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Global DNA methylation profiling reveals
new insights into epigenetically
deregulated protein coding and long
noncoding RNAs in CLL
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Abstract

Background: Methyl-CpG-binding domain protein enriched genome-wide sequencing (MBD-Seq) is a robust and
powerful method for analyzing methylated CpG-rich regions with complete genome-wide coverage. In chronic
lymphocytic leukemia (CLL), the role of CpG methylated regions associated with transcribed long noncoding RNAs
(lncRNA) and repetitive genomic elements are poorly understood. Based on MBD-Seq, we characterized the global
methylation profile of high CpG-rich regions in different CLL prognostic subgroups based on IGHV mutational status.

Results: Our study identified 5800 hypermethylated and 12,570 hypomethylated CLL-specific differentially methylated
genes (cllDMGs) compared to normal controls. From cllDMGs, 40 % of hypermethylated and 60 % of hypomethylated
genes were mapped to noncoding RNAs. In addition, we found that the major repetitive elements such as short
interspersed elements (SINE) and long interspersed elements (LINE) have a high percentage of cllDMRs (differentially
methylated regions) in IGHV subgroups compared to normal controls. Finally, two novel lncRNAs (hypermethylated
CRNDE and hypomethylated AC012065.7) were validated in an independent CLL sample cohort (48 samples) compared
with 6 normal sorted B cell samples using quantitative pyrosequencing analysis. The methylation levels showed an
inverse correlation to gene expression levels analyzed by real-time quantitative PCR. Notably, survival analysis revealed
that hypermethylation of CRNDE and hypomethylation of AC012065.7 correlated with an inferior outcome.

Conclusions: Thus, our comprehensive methylation analysis by MBD-Seq provided novel hyper and hypomethylated
long noncoding RNAs, repetitive elements, along with protein coding genes as potential epigenetic-based CLL-
signature genes involved in disease pathogenesis and prognosis.

Keywords: DNA methylation, Chronic lymphocytic leukemia, Hyper/hypomethylated regions, Repetitive elements and
noncoding RNAs

Background
High-throughput next-generation sequencing techniques,
with single base pair resolution have become increasingly
feasible, along with the existing genomic and transcrip-
tome sequencing methodologies. These techniques have
been successfully used to understand the functional role
of DNA methylation in leukemia development and

progression, including CLL. Somatic hypermutations of
the IGHV gene have been shown to be a strong prognostic
marker in CLL, where CLL patients with an unmutated
IGHV gene have poor prognosis and shorter survival time
compared to IGHV-mutated CLL patients [1, 2]. Previ-
ously, using high-resolution 27K/450K methylation arrays
in CLL, we analyzed the global methylation profiles of
well-characterized prognostic groups such as IGHV-
mutated and IGHV-unmutated CLL subsets [3–6]. Our
data identified a large number of differentially methylated
genes with prognostic implications for the CLL prognostic

* Correspondence: meena.kanduri@gu.se
4Department of Clinical Chemistry and Transfusion Medicine, Institute of
Biomedicine, Sahlgrenska Academy, Gothenburg University, S-413 45
Gothenburg, Sweden
Full list of author information is available at the end of the article

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Subhash et al. Clinical Epigenetics  (2016) 8:106 
DOI 10.1186/s13148-016-0274-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-016-0274-6&domain=pdf
http://orcid.org/0000-0003-2781-4779
mailto:meena.kanduri@gu.se
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


subgroups, and importantly, we found that the methyla-
tion patterns were stable over time and between the com-
partments [3, 5]. In addition, using 450K methylation
arrays and whole genome bisulphite sequencing (WGBS)
techniques, a recent investigation characterized the DNA
methylomes of CLL patients and found that differential
methylation in the gene body may have functional and
clinical implications in leukemogenesis [7, 8]. The most
common methodologies used in all these CLL studies in-
clude microarray and sequencing methods which are
based on bisulfite conversion of genomic DNA for differ-
entiating 5-methyl cytosine (5mC) from cytosine (C).
However, bisulfite conversion-based methodologies

have some drawbacks; these methods fail to differentiate
between 5mC and other epigenetic modifications such
as 5hmC (hydroxyl methyl cytosine) and 5cmC (carboxyl
methyl cytosine) [9, 10], and they may also not be the
best methods for characterizing repeat sequences in the
genome. Instead, other techniques like affinity-based
enrichment methods such as MBD-Seq or Methylated
DNA immunoprecipitation, followed by sequencing
(MeDIP-seq) can overcome these drawbacks and provide
genome-wide coverage of CpG methylation in a PCR-
unbiased manner. These immunoprecipitation-based
enrichment of CpG methylated DNA methods in CLL
provide DNA methylation profiling for both protein cod-
ing and noncoding RNAs, as well as repeat regions
which have not yet been studied. A recent study showed
very good correlation between 450K methylation array and
MeDIP-seq on a genome-wide scale. However, MeDIP-Seq
allowed wider interrogation of methylated regions in the
human genome, including some nonreference sequences
that were not included in the array and also the methyla-
tion of repetitive elements [11].
Noncoding RNAs (ncRNAs) have been shown to regu-

late important biological functions such as maintenance of
nuclear architecture, X-chromosome inactivation [12],
and genomic imprinting [12, 13]. ncRNAs can be broadly
classified into long noncoding RNAs (lncRNAs), micro-
RNAs (miRNAs), antisense RNAs, small nuclear RNAs
(snRNAs), and small nucleolar RNAs (snoRNAs). Like
proteins, ncRNA modulate transcription and play regula-
tory roles in controlling the localization and activity of
proteins [14–17]. The precise distribution and temporal
expression of ncRNAs in the genome are important for
cellular homeostasis. Deregulation of the expression of
ncRNAs leads to several disorders including cancer
[16, 18, 19], and recent studies underline the emer-
ging role of ncRNAs as biomarkers in different malig-
nancies [20–22]. Even though global differential
expression patterns of ncRNAs were observed between
CLL cells and corresponding healthy controls [23, 24],
studies on the novel epigenetically deregulated ncRNAs in
CLL are limited.

In order to investigate CLL-associated differentially
methylated genes compared to normal healthy controls,
we performed MBD-Seq to ascertain the global distribu-
tion of the methylomes between five IGHV-mutated and
five IGHV-unmutated CLL patient samples. Addition-
ally, we also compared the methylomes of each subgroup
with healthy age-matched controls, against PBMCs
and sorted B cells separately. This is the first MBD-
Seq-based CLL study, revealing many CLL-specific
significantly methylated protein coding genes, noncod-
ing RNAs, and certain repetitive regions with poten-
tial prognostic significance.

Methods
Patient samples, ethics, clinical data, cell lines, and cell
culture conditions
In the present study, a total of 70 CLL patients (35
IGHV-unmutated samples + 35 IGHV-mutated samples)
were included. All patients were diagnosed according to
recently revised criteria [25] and the tumor samples
were collected at the time of diagnosis. The patients in
the study were included from different hematology de-
partments in the western part of Sweden after written
consent had been obtained. Only CLL peripheral blood
mononuclear cells (PBMC) samples with a tumor per-
centage of leukemic cells ≥70 % were selected in this
study. Clinical and molecular data are summarized in
Additional file 1A and B. PBMCs from peripheral blood
of age-matched normal healthy controls was prepared
using the Ficoll extraction method and normal CD+19
positive sorted B cell DNA from eight healthy age-
matched controls were bought from a company (3H Bio-
medicum, Uppsala, Sweden). Two CLL cell lines (HG3
[26] and MEC1 [27]) and one Burkitt lymphoma B cell
line (RAMOS) [28] were used for DAC treatment exper-
iments. All cell lines were cultured in RPMI 1640 with
glutamine (Invitrogen, Carlsbad, USA) supplemented
with 10 % fetal bovine serum and 1× penicillin/strepto-
mycin (FBS; Invitrogen, Carlsbad, USA).

DNA and RNA extractions
DNA and RNA were extracted from CLL PBMC samples
using DNA and RNA Extraction Kit (Qiagen, Hilden,
Germany) according to the manufacturer’s protocol. For
total cDNA preparation, reverse transcription (RT) was
performed using Superscript III FS synthesis supermix
kit (Life technologies, Carlsbad, USA) according to the
manufacturer’s protocol.

Methyl-binding domain sequencing and data preparation
Purified genomic DNA from CLL patient samples were
subjected to sonication using bioruptor (Diagenode,
Liege, Belgium) to generate fragment sizes of around
100 to 350 bp. The fragmented DNA was then subjected
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to MethylMinerTM methylated DNA kit enrichment
according to the manufacturer’s protocol and the enriched
methylated DNA was purified using single fraction extrac-
tion with buffer containing 2000 mM NaCl. The eluted
DNA was purified and sent for downstream library
construction and high-throughput MBD-Seq using the
Illumina HIseq2000 platform. The analysis has been
done using five IGHV region-mutated and five IGHV
region-unmutated patients samples along with normal
PBMC and normal B cell as control samples. The raw se-
quenced reads (FASTQ files) from Illumina for two sorted
BCELL, two PBMC, five IGHV-mutated, and five IGHV-
unmutated samples are deposited on European Nucleotide
Archive (ENA) under project ID “PRJEB12693” and can
be accessed via following link http://www.ebi.ac.uk/ena/
data/view/PRJEB12693. The raw reads from sequencing
were cleaned for adaptors using Trimmomatic [28], and
bioinformatics analysis has been performed on those
clean reads. The hg19/GRCh37 genome version was
used to map obtained 49-bp cleaned reads. The align-
ment was performed using Bowtie v1.0 aligner by
allowing up to two mismatches. It is a short-read
aligner supports up to length of 50 bp [29]. We used
an additional parameter -m 6 in Bowtie to reduce the
number of multiple aligned reads.

Differential methylation and functional significance
(association of differentially methylated regions to genes
in the genome)
The differentially methylated regions were predicted using
MACS v1.4.2 peak caller [30] by not considering duplicate
reads at exact location. The analysis has been carried out
by assigning four different groups, two prognostic groups
(IGHV-mutated and IGHV-unmutated PBMC), and two
normal group (sorted B cell and PBMC normal). The nor-
mal groups were used as control in MACS and obtained
positive peaks (enriched in prognostic groups) were termed
as hypermethylated over normal whereas the negative
peaks as hypomethylated (enriched in normal sample).
This analysis was done using each control groups as differ-
ent comparison (B cell comparison and PBMC compari-
son). All obtained CLL cllDMRs presented in Fig. 1c were
enriched with a p value < 1e−05 (represents peak score, 50)
and the enrichment heatmaps were obtained from a stand-
ard R package. The global methylation levels (as shown in
Fig. 1d) represents percentage of bases in the genome oc-
cupied by enriched regions in normal B cell, PBMC, and
IGHV-mutated and IGHV-unmutated CLL samples, and
the analysis was done using bedtools-genomecov.

Association of cllDMRs with different genomic regions
and analysis of repeat regions
Association of cllDMRs to genes was done using HOMER
[31] tool with Ensembl transcript annotation version

GRCh37.74 and using default parameters in HOMER. We
termed the genes associated with differentially methylated
regions as differentially methylated genes (cllDMGs). After
association, the genes from each prognostic subgroups
(IGHV-mutated and IGHV-unmutated) were compared
(for example, in Fig. 2a). There were some genes appeared
in both subgroups, and we termed it as common
cllDMGs. The genes which only fall in either of one sub-
group we termed it as subgroup specific cllDMGs (IGHV-
mutated specific and IGHV-unmutated specific cllDMGs).
These terminologies were used for both hyper and hypo-
methylated genes (Fig. 2a, b) in all comparisons (B cell
and PBMC normal comparisons). The percentage of re-
peat sequence covered by cllDMRs was obtained using
RepeatMasker (http://repeatmasker.org) including all re-
peat elements as reference. We have used sequence from
each peak region predicted by MACS to find sequence
similarity (with minimum insertions or deletions) with
known repeat elements using Repeatmasker. The cluster-
ing of repeat elements in Fig. 5a and Additional file 2:
Figure S3A were done by “euclidean” as distance metric
(complete-linkage clustering) using percentage of bases
covered in cllDMRs by different repeat elements obtained.

Pathway enrichment of cllDMGs and their enrichment in
different cancer types
The pathway enrichment analysis and cancer enrichment
analysis on cllDMGs was carried out with the help of a
command line functional enrichment tool called Gen-
eSCF v1.1 (Gene Set Clustering based on Functional
annotation) [32, 33]. We used GeneSCF with parameters,
two different database KEGG pathways and NCG (Net-
work of cancer Genes 4.0) [34], Ensembl GRCh37.74 pro-
tein coding genes as background genes. The resulted
KEGG pathways were filtered with a p value <0.05 with at
least 5 % of total genes covered for particular pathway. For
cancer enrichment analysis, we used a threshold of at least
5 % of total genes covered for corresponding cancer type.
The GeneSCF ranks the pathways and cancer types with
p values obtained from Fisher’s Exact test using total
protein coding genes in the experiment as a back-
ground. The Fisher’s exact test is carried out based on
overlaps between cllDMGs and the genes from corre-
sponding databases (NCG or KEGG). The original list
of all significant pathways (as presented in heatmaps
from Fig. 2d, Additional file 2: Figure S1D and S2C) and
cancer types (as presented in heatmaps from Fig. 2c,
Additional file 2: Figure S1C and S2B) was listed as
same order in Additional files 3 and 4.

Processing and comparing cllDMGs with RNA sequencing
expression data obtained from published CLL data set
Since the available processed dataset from Ferreira PG et al.
[23] used different gene level annotation (GENCODE), we
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Fig. 1 (See legend on next page.)
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wanted to maintain the same annotation throughout our
study (Ensembl). We obtained the raw data of RNA-seq
samples for 96 patients (55 IGHV-mutated and 41 IGHV-
unmutated prognostic groups) along with 9 normal B cell
samples (Controlled Access ICGC dataset at the EGA,
EGAD00001000258). The obtained samples are from
paired-end with 76-bp length reads. The raw reads were
subjected to adaptor cleaning using Trimmomatic, and the
cleaned reads with 76-bp length was aligned to hg19
genome using a spliced read mapper Tophat v2.0.13 with
default parameters. Reads were quantified for Ensembl an-
notation (GRCh37.74) using featureCounts from Subread
packag v1.4.5 [35]. The obtained gene expression profile
was normalized to reads per kilobase of transcript per mil-
lion mapped reads (RPKM). The log-fold changes between
B cell normal and two CLL groups (IGHV-mutated and
IGHV-unmutated) were calculated based on obtained
RPKM values. The statistics for differential expression be-
tween normal and CLL prognostic groups was obtained
using Wilcoxon rank sum test in R package. The methyla-
tion patterns from pyrosequencing of CRNDE and
AC012065.7 was inversely correlated with the gene expres-
sion patterns in RNA-seq dataset (Fig. 4a, b). The p values
in this heatmap were presented as Wilcoxon rank sum test.

Nearby protein coding genes analysis
The lncRNAs in cllDMGs from B cell and PBMC com-
parisons were used to extract nearby protein coding
genes within 10 kb using bedtools “–closest.” Functional
and cancer enrichment analysis for obtained nearby pro-
tein coding genes were performed by GeneSCF v1.1
using KEGG and NCG as reference database.

Pyrosequencing and real-time quantitative PCR
Pyrosequencing was performed as previously described
[36], using the Pyromark kit (Qiagen, Hilden, Germany)
according to the manufacturer’s instructions. Pyrose-
quencing primers were designed using the PyroMark™
(Qiagen, Hilden, Germany) software (FP—5′GGAAAAGG
GGAGGTAAAGAGG3′; RP—5′TACCTTTACAAAAATC
CTACCAAAATA CTA3′; and sequencing primer—5′
GGTAGTTTAGAAGTTTTTGTTAGTT3′ (280 bp prod-
uct size) for CRNDE); (FP—5′AGTTTTTGTTTAGATT
TTTGGTTGTTAGA3′; RP—5′AAAAA ATATATACAAT
TACACCAACTCAC3′; and sequencing primer—5′GTA
TTTTGTTGAATTA GAAGGA3′ (222-bp product size)

for AC012065.7) and (FP—5′GTTTATAGATATGGTTA
GA ATGGG3′; RP—5′TCCCCAATAACTAAAACTACA
AACT3′; and sequencing primer—5′ATA TGGTTAGA
ATGGGT3′ (236-bp product size) for CLL IGHV-mutated
specific SINE-ALU repeat). The analysis was performed
using PyroMark™ Q24 advanced pyrosequencer instru-
ment and the CpG site methylation percentage of target
regions was calculated using the PyroMark Q24 ad-
vanced software. The expression levels of all genes were
analyzed with Taqman gene expression assays (Applied
Biosystems) (Hs00395639_m1 for CRNDE, custom assay
designed primers for AC012065.7 and Hs99999907_m1
for the b2-microglobin gene, which was used as an in-
ternal control). Differences in expression were calculated
using the ΔΔCt method.

Overall survival analysis for validated genes
Correlations between overall survival and methylation or
gene expression were calculated using the Kaplan-Meier
method and the log-rank test. Differences were consid-
ered statistically significant when the p value was <0.05
(Fig. 4c, Additional file 2: Figure S3A).

Results
Experimental design and mapping of CLL-associated
differentially methylated regions
A brief overview of the work-flow used in this study is
shown in Fig. 1a, b, which summarizes both the experi-
mental work-flow and the computational pipeline used
to analyze MBD-Seq data generated from CLL patients
and normal healthy controls. In this study, the genomic
DNA from five IGHV-mutated favorable prognostic and
five IGHV-unmutated poor prognostic CLL samples
were used, along with CD19+ sorted B cells and total
PBMCs as normal controls obtained from two to three
different pooled age-matched healthy controls (Fig. 1a).
As an initial step of analysis, we extracted the differentially
methylated regions, which are specifically hypermethy-
lated or hypomethylated in CLL samples compared to the
normal sorted B cell controls. These regions were named
CLL-specific differentially methylated regions (cllDMRs)
and were defined as enriched regions from IGHV-
mutated and IGHV-unmutated samples compared to
control samples with a p value <0.00001. Both cllDMRs
and methylated repeat regions in the genome were fine
mapped and then compared between different CLL

(See figure on previous page.)
Fig. 1 The global methylation levels and identification of differentially methylated regions (DMRs) in CLL patient samples. a, b Analysis pipeline used
to find CLL-associated differentially methylated regions (DMRs). c Differentially methylated regions (DMRs, hypermethylated and hypomethylated) in
IGHV-mutated and IGHV-unmutated samples over sorted B cells and normal PBMC. The enrichments shown in the heatmap were within a ±3 kb
window from differentially methylated region (DMRs). d The bar graph shows the overall percentage of genome covered by in normal and prognostic
CLL groups. e The bar graphs in (e) show the difference in distribution of hypermethylated and hypomethylated patterns across the genome. The
peaks used for assigning the genomic regions were derived from MACS with a significance of p < 1E−05
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prognostic subgroups and healthy controls as described
in the Fig. 1b flow-chart. The obtained cllDMRs repre-
sent two groups, CLL-associated hypermethylated and
hypomethylated regions across the genome (Fig. 1c). In

Fig. 1c, all the differentially methylated regions with sig-
nificant p values in comparison between CLL prognostic
groups over two different normal controls, such as B cell
comparison (upper panel) and PBMC comparisons (lower
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panel), are shown. The genes associated with cllDMRs
were termed CLL-associated differentially methylated
genes (cllDMGs).

Characterization of cllDMRs across the genome
When compared the total percentage of genome covered
by MBD-seq samples from CLL prognostic groups and
normal healthy controls, we found that IGHV-unmutated
samples showed less genome coverage compared to
IGHV-mutated samples (Fig. 1d). The genome coverage
denotes number of bases in the genome covered by
aligned reads from corresponding samples. The overall
genome coverage of IGHV-mutated samples were almost
in the same range as normal controls such as PBMC and
sorted B cells. The coverage levels of the normal PBMC
sample were in a higher range compared to the normal
sorted B cell sample as shown in the Fig. 1d. Interestingly,
even though we found that the overall genome coverage
of IGHV-mutated and IGHV-unmutated cllDMRs showed
a similar pattern, there is a clear difference in distribution
of cllDMRs between the hypermethylated and hypomethy-
lated groups with respect to protein coding genes. Accord-
ing to the cllDMRs distribution data across the genome,
hypermethylated cllDMRs are mostly enriched in pro-
moter regions TSS (transcriptional start sites) and TTS
(transcriptional termination sites), whereas hypomethy-
lated cllDMRs are enriched in the gene body and inter-
genic regions (Fig. 1e).
The obtained cllDMRs were further associated with

different classes of CLL-specific differentially methylated
genes (cllDMGs), like protein coding and noncoding genes
based on the overlapping genomic locations of cllDMRs
as listed in Additional files 5 and 6. Nearly 50 % of
cllDMRs, from IGHV-mutated and IGHV-unmutated
CLL prognostic groups, map to ncRNAs (lncRNAs,
microRNAs, snRNAs, snoRNAs, and pseudogenes)
(Fig. 2a, b for B cell control and Additional file 2: Figure
S1A and B for PBMC control comparisons). This data is
in line with the published RNA-seq CLL study showing
that many lncRNAs are differentially expressed in CLL
compared to normal healthy controls and that DNA
methylation could be one of main reasons behind their
differential expression [23].
When enrichment for different cancer types was tested

using hypermethylated and hypomethylated cllDMGs
from CLL IGHV-mutated and IGHV-unmutated groups,
the CLL cancer type was significantly enriched in both B
cell and PBMC cllDMGs (Fig. 2c, B cell comparison;
Additional file 2: Figure S1C, PBMC comparison; and
Additional file 2: Figure S2B, common genes between B
cell and PBMC comparison). In the B cell cllDMGs,
along with CLL, lung and pancreas cancer types were
also found to be significantly differentially methylated
as shown in Fig. 2c. The detailed list of cancer type

enrichments with the corresponding list of cllDMGs
is shown in Additional files 3 and 4, and see the
“Methods” section for enrichment analysis. On the other
hand, hypermethylated and hypomethylated common
cllDMGs (hypermethylated or hypomethylated in both
prognostic subgroups) were highly enriched in several
lymphomas, including CLL and other solid tumors like
prostate, colorectal, and breast cancer. More importantly,
the overlapped common cllDMGs (851 hypermethylated
and 2061 hypomethylated) between B cell and PBMC
control comparisons (Additional file 2: Figure S2A)
showed significant enrichments in cancer types related to
leukemia (Additional file 2: Figure S2B). These results
show that most of the commonly deregulated cllDMGs
are cancer associated genes, and they may have a func-
tional role in CLL pathogenesis.

Biological pathways deregulated by DNA methylation in CLL
We next performed a functional analysis to investigate
pathways that were potentially deregulated by DNA
methylation in CLL. Several novel as well as already im-
plicated pathways in CLL have shown significant enrich-
ments either in IGHV-mutated specific methylated
(hypo or hyper) genes or unmutated specific methylated
(hypo or hyper) genes or commonly methylated (hypo or
hyper) genes between two prognostic groups (Fig. 2d
and Additional file 2: Figure S1D). Notably, some im-
portant pathways were specifically deregulated in CLL
such as ErbB, B cell receptor, PI3K-Akt, Wnt signaling,
and MAP Kinase signaling (Fig. 2d and Additional file 2:
Figure S1D). The detailed KEGG pathway summary with
percentage of genes involved in each pathway along with
the p values is listed in Additional file 3 (for B cell and
PBMC comparisons) in the same order as in the corre-
sponding heatmaps presented. Interestingly, most of
these pathways like the B cell receptor, MAP Kinase,
and PI3K-Akt pathways were also significant when
analyzed for common cllDMGS from Additional file 2:
Figure S2A between B cell and PBMC comparisons
(Additional file 2: Figure S2C and Additional file 4).

Correlation between candidate cllDMGs methylation and
expression
Even though some of the cllDMGs were commonly
hypermethylated or hypomethylated in all CLL patients,
many genes showed significant differences in the methy-
lation scores between the two prognostic groups. To
further investigate the correlation between DNA methy-
lation and gene expression, we used published RNA-seq
data from a CLL cohort comprising 98 patients [23].
First, we selected a few commonly methylated cllDMGs
in all CLL samples and sub-divided into two groups
based on promoter methylation or gene body methyla-
tion [7] (Fig. 3a). There were nearly 24 cllDMGs that
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had promoter hypermethylation with lower gene expres-
sion and 42 cllDMGs with hypomethylated promoters
showing higher gene expression. Consistent with recent
analysis, gene body methylation positively correlated
with gene expression [7]: 42 cllDMGs had hypermethy-
lated gene body with higher gene expression and lower
expression in the case of 84 cllDMGs with hypomethy-
lated gene body. All the selected cllDMGs had greater
than 50 peak score (in both IGHV-mutated and IGHV-
unmutated groups) and with expression of log-fold
change >±1 over normal B cell (in both IGHV-mutated
and IGHV-unmutated groups) (Fig. 3b, c).
Since these selected genes from MBD-seq and RNA-

seq data sets showed the expected correlation patterns
between DNA methylation and gene expression, they
serve as a vital resource for uncovering their possible
role in CLL prognosis. In order to extend these observa-
tions, we selected two lncRNAs to further validate the
significance of DNA methylation in gene expression
using pyrosequencing and qRT-PCR methods respect-
ively in an independent CLL cohort (the selected genes
are highlighted in Fig. 3b). The selection of genes was
based on both methylation peak scores and ncRNAs;
however, we have excluded genes that were not suitable
for designing pyrosequencing primers due to high CpG-
rich regions. Since the significance of DNA methylation
in the differential expression of lncRNAs has not been
investigated in CLL, we selected lncRNAs are CRNDE
and AC012065.7, which were hyper- and hypomethy-
lated on promoter regions respectively (Fig. 3b). The
methylation levels were validated using pyrosequencing
in 48 CLL patients and 6 sorted B cell healthy controls,
and as expected, we found that this data was in line with
the MBD-seq data, where a higher percentage of methyla-
tion for all CLL samples was observed compared to nor-
mal samples (Fig. 4a). qRT-PCR analysis revealed that the
DNA methylation levels of CRNDE and AC012065.7
showed an inverse correlation to gene expression levels in
the same sample cohort (Fig. 4b, right panel), suggesting
that these two cllDMRs may play a functional role in
regulating the gene expression of cllDMGs. More im-
portantly, our qRT-PCR data further corroborates
with published independent RNA-seq data (with total
98 samples) (Fig. 4b, left panel).

We also analyzed the prognostic value of these two
lncRNAs using Kaplan-Meier analysis. Both CRNDE and
AC012065.7 lncRNAs showed a significant correlation
between overall survival and DNA methylation in CLL
patients (Fig. 4c). Higher methylation levels of the
CRNDE promoter and lower methylation levels of the
AC012065.7 promoter correlated with poor overall sur-
vival (Fig. 4c).
Importantly, in order to explore the causal role of

DNA hypermethylation in regulating CRNDE expression,
we treated three different leukemic cell lines (HG3,
MEC1, and RAMOS) with increasing concentrations
of the methyl inhibitor (5′-Aza-2′-deoxycytidine, also
known as DAC). As shown in Fig. 4d, a correspond-
ing increase of CRNDE expression was demonstrated
for all DAC treated samples compared to untreated
samples in all the three cell lines, supporting that this
gene is deregulated mainly due to hypermethylation
on promoter region (Fig. 4d).

LncRNA from cllDMGs show significant expression
correlation with neighboring protein coding genes
We next investigated the expression correlation between
lncRNAs from cllDMGs and nearby protein coding
genes using RNA-seq datasets from 96 CLL patient co-
horts. LncRNA AC012065.7, which is promoter hypo-
methylated with higher expression in CLL compared to
normal (upregulated), showed positive expression correl-
ation with nearby protein coding gene GDF7 (Fig. 4e).
GDF7 is known to play an important role in growth, re-
pair, and embryonic development, and its polymorphism
leads to adenocarcinoma. Similarly, CRNDE also showed
positive expression correlation with its neighboring pro-
tein coding gene IRX5 (Fig. 4e). The gene IRX5 has been
shown to be involved in apoptosis and cell cycle regula-
tion in prostate cancer cells [37]. Since the nearby pro-
tein coding genes of two selected lncRNAs has cancer
related functions, we were interested in understanding
the functional significance of nearby protein coding
genes which are 10 kb proximity to all lncRNAs from
cllDMGs (Additional file 7). The functional and cancer
enrichment analysis revealed that cancer terms such as
leukemia and lymphoma and KEGG pathways such as
Wnt signaling (nearby genes from B cell and PBMC

(See figure on previous page.)
Fig. 3 Regulation of cllDMGs by the distribution of methylation on gene structure and the gene expression patterns associated with methylation.
a Table showing the selection of candidate genes depending on correlation between location of methylation on gene structure (promoter or
gene body methylation in MBD-seq) and their pattern of gene expression (up or downregulated in RNA-seq, log2fold-change). The “selected
number of genes” in green represents the candidate genes (cllDMGs) considered for further investigation. The two selected genes (CRNDE and
AC012065.7) for further investigation from two categories were highlighted in bar graphs (b and c) with a rectangle. b The top and bottom bar
graphs represent the list of selected cllDMGs from promoter-hypermethylated-downregulated and promoter-hypomethylated-upregulated
patterns, respectively. c The top and bottom bar graphs show the list of selected cllDMGs from gene body-hypermethylated-upregulated and
gene body-hypomethylated-downregulated patterns, respectively
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a

c

e

d

b

Fig. 4 Validation of differential methylation and expression levels in CLL cohorts. a Boxplots on top shows the difference in distribution and level of
methylation between IGHV-mutated, IGHV-unmutated, and sorted B cells for two selected genes (CRNDE and AC012065.7) obtained using pyrosequencing.
b The boxplots shows the difference in gene expression levels between IGHV-mutated, IGHV-unmutated, and sorted B cells for same genes obtained using
published RNA sequencing dataset (Ferreira PG et al.) and quantitative RT-PCR. The heatmap below each boxplot shows the significance level (p value) of
the corresponding gene over B cell (IGHV-M, IGHV-mutated, and IGHV-UM, IGHV-unmutated). c Kaplan-Meier plots showing the clinical significance of all
the validated genes based on high and low methylation levels. The high and low levels were calculated using upper and lower quartile based method
for all the genes in total 44 CLL patient samples. d Gene expression levels of CRNDE using increasing concentrations of DAC treatment in different
leukemic cell lines. e The illustrations (left panel) represents the protein coding genes IRX5 and GDF7 within 10-kb proximity of selected lncRNAs CRNDE
and AC012065.7, respectively. The expression values for these lncRNAs and nearby protein coding genes are presented in right panel of the figure. The
values in the panel represents log2-fold change in comparison between normal B cell and CLL groups (96 patients cohort, 55 IGHV-mutated, and 41
IGHV-unmutated), positive values means expression is more in CLL groups and vice versa
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comparisons), pathways in cancer (B cell and PBMC
comparisons), Hippo signaling (B cell and PBMC com-
parisons), transcription misregulation in cancer (B cell
comparison), and NF-kappa B signaling (PBMC com-
parison) were significantly enriched (Additional file 7).

Global methylation analysis of repetitive elements in the
IGHV-mutated and IGHV-unmutated CLL samples
Global hypomethylation in cancer cells can be largely at-
tributed to reduced methylation of repetitive elements in
the genome [38–40]. To this end, we investigated the per-
centage of repeat sequence covered by the cllDMRs and
found that SINE-ALUs, satellites, simple repeats, and
LINEs which were enriched in significantly hypomethy-
lated regions from CLL samples compared to the normal
controls (Fig. 5a). Moreover, the IGHV-unmutated poor
prognostic CLL samples showed less enrichment of these
repeat elements in hypomethylated regions compared to
the IGHV-mutated CLL samples, further supporting the
hypothesis that SINE and satellite repeats are hypermethy-
lated in healthy normal controls and IGHV-mutated sam-
ples. We also investigated if repetitive elements were
enriched in hypermethylated regions of CLL samples
compared to normal and found enrichment of SINE-

ALUs in all CLL samples. Interestingly, these SINE-ALUs
were more in hypermethylated regions from the IGHV-
unmutated group compared to the IGHV-mutated
group (Fig. 5a and Additional file 2: Figure S3A). We
selected one methylated SINE-ALU repeat sequence
which was more enriched in the IGHV-mutated prog-
nostic group compared to the IGHV-unmutated prog-
nostic group in our analysis and validated it using
pyrosequencing (Fig. 5b).

Discussion
Using a high-throughput affinity-based methylated DNA-
enrichment technique, for the first time, we analyzed glo-
bal methylomes of two different CLL prognostic groups to
identify DNA methylation based protein coding, lncRNA,
and repeat RNA signatures by comparing to two different
kinds of healthy normal controls; both sorted B cells and
PMBCs. More than half of the cllDMGs were revealed to
be common between B cell and PMBC comparisons, shar-
ing many significant common biological pathways. These
observations suggest that the common differentially meth-
ylated genes from these two comparisons could be a huge
resource for investigating epigenetic-based signatures for
CLL pathogenesis. According to recent publications based

a b

Fig. 5 CLL-associated differentially methylated repeat elements (DMrE) over normal sorted B cell. a The heatplot represents the enrichment of
cllDMRs over different repeat elements in B cell comparison. b Validation of IGHV-mutated specific hypermethylated SINE-ALU repeat region in 70
CLL patient samples and 8 normal B cell controls using pyrosequencing method. Statistical significance was derived using unpaired Student’s t test,
*p < 0.05, **p < 0.01, and ***p < 0.001
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on 450K methylation array data, CLL has been stratified
into three groups with similarity to naïve B cells, memory
B cells, and an intermediate group [7, 41]. However it is
also true that many known prognostic markers and candi-
date genes were identified in CLL by comparing with nor-
mal sorted B cells, such as ZAP70 [42], BCL2 [43], and
ANGPT2 [36]. Moreover, the exact corresponding healthy
control for CLL is not clear as the cell of origin of this B
cell leukemia is still under debate. Therefore, based on
many recent published global methylation studies in CLL
[3, 5, 8, 44] where they used normal B cell as controls, we
also used sorted B cells and PBMCs in our study to iden-
tify CLL-associated hyper/hypo methylated genes.
Several lines of evidence suggest that CLL genomes

are hypomethylated compared to normal sorted B cells
[45–48]. Since MBD-Seq investigates methylation on the
genome-scale in an unbiased manner, it is an ideal meth-
odology to address the global CpG methylation levels in
CLL subsets in relation to sorted B cells and PBMCs. We
found that IGHV-unmutated samples exhibit significant
overall global hypomethylation compared to IGHV-
mutated samples, whose methylation levels were compar-
able to normal healthy controls, which is consistent with
their favorable clinical prognosis. Interestingly, when we
compared the distribution of cllDMRs across the genome,
we observed that hypermethylated cllDMRs were enriched
in promoter regions, whereas hypomethylated cllDMRs
were significantly enriched over gene body and intergenic
regions further supporting the above statement.
Moreover, this is the first detailed study where both

CLL-associated hypermethylated and hypomethylated
cllDMRs were investigated in unbiased manner across
genic, intergenic and repeat regions of the genome. Un-
like MeDIP-seq, which enriches regions with relatively
lower CpG density, MBD-seq mostly enriches regions
with slightly higher CpG density [49]. Interestingly, all
the cllDMRs showed high GC content (more than 50 to
55 %), which was expected based on above mentioned
study (the percentage of GC content and CpG content
for all the cllDMRs are mentioned in the Additional files
5 and 6 for both B cell and PBMC comparisons, respect-
ively). In this study, we also investigated the grade of en-
richment of the cllDMGs in other cancer types and
found that CLL was the top-listed among the leukemias
(Fig. 2c). Also, the enrichment of common cllDMGs in
other lymphomas and cancers such as non-Hodgkin
lymphoma, colorectal, and prostate cancer indicates that
these could be signature DMRs for cancers in general,
including CLL.
Lately, there has been a clear shift in researchers’ focus

towards lncRNAs and understanding their role in cancer
initiation and progression [50, 51]. However, their rela-
tive importance in hematological disorders is still limited.
A recent RNA-seq based CLL study identified many

differentially expressed lncRNAs as potential biomarkers
in CLL pathogenesis [23]; however, the mechanisms
underlying their differential expression is still unknown.
In the current study, a significant portion (nearly 40 % of
hypermethylated and 60 % of hypomethylated) of differen-
tially methylated transcripts were ncRNA, comprising
small ncRNAs like microRNAs, snRNAs, snoRNAs and
lncRNAs, such as lncRNAs, pseudogenes and antisense
transcripts. This large dataset of ncRNAs could also be a
resource for further studies, aiming at understanding the
functional role of ncRNA in CLL pathogenesis. Towards
this end, we validated the differential expression of two
lncRNAs (AC012065.7and CRNDE) in an independent co-
hort. Both these lncRNAs were found to be hyper and
hypomethylated using both normal B cell and PBMC
comparisons as listed in Additional file 6.
Another important aspect of the current study, unlike

previously published methylation array studies, is that
we have performed extensive correlation studies of
cllDMG methylation and gene expression using the pub-
lished RNA-seq data set from 98 CLL patients [23]. We
found several protein coding RNAs and lncRNAs show-
ing strong correlation between DNA methylation and
gene expression. For example, cllDMGs with hyperme-
thylation of the promoter had lower gene expression
levels, whereas cllDMGs with gene body hypomethyla-
tion had higher gene expression (Fig. 3). Our qRT-PCR
and pyrosequencing has validated the gene expression
and DNA methylation levels, respectively, of selected
lncRNAs (CRNDE and AC012065.7). Moreover, hyper-
methylation and hypomethylation of CRNDE and
AC012065.7 lncRNAs, respectively, correlated with infer-
ior overall survival, and since there are no other lncRNAs
identified in CLL as epigenetic prognostic markers, it
would be interesting to further investigate these two
lncRNAs for their potential prognostic role in CLL.
Finally, we found that several KEGG pathways in CLL,

including MAPK, PI3K-AKt, and B cell receptor signal-
ing, were enriched with cllDMGs. Moreover, the ana-
lyses of CLL samples in relation to both B cell and
PBMC normal controls revealed several common KEGG
pathways, and many of these pathways were also listed
in a recent RNA-seq study in CLL [23], implying that
methylation could be a determining factor in the aber-
rant regulation of these pathways. Also, some of these
pathways, like Notch [48, 52, 53] and NF-kappa B [53, 54]
have already been implicated in CLL.
Transposable elements such as LINEs and SINEs are

enriched with CpG sites and therefore DNA methylation
levels of these repeat regions serve as a robust surrogate
marker of global DNA methylation [38, 40]. CpG methy-
lation analysis of repeat sequences is not possible with
bisulfite converted microarray-based techniques. Hence,
until now, data about the possible relevance of repeat
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region methylation in CLL has been scarce. We found
that many repeat regions like SINE/Alus, LINE/Alus,
LTR/ERV, satellites, and simple repeats were significantly
hypomethylated in both prognostic CLL subgroups
(Fig. 5a). Considering that LINE repeats along with
SINE/Alu repeats constitute more than 40 % of the total
human genome, it is generalized that hypomethylation
of these repeats results in global demethylation [55]. On
the other hand, we also identified specific SINE/Alu re-
peats which were significantly hypermethylated in both
IGHV-mutated and IGHV-unmutated CLL subgroups
against normal B cell controls, indicating a pathogenic
function of hypo/hypermethylated specific SINE/Alu re-
peats in CLL. The exact mechanism by which these re-
peat regions may increase the risk of cancer is unclear;
however, it has been hypothesized that cells with higher
methylation levels may have a longer survival, and thus,
combined with carcinogen exposure, this methylation
pattern may favor clonal expansion of damaged cells
[56]. We then validated one of the IGHV-mutated spe-
cific hypermethylated SINE/Alu repeat region using py-
rosequencing in a larger CLL cohort comprising 70
tumor samples. However, we could not validate SINE/
Alu repeat regions that were more hypermethylated in
IGHV-unmutated samples due to a high GC content. So,
further work is needed to realize their significance as
prognostic biomarkers in CLL.

Conclusions
In summary, for the first time using MBD-Seq, we investi-
gated global CLL-specific methylomes using sorted B cells
and PBMCs as controls. We identified several lncRNAs,
including CRNDE and AC012065.7, repetitive elements
(SINE/Alu), and protein coding RNAs harboring cllDMRs
with a potential role in CLL disease pathogenesis and/or
prognosis. Also, our data opens up several important
CLL-associated pathways for further investigations.
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