≥30.0) 22 (28.5) 52 (23.4) 0.07 13 (20.0) 53 (22.6) 0.74

Educational levele

Low 59 (78.7) 143 (65.3) 57 (87.7) 164 (71.6)

Intermediate 11 (14.7) 41 (18.7) 3 (4.6) 35 (15.3)

High 5 (6.6) 35 (16.0) 0.06 5 (7.7) 30 (13.1) 0.02

Physical activityf

Inactive 18 (23.1) 40 (18.0) 25 (38.5) 48 (20.6)

Insufficient 43 (55.1) 95 (42.8) 23 (35.4) 115 (49.4)

Sufficient 17 (21.8) 87 (39.2) 0.02 17 (26.1) 70 (30.0) 0.01

Family history of cancerg

No 39 (52.0) 132 (60.0) 30 (47.6) 132 (56.4)

Yes 36 (48.0) 88 (40.0) 0.23 33 (52.4) 102 (43.6) 0.21

Diabetesh

Not prevalent 64 (82.0) 188 (85.1) 50 (76.9) 198 (84.3)

Prevalent 14 (18.0) 33 (14.9) 0.53 15 (23.1) 37 (15.7) 0.17

Cardiovascular disease

Not prevalent 60 (76.9) 177 (79.7) 44 (67.7) 180 (76.6)

Prevalent 18 (23.1) 45 (20.3) 0.60 21 (32.3) 55 (23.4) 0.14

Systolic blood pressure (mmHg)i 140 (18) 140 (19) 0.12 141 (17) 141 (19) 0.77

Total cholesterol (mg/dL)j 205.6 (54.4) 200.5 (58.7) 0.48 236.1 (38.4) 224.8 (43.6) 0.03

Pack-yearsk 39.2 (25.4) 16.2 (20.2) <0.0001 34.3 (22.6) 13.4 (18.4) <0.0001
aTable shows numbers (proportions) for categorical variables and means (standard deviation) for continuous variables
bChi-square test for categorical variable and Wilcoxon test for continuous variables
cData missing for 1 case and 6 controls in the training set and 12 controls in the validation set
dData missing for 1 case in the training set
eData missing for 3 cases and 3 controls in the training set and 6 controls in the validation set
fData missing for 2 controls in the training set
gData missing for 2 cases and 3 controls in the training set and 2 cases and 1 control in the validation set
hData missing for 1 control in the training set
iData missing for 4 cases and 5 controls in the training set and 2 cases and 4 controls in the validation set
jData missing for 1 controls in the training set and 2 controls in the validation set
kData missing for 2 cases and 27 controls in the training set and 3 cases and 27 controls in the validation set
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previous study [16]. In addition, methylation of a CpG
site within F2RL3, adjacent to F2RL3_cg03636183, alone
predicted LC incidence with an AUC of 0.77 in our pre-
vious cohort study of 5000 ESTHER participants [15].
These findings are corroborated and expanded by our
current findings, which were derived from a larger num-
ber of LC cases with DNA methylation being assessed
by a different method that is regarded as a gold-standard
technique for methylation analyses at specific sites [29].
During preparation of the current manuscript, an EWAS
conducted in pre-diagnostic blood samples of LC cases
and controls was published, where AHRR_cg05575921,
6p21.33_cg06126421, and F2RL3_cg03636183 methyla-
tion were again ranked as the top CpGs inversely
associated with LC risk [30]. The researchers further
validated these associations in 664 case-control pairs
matched for smoking from another 3 large cohorts.
Consistent with our findings, they also reported that
AUC increased to 0.78 when adding AHRR_cg05575921
and F2RL3_cg03636183 to the model with smoking sta-
tus alone (AUC = 0.71). Taken together, there is rapidly
accumulating evidence indicating that DNA methylation
levels of the 3 target sites are highly reliable and inform-
ative markers for future development of LC.
Previous studies evaluating the performance of DNA

methylation of cancer-related genes have suggested that
methylation panels with multiple genes provide improved
sensitivity and specificity for discriminating LC cases from

controls [31–33]. In the current study, although we ex-
plored multiple algorithms to combine the 3 methylation
markers, no gain was obtained in predictive performance.
This is probably because all the 3 markers are closely
related to smoking exposure and highly correlated with
each other. Nevertheless, we identified an unexpected
interaction between 2 of the 3 markers. While this inter-
action is hard to explain by known biological pathways, it
deserves further exploration and confirmation in future
studies. On the other hand, the current study confirmed
via training and validation that all 3 markers are equally
predictive for LC.
A few other DNA methylation markers emerged as

promising candidates for improving LC diagnosis effi-
ciency in previous studies. For example, for SHOX2
methylation, a marker which has received CE in vitro
diagnostic (IVD) certification, 60% sensitivity and 90%
specificity were reported in a study conducted in plasma
samples [34]. Even higher sensitivity and specificity of
SHOX2 methylation were reported in studies assessing
bronchial aspirates by Schmidt et al. (68% sensitivity and
95% specificity) [35] and by Dietrich et al. (78% sensitiv-
ity and 96% specificity) [7]. A panel incorporating
methylation of p16, TERT, WT1, and RASSF1 exhibited
82% sensitivity and 91% specificity in bronchial washings
[31]. Performance of these markers appears superior to
the performance of the smoking-associated DNA methy-
lation markers assessed in our study. However, these

Table 2 Associations of methylation at AHRR, 6p21.33, and F2RL3 with lung cancer incidence in the validation set

CpG site Methylation levela Controls Cases OR (95% CI)

Model 1b Model 2c Model 3d

AHRR_cg05575921 ≥85 (quartile 4) 59 6 Ref. Ref. Ref.

<85 (quartile 3) 73 1

<80 (quartile 2) 58 11 4.13 (1.48–11.52) 3.70 (1.12–12.22) 4.63 (1.27–16.80)

<68 (quartile 1) 45 47 23.93 (9.61–59.57) 17.17 (4.91–60.03) 15.86 (4.18–60.17)

Per SD less methylation – 2.61 (2.02–3.37) 2.58 (1.69–3.94) 2.37 (1.46–3.85)

6p21.33_cg06126421 ≥73 (quartile 4) 63 4 Ref. Ref. Ref.

<73 (quartile 3) 76 6

<66 (quartile 2) 50 12 3.90 (1.52–9.98) 3.00 (1.06–8.48) 4.08 (1.27–13.07)

<57 (quartile 1) 46 43 15.55 (6.89–35.10) 6.92 (2.63–18.18) 8.12 (2.69–24.48)

Per SD less methylation – 2.92 (2.15–3.98) 2.11 (1.45–3.05) 2.11 (1.39–3.19)

F2RL3_cg03636183 ≥81 (quartile 4) 113 5 Ref. Ref. Ref.

<81 (quartile 3) 39 5

<78 (quartile 2) 40 9 3.91 (1.45–10.55) 2.75 (0.91–8.37) 2.45 (0.72–8.31)

<73 (quartile 1) 43 46 19.25 (8.59–43.15) 10.84 (4.03–29.19) 10.55 (3.44–32.31)

Per SD less methylation – 2.46 (1.90–3.19) 1.86 (1.33–2.60) 1.72 (1.17–2.51)

Abbreviations: OR odds ratio, CI confidence interval, Ref. reference category, SD standard deviation
aQuartiles of each site among controls in the training set
bModel 1: adjusted for age and sex
cModel 2: like model 1, additionally adjusted for smoking status and pack-years
dModel 3: like model 2, additionally adjusted for educational level, BMI, physical activity, systolic blood pressure, total cholesterol, family history of cancer,
prevalence of hypertension, cardiovascular disease, and diabetes
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studies evaluated the markers’ performance in retro-
spective studies with cases already diagnosed as LC and
biospecimen collected at/after diagnosis, while the 3

smoking-associated markers were evaluated in prospect-
ively collected samples either in the current study or in
the EWAS by Fasanelli et al. [30]. The average time

Fig. 2 Dose-response curves of methylation at AHRR, 6p21.33, and F2RL3 with lung cancer incidence. a.b. present the dose-response curves for
AHRR_cg05575921, respectively, in training and validation set. c.d. present the dose-response curves for 6p21.33_cg06126421, respectively, in
training and validation set. e.f. present the dose-response curves for F2RL3_cg03636183, respectively, in training and validation set
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interval between sample collection and diagnosis of LC
was 5.3 years in the current study and 3.8–9.6 years in the
4 case sets of Fasanelli’s study [30]. Notably, these 3
smoking-associated markers even outperformed a methy-
lation panel of 6 cancer-related genes (p16, MGMT,

DAPK, RASSF1A, PAX5- β, and GATA5) assessed in
sputum samples collected 3 to 18 months prior to LC
diagnosis (sensitivity and specificity of 64%) [36].
Low-dose computed tomography (CT) screening has

been shown to be effective in reducing LC mortality in the

Table 3 Associations of smoking with lung cancer incidence in the validation set

Smoking exposure Controls Cases OR (95% CI)

Model 1a Model 2b Model 3c Model 4d

Never smoker 100 9 Ref. Ref. Ref. Ref.

Former smoker 88 26 1.58 (0.54–4.60) 0.94 (0.27–3.21) 1.05 (0.33–3.30) 1.08 (0.33–3.51)

Current smoker 35 30 3.07 (0.93–10.15) 0.81 (0.21–3.15) 1.35 (0.36–5.06) 1.07 (0.28–4.09)

Per 21 (=1SD) pack-years – 2.26 (1.46–3.51) 1.55 (0.96–2.48) 1.93 (1.21–3.07) 1.72 (1.08–2.75)

Abbreviations: OR odds ratio, CI confidence interval, Ref. reference category, SD standard deviation
aModel 1: adjusted for age and sex
bModel 2: adjusted for age, sex, and methylation of AHRR_cg05575921
cModel 3: adjusted for age, sex, and methylation of 6p21.33_cg06126421
dModel 4: adjusted for age, sex, and methylation of F2RL3_cg03636183

A

B

Fig. 3 Receiver operating characteristic (ROC) curves for methylation at AHRR, 6p21.33, and F2RL3 in discrimination of incident lung cancer in
training set (panel a) and in validation set (panel b). ROC curves for self-reported smoking status and pack-years are shown for comparison
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National Lung Screening Trial (NLST) [37]. Guided by the
NLST and subsequent validation [38], a recommendation
has been made by the United States Prevention Service
Task Force (USPSTF) to screen high-risk smokers and ex-
smokers (55 to 80 years of age, with ≥30 pack-years of
smoking and who quit ≤15 years ago if ex-smokers) [39].
Following these criteria, we stratified ever smokers as heavy
smokers and light smokers in our study and observed that
approximately 40% of LC cases among smokers occurred
in light smokers. Of note, substantial predictive perform-
ance among light smokers was observed for methylation
markers but not for pack-years, suggesting that these

methylation markers might be useful for identifying high-
risk light smokers for further specific screening. A potential
explanation could be that these markers more accurately
reflect the overall biologically effective dose of smoking
exposure accumulated during lifetime, whereas smoking
exposure measurements based on self-reports, including
pack-years, may be subject to inaccuracies, e.g., due to
recall bias, intentional under-reporting, or discrepancy
between inhaled smoke and actually absorbed smoke.
The lack of predictive value of the methylation
markers among heavy smokers is consistent with and
might be explained by our previous findings that

Fig. 4 Receiver operating characteristic (ROC) curves for methylation at AHRR, 6p21.33, and F2RL3 and pack-years in discrimination of incident lung cancer
among light smokers

Table 4 Individual and joint discriminative performance of methylation at AHRR, 6p21.33, and F2RL3

Group AUC (95% CI)

AHRR_cg05575921 6p21.33_cg06126421 F2RL3_cg03636183 Combinationa

Overall

Training set (n = 78 cases) 0.792 (0.736–0.848) 0.662 (0.597–0.726) 0.791 (0.735–0.846) 0.829 (0.778–0.881)

Validation set (n = 65 cases) 0.799 (0.733–0.866) 0.789 (0.725–0.853) 0.812 (0.725–0.871) 0.800 (0.737–0.861)

Age specific prediction

<65 years (n = 77 cases) 0.789 (0.728–0.850) 0.745 (0.687–0.803) 0.792 (0.735–0.849) 0.800 (0.745–0.856)

≥65 years (n = 66 cases) 0.790 (0.726–0.856) 0.677 (0.604–0.751) 0.793 (0.732–0.854) 0.817 (0.760–0.875)

Follow-up time-specific prediction

Initial 5 years (n = 68 cases) 0.791 (0.733–0.849) 0.696 (0.631–0.761) 0.808 (0.758–0.857) 0.812 (0.759–0.865)

Later years (n = 75 cases) 0.791 (0.734–0.849) 0.730 (0.673–0.786) 0.779 (0.722–0.837) 0.807 (0.755–0.859)

Histological subtype prediction

SCLC (n = 22 cases) 0.744 (0.630–0.858) 0.651 (0.535–0.767) 0.738 (0.632–0.843) 0.739 (0.634–0.844)

NSCLC (n = 119 cases) 0.802 (0.758–0.847) 0.721 (0.672–0.770) 0.798 (0.754–0.843) 0.823 (0.782–0.864)

Adenocarcinoma (n = 48 cases) 0.814 (0.751–0.877) 0.730 (0.659–0.800) 0.814 (0.751–0.876) 0.830 (0.770–0.891)

Squamous cell carcinoma (n = 38 cases) 0.787 (0.709–0.864) 0.731 (0.655–0.807) 0.769 (0.699–0.839) 0.786 (0.717–0.856)

Others (n = 32 cases) 0.775 (0.686–0.864) 0.673 (0.576–0.770) 0.800 (0.713–0.888) 0.813 (0.729–0.896)

Abbreviations: AUC areas under the curve, CI confidence interval, SCLC small cell lung cancer, NSCLC non-small cell lung cancer
aCombination formula: β1 ×MAHRR + β2 ×M6p21.33 + β3 ×MF2RL3 + β4 ×M6p21.33 × β3 ×MF2RL3 = (−0.0685) × cg05575921 + 0.4673 × cg06126421 + 0.3173 × cg03636183
+ (−0.00612) × cg06126421 × cg03636183, where underlined coefficients were derived from regression coefficients in training set
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methylation alteration at those sites plateaued or satu-
rated among individuals with >30 pack-years of smok-
ing exposure [16, 40].
In addition, DNA methylation is tissue specific, which

may have contributed to the observed difference be-
tween smoking-associated methylation markers that
were assessed in whole blood DNA in our/other study
[30] and markers exhibiting superior performance
mainly in bronchial washings. Recently, Teschendorff et
al. compared smoking-induced methylation changes in
buccal and blood samples and demonstrated that the
smoking signature defined by methylation candidates
from buccal cells outperformed the signature defined by
candidates from blood cells in discrimination of 14 of 15
types of epithelial cancer, including LC, and head and
neck cancer [19]. This study indicates that biospecimen
with direct exposure to smoking, such as buccal, or
saliva samples or bronchial aspirates might be more
appropriate tissue for identification of candidate
markers. Thus, the performance of AHRR_cg05575921,
6p21.33_cg06126421, and F2RL3_cg03636183 in buccal/
saliva/bronchial washing samples warrants to be explored
in further studies.
A major strength of the present study is its longitudinal

design in which smoking-associated methylation markers
were assessed in blood samples collected years before can-
cer diagnosis by pyrosequencing which is considered as
the gold standard assay for DNA methylation at targeted
sites. Furthermore, utmost care was given to correct for
overoptimism by a split sample approach and cross-
validation. In addition, detailed information on a variety of
covariates was available and carefully controlled for in the
analyses. A further strength is the follow-up of the study
participants with regard to incident LC using data from
the Saarland Cancer Registry which ensures an almost
complete ascertainment of cancer cases in the population
from which the study participants originated. Limitations
of the study include the relatively small number of LC
cases, in particular in stratified analyses, which restricted
the study’s power. For example, the AUC for adenocarcin-
oma (0.830) was larger than the AUC for SCLC (0.739),
but this difference did not meet the criterion for statistical
significance. Future studies with sufficient numbers of
histological subtypes of LC cases should address
differences according to histological subtypes in more de-
tail. Furthermore, only blood samples but no sputum or
buccal samples were available in the ESTHER cohort. The
performance of smoking-associated methylation markers
from biospecimen directly exposed to tobacco smoke
could therefore not be evaluated but deserves further in-
vestigation. Moreover, DNA methylation was quantified in
whole blood samples without possibility for correction for
leukocyte composition. However, the 3 target loci also ex-
hibited the strongest associations with smoking in buccal

cell DNA [19]. Blood cell composition therefore is unlikely
to be a relevant issue in the current study.

Conclusions
Despite its limitations, our study demonstrates that
AHRR, 6p21.33, and F2RL3 methylation individually are
strong predictors for lung cancer development. These
markers therefore hold potentials to improve lung
cancer diagnosis/screening either through incorporating
them into promising screening panels or through risk
stratification for further specific screening, such as CT
examination.
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