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DNA methylation: conducting the orchestra @
from exposure to phenotype?
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Abstract

DNA methylation, through 5-methyl- and 5-hydroxymethylcytosine (5SmC and 5hmQ), is considered to be one of the
principal interfaces between the genome and our environment, and it helps explain phenotypic variations in human
populations. Initial reports of large differences in methylation level in genomic regulatory regions, coupled with clear
gene expression data in both imprinted genes and malignant diseases, provided easily dissected molecular mechanisms
for switching genes on or off. However, a more subtle process is becoming evident, where small (<10 %) changes to
intermediate methylation levels are associated with complex disease phenotypes. This has resulted in two clear
methylation paradigms. The latter “subtle change” paradigm is rapidly becoming the epigenetic hallmark of complex
disease phenotypes, although we are currently hampered by a lack of data addressing the true biological significance and
meaning of these small differences.

Our initial expectation of rapidly identifying mechanisms linking environmental exposure to a disease phenotype led to
numerous observational/association studies being performed. Although this expectation remains unmet, there is now a
growing body of literature on specific genes, suggesting wide ranging transcriptional and translational consequences of
such subtle methylation changes. Data from the glucocorticoid receptor (NR3CT) has shown that a complex interplay
between DNA methylation, extensive 5'UTR splicing, and microvariability gives rise to the overall level and relative
distribution of total and N-terminal protein isoforms generated. Additionally, the presence of multiple AUG translation
initiation codons throughout the complete, processed mRNA enables translation variability, hereby enhancing the
translational isoforms and the resulting protein isoform diversity, providing a clear link between small changes in DNA
methylation and significant changes in protein isoforms and cellular locations. Methylation changes in the NR3CT CpG
island alters the NR3CT transcription and eventually protein isoforms in the tissues, resulting in subtle but visible
physiological variability.

This review addresses the current pathophysiological and clinical associations of such characteristically small DNA
methylation changes, the ever-growing roles of DNA methylation and the evidence available, particularly from the
glucocorticoid receptor of the cascade of events initiated by such subtle methylation changes, as well as addressing the
underlying question as to what represents a genuine biologically significant difference in methylation.
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Background

Two clear methylation paradigms

DNA methylation and hydroxyl-methylation are amongst
the more intensely studied epigenetic mechanisms. These
two modifications consist of either a methyl or a hydroxy-
methyl group being covalently bound to the 5 position of
cytosine in palindromic cytosine-phosphate-guanine (CpQ)
dinucleotides, abbreviated to 5mC and 5hmC, respectively
[1-4]. CpG dinucleotides occur infrequently, and 98 % of
the mammalian genome is CpG-deficient. The remaining
~2 % contains short high-frequency stretches of CpGs
called CpG islands (CGIs) that are mainly associated with
gene promoter and regulatory regions. Single CpGs are
often found in repetitive DNA elements and centromeric
regions [1, 2, 4, 5].

There are two concurrent paradigms for DNA methy-
lation: the first paradigm is a clear mechanism for
switching genes on/off through complete methylation or
demethylation of genomic regulatory regions. DNA
methylation has long been considered a marker of per-
manent gene silencing (imprinting) or reactivation [6].
In malignant diseases, this simple on/off switch is often
observed activating or silencing oncogenes and tumour
suppressor genes, respectively [7], e.g. O°-methylgua-
nine-DNA-methyltransferase ~ (MGMT)  methylation
levels vary from 0 to >60 %. Although it is not the focus
of this review, and has been extensively reviewed and
meta-reviewed elsewhere, the principal diagnostic epi-
genetic cancer biomarkers available such as VIM, SEPT9,
SHOX2, GST1, APC, and RASSFIA share this clear
pattern of no or little methylation, and clear (>60 %)
hypermethylation, with almost nothing in-between [8].
However, this simple paradigm has been challenged, and
a second paradigm is emerging. In this second paradigm,
intermediary DNA methylation levels are fine-tuned,
often influenced by the external environment, and are
becoming the epigenetic hallmark of many complex
non-malignant disorders. In this case, the association
of DNA methylation with an observed phenotype
occurs through small differences in the methylation
level of <10 % and often only 1-5 %, at single CpGs
or over very limited genomic regions [3, 9]. Such
limited differences in DNA methylation are known
to be set during periods of epigenetic sensitivity
[10]. Additionally, they have been shown to play a
role in creating a large diversity in phenotypes linked
to the onset of many complex non-malignant dis-
eases, such as type 2 diabetes, major depression,
schizophrenia, hypertension, and cardiovascular diseases
[9, 11]. Epigenetic phenotypes are not necessarily
restricted to an exposed individual. Some epigenetic
marks are transgenerational, hereby transmitting the
phenotypic trait and possibly the linked disease to the
offspring [6, 11-13].
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This split into two paradigms has been accompanied
by the expansion of the roles of 5mC and 5hmC. Both
are now considered important factors assuring the quan-
titative, spatial, and temporal regulation of gene expres-
sion as well as normal development and differentiation
[3, 5, 6]. By targeting promoter CpGs and CGIs, DNA
methylation was mainly thought to interfere with the
transcription initiation and consequently gene silencing
or reactivating [1, 6, 14]. Genome-wide analysis tech-
niques showed that DNA methylation influences many
other mechanisms, such as alternative splicing, alteration
of enhancer, insulator, and regulatory element function,
hence altering gene expression [9, 14-16]. For both
tissue-specific regulation and non-malignant disorders,
changes in gene expression are frequently caused by
small changes in methylation levels, often at single CpG
dinucleotides or over a limited genomic region. Such
small differences have a big impact on the phenotype
diversity that is linked to the onset of non-malignant
diseases [15, 17]. Plasticity in methylation levels allows
environmental adaptations, transient changes, and long-
term alterations of the cell's transcriptomic profile,
hereby contributing to the diversity of characteristics,
both biochemical and physiological, and hence the pheno-
typic variations observed in human populations [2, 3, 6].
These mechanisms have been associated with the onset and
maintenance of pathogenesis [2, 18, 19], and methylation
has increasingly been associated with the aetiology and onset
of multiple, non-malignant, complex disorders [15, 18—21].

DNA methylation can be summarised as either discrete
hyper- and hypomethylation coupled with clear gene si-
lencing, and easily dissected molecular mechanisms, or a
more subtle complex process where small (<10 %) methy-
lation changes are associated with disease phenotypes and
many transcriptional processes. This leads us to the fun-
damental question of the biological significance of such
small changes and how they give rise to the final disease
phenotype. There is currently doubt over the true bio-
logical relevance of such small changes, if they are genu-
inely meaningful, what mechanisms link such limited
changes in methylation to the phenotype, and how this af-
fects our view of what a gene is. In this review, we sum-
marise the pathophysiological and clinical associations
that have been made to small, subtle methylation changes;
the ever-growing roles of DNA methylation; and the evi-
dence available, particularly from the glucocorticoid re-
ceptor of the cascade of events initiated by such subtle
methylation changes, and conclude that such small
changes may reflect genuine biological differences.

Environmental influence on phenotype diversity:
a role for small epigenetic changes?

Environmental influence on DNA methylation, gene
expression, phenotype, and disease onset have been
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extensively studied. In the framework of the Developmental
Origins of Health and Disease (DOHaD) paradigm, in
utero or early-life conditions programme lifelong health
trajectories. This paradigm focusses on organisms’ bio-
logical plasticity to adjust their phenotype to their
environment over the short and long term in which
epigenetic processes such as DNA methylation are thought
to be involved. Mismatches between the pre-/post-natally
anticipated and the actual mature environment predisposes
organisms to disease (Fig. 1) [22-24].

Obesity, hypertension, cardiovascular diseases, diabetes

The prevalence of obesity, hypertension and the accom-
panying cardiovascular disorders, and diabetes have been
associated with early-life environmental factors, such as
diet, parental diet, and maternal mood during pregnancy
(Fig. 1) [25, 26]. In the ‘small litter’ neonatal overfeeding
model, appetite was dysregulated via hypermethylation
of the POMC promoter at the NF-kB and Spl binding
sites necessary for inducing POMC expression by leptin
and insulin [27]. Consequently, POMC expression will
be reduced despite insulin or leptin presence [25, 26].
Parental diet strongly influenced their offspring’s methy-
lation profile and phenotype (Fig. 1) [12, 25]. Gestational
high fat diets increased the offspring’s probability of
developing obesity, metabolic syndrome, insulin insensi-
tivity, and diabetes in both humans and animal models
(Fig. 1) [25, 28, 29]. Conversely, a low-protein maternal
diet peri-conceptually or during gestation was associ-
ated with lower birth weight, schizophrenia, an in-
creased risk of the offspring developing cardiovascular
diseases, hypertension, dyslipidaemia, and obesity
(Fig. 1) [12, 25, 30-32]. A well-known natural experi-
ment for transgenerational nutri-epigenomics was the
‘Dutch Hunger Winter’. Dutch individuals exposed in
utero to malnutrition and their direct descendants
[30] had higher rates of obesity (BMI raise of 7.4 %
in women [33]), hypertension (odds ratio (OR)
1.44 [34]), an increased risk for cardiovascular disor-
ders (coronary heart disease: OR 3.0) and impaired
glucose homeostasis later on in life (glucose tolerance
index: prenatally —21 %; late gestation -4 %; midges-
tation —-24 %; early gestation -37 %) [35, 36]. This
was accompanied by hypomethylation in IGF2 (-5.2
to -5.6 %) and INSIGF (-1.6 %), and hypermethyla-
tion of IL10 (2.4 %), ABCAI (1.7 %), GNASAS (1.1 %)
and LEP (1.2 %) (Fig. 1) [31, 32]. Late gestational
exposure appeared to be a less sensitive period, as it
only affected the methylation profile of GNASAS
(-1.1 %) from the limited number of target genes in-
vestigated [31]. An equally important factor affecting
the offspring’s methylation profile and phenotype was
maternal mental state during pregnancy (Fig. 1).
Gestational depression during pregnancy associated
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with a lower birth weight (OR 3.6, 95 % CI 1.1-11.4),
obesity, as well as cardiovascular disorders and dia-
betes in later life (Fig. 1) [37, 38]. This was accom-
panied by higher MEG3 methylation levels (2.4 %)
and decreased methylation of IGF2 (-1.6 %) com-
pared to children with normal birth weight [37]. Off-
spring with a higher birth weight than normal
showed a hypermethylation of PLAGI and PEG10 (5.9
and 3.4 %, respectively), genes that have previously
been linked to the regulation of placental and foetal
growth and development, growth in general, and dia-
betes [37]. Maternal depression during the second
trimester of pregnancy on the other hand was linked with
hypomethylation of the SLC644 promoter region for both
mother and child (Fig. 1) [37, 39]. Overall, it seems that indi-
viduals subjected to poor diets in utero or early life or born
out of mothers suffering from severe depression during ges-
tation develop phenotypes with a higher prevalence of obes-
ity, hypertension and the accompanying cardiovascular
disorders and diabetes. It remains unclear, however, whether
the methylation changes are part of the mechanism increas-
ing disorder prevalence or rather an additional consequence.

Psychopathology and behaviour

The risk of developing psychopathologies, cognitive, be-
havioural, anxiety and mood disorders or suicidal ten-
dencies later in life have been related to stressful/
traumatic experiences during early development and
early life (Fig. 1). These early life periods profoundly
affect development of the central nervous system, the
limbic structures or hypothalamus-pituitary-adrenal
(HPA) axis regulation. Although the underlying mecha-
nisms are unknown, the detection of methylome and
gene expression changes between phenotypes highlights
the importance of DNA methylation [3, 40-44]. BDNF, a
gene involved in neurodevelopment, neuroplasticity, the
onset of psychiatric disorders and suicidal behaviour, has
been associated to early-life adversity (ELA) (Fig. 1). Rat
and mouse models for ELA and depression showed that
the epigenetic processes controlling BDNF transcription
were stress sensitive. The BDNF promoter region was
hypermethylated (10 % to 15 % per CpG on average),
with the ensuing lower expression levels [41, 45]. Similar
BDNF methylation patterns were observed in post-
mortem adult brains from suicide completers [41, 42].
HPA axis and stress response dysregulation have been
amongst the most consistent biological findings in major
depression and psychopathology [46]. NR3C1, coding
the central HPA axis regulating glucocorticoid receptor, was
frequently investigated as part of the mechanism linking
ELA and the predisposition towards psychopathology or
suicide risk (Fig. 1) [41, 47, 48]. In rat models, ELA
caused a hypomethylation of the hippocampal
NR3C1 promoter (2 to 4 %), which significantly
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altered the gene expression and HPA-axis responsiv-
ity [1, 47, 49, 50]. Post-mortem brain analyses and
clinical studies observed similar trends [41, 47, 48,
50]. Suicide completers with a history of ELA had
increased hippocampal NR3CI promoter methylation
and decreased NR3CI expression (Fig. 1) [41, 47, 50, 51].
Similarly, higher hippocampal and leukocyte NR3CI
methylation levels were observed for healthy individuals
previously exposed to ELA. As such, the evidence is now
strong that NR3CI methylation is part of the panoply of

changes linking ELA events to later life psychopathology,
although there is no definite evidence as to whether it is a
direct mechanism or an additional independent event
[48]. HPA axis changes were not limited to NR3CI; ELA
and early-life stress (ELS) also induced a sustainable hypo-
methylation of AVP (<10 % per CpG position) and CRH
(<15 % per CpG position [3, 52, 53], as well as psycho-
pathology-associated genes such as SLC6A4 [54, 55].
The methylation status of the SLC6A4 promoter was
shown to be affected by abuse as well as genotype
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[54]. Although DNA methylation appears to explain
the link between ELA and psychopathology through
HPA axis regulation, robust proof of principle remains,
however, to be provided as connecting methylome profile
alterations and gene expression robustly failed [54]. The
link between epigenetic alterations and neuropsychiatric
disorders remains unproven.

Asthma and allergic pathologies

Genetic makeup has been seen in many studies to be
one of the strongest risk factors for eventually develop-
ing allergic symptoms [56, 57] consistent with epidemio-
logical evidence of an increased allergic rhinitis (AR)
concordance in twin studies [58]. Although many candi-
date genes have been suggested, genome-wide association
studies (GWAS) have not, so far, identified “overlapping
and consistent genetic components” [59, 60], and epigen-
etic mechanisms have been proposed to play an equally
important role. For example, the promoter methylation
level of NPSRI showed small but significant differences
for persons suffering from severe adult or allergic asthma
in children (Fig. 1). NPSRI, normally highly methylated
(>75 %), was hypomethylated by -3.29 and -1.40 % for
severe adult asthma and allergic asthma in children, respect-
ively [61]. DNA methylation levels have also been associated
with factors such as the current smoking behaviour, paren-
tal smoking during infancy, and the month in which the
sample was taken [61], which are thought to be implicated
in the onset of both asthma and allergic diseases.

Associations and hypotheses, not mechanisms

The increased number of association studies has given
us a better insight of the environmental impact on
phenotype development (Fig. 1). Yet, as the majority of
these observational studies did not address the under-
lying mechanisms, we are left with associations and hy-
potheses. In order to enhance our understanding, future
research should address the underlying process and try
to provide robust evidence for the exact cascade of
events linking environment and phenotype differences.
A good example of such a clear link is the viable yellow
Agouti (A") mouse model, where the offspring’s coat
colour shifts between yellow and brown due to incom-
plete erasure of the maternal epiallele during embryo-
genesis. The Agouti gene has a methylation-sensitive
intracisternal-A particle retrotransposon inserted at the
5" end that functions as a transcription start site. Large
changes in the methylation of the A locus from ~70 to
~25 % result in a yellow rather than the natural brown
coat. The offspring phenotype and methylation level
appeared to be heavily influenced by those of the
mother. Oocyte transfer to surrogate mothers of a differ-
ent epigenetic background, however, was necessary to
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demonstrate that the offspring epigenotype depended on
the incomplete erasure of the maternal methylation dur-
ing embryogenesis, rather than the uterine environment
[62]. For the studies above, such detailed mechanistic
studies are unfortunately absent.

Currently, epigenome-wide association studies (EWAS)
data such as those highlighted above are a perfect storm
of visibly low methylation levels, of which the biological
meaning is uncertain and a large variety of confounding
factors influencing their methylation state [63]. There is a
void, with limited information or guidelines on how to de-
sign and conduct meaningful EWAS. Adopting a set of
guidelines or rules for best practices, in a similar manner
to GWAS, would benefit EWAS interpretation and in-
crease their relevance.

Highlight: improving and interpreting EWAS )
studies

Sample variability

To reduce variability, purified single cell types must be the
sample of choice. If this is not possible, heterogeneity should be
measured, e.g. by flow cytometry and controlled for statistically.
For whole blood, the post hoc Houseman treatment may be
used. Care needs to be taken in the choice of sampling

surrogate or target cells.

Data format

In order to enable direct comparisons between relative
methylation values and absolute methylation levels, it is
suggested to report absolute methylation values or 3 values.
When possible, relative methylation levels should be confirmed

by a direct quantitative technique such as pyrosequencing.

Confounding variables

Genetic, demographical, clinical, and environmental factors
contribute to the overall phenotype. Comprehensive metadata
collection is important. Minimum data includes age, sex,
smoking habits and BMI, in addition to technical data to
account for batch effects and technical variability. Whenever
possible, sequencing-based techniques should be preferred,

allowing access to the underlying genomic sequence.

Study design

Successful interpretation of small methylation changes calls for a
well-planned study design. It is essential to estimate the minimally
required sample size to reach the necessary statistical power,
taking into account the cohort type (control-case, monozygotic

twins) and potential confounding co-factors, which will need to

be sampled and modelled for correct analyses and interpretation.
- J




Leenen et al. Clinical Epigenetics (2016) 8:92

What is a biologically meaningful change in
methylation level?

As we [38] and others [64] have previously noted, there
is doubt over the true biological relevance of small
changes in absolute methylation levels, and it has been
suggested that authors may have increased confidence in
the biological significance of methylation differences
>10 %, and conversely, must treat differences of <5 %
with extreme caution [65].

Reducing sample variability

Different cell types have specific epigenetic profiles [66],
and measuring aggregate levels over a large populations
is a major source of variability. Since methylation is
essentially binary, i.e. in any given cell, a specific CpG is
either methylated, unmethylated, or potentially hemi-
methylated (asymmetric methylation of two alleles),
the methylation levels measured simply reflect the
proportion of methylated cells in the original sample
[38, 67—69]. Consequently, minor changes in methyla-
tion may actually represent small changes in the
cellular composition of the original sample rather
than a genuine difference due to the disease or para-
digm studied. As an aside the most widely used sam-
ple, blood is unfortunately one of the most variable,
although there is now a well-established procedure
that adequately corrects for this variability [70, 71].

The impact of the data format

Teasing out the biologically relevant changes in methyla-
tion levels is further complicated by the current trend
towards reporting fold changes rather than absolute
methylation values. The appropriate data to report is
naturally specific for the analysis method employed. For
example, MedIP-Seq and Infinium arrays (Illumina) give
M and P values that may correlate to the percentage
methylation, they are relative values, and they may be
considerably different from the direct measurement
(e.g. by pyrosequencing) of the absolute methylation
levels. Although there is no direct comparison avail-
able, it has been suggested that ‘a [-value of 0.8
might correspond to a level of 30 % methylation’
[64], however, as highlighted above, when methylation
levels are low, as in the case of NR3CI1, a relatively
small change in the absolute methylation level will be
represented as a wildly exaggerated fold change or
percentage increase. In the current situation, where
small differences in methylation or low methylation
values are being reported, there are additional
technical concerns with data analysis and reporting.
[llumina [ values are predominantly reported as
they can be considered an approximation to the
percentage methylation present in the original sam-
ple. However, this is only valid for values in the
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‘middle methylation range’ [72], with severe hetero-
scedasticity for low and high methylation values.
This has lead authors to suggest that statistical
analyses are performed with M values, but to re-
port B values [72].

Confounding variables

Interpretation of small methylation changes is further
complicated by the numerous sources of epigenetic vari-
ability that are currently poorly defined. There is signifi-
cant evidence that many genetic, demographical, clinical,
and environmental factors are strong cofounding
variables [64]. However, these underappreciated con-
founding variables all contribute to the overall measured
phenotype. This was highlighted by the low intra-
individual, but high inter-individual, difference in methy-
lation levels we observed throughout the human brain
[73]. Population-wide, 5-mC levels are both reduced and
redistributed with age [74] and are generally higher
genome-wide in males than females [75, 76]. Locus-
specific differential hyper- or hypomethylation has, how-
ever, been reported for both men and women [77-80].
Equally, the underlying genomic sequence heavily influ-
ences DNA methylation levels. Although there are nu-
merous other examples [81-85], the best estimate is that
approximately 2 % of the investigated CpGs that cover
up to 9.5 % of genes represent methylation quantitative
trait loci (mQTLs) and may operate over distances up to
5 kb [86]. Our NR3CI data demonstrated that methyla-
tion of the NR3C1 promoter 1H was associated with a
complete haplotype (haplotype 2), rather than a specific
SNP, operating over approximately 3 kbp. The effect of
the underlying genome sequence is also highlighted by
pervasive asymmetric methylation in diploid genomes
(i.e. difference between the two alleles), particularly out-
side imprinted regions [83, 87-89]. This asymmetry is
known to be regulated by underlying heterozygotic gen-
etic variants. In transgenerational epigenetic inheritance,
there is now convincing evidence that it is the genomic
sequence, rather than the parental DNA methylation
levels that determines 5mC levels during embryogenesis
[90]. Furthermore, allele-specific methylation events
are found in unrelated individuals with the same
haplotype/genotype as well as in multiple inter-
individual tissues [83]. Although the evidence for
these confounding factors is growing, there are still
no population-epigenetics principles available to guide
study design, analysis, and interpretation. However,
we suggest that moving towards sequencing-based
techniques (whole genome bisulphite sequencing, re-
duced representation bisulphite sequencing, MeDIP-
Seq, etc.) will allow access to the genomic variants
that is not available in array-based techniques.
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The importance of study design and best practice
guideline

As for GWAS, a study design adapted to the chosen re-
search hypothesis is important [91, 92]. Frequently
adopted designs are case-control and monozygotic twin
designs, each of them having different sample size and
statistical power requirements. Current best estimates
suggest that to observe a ~13 % difference in methyla-
tion, there is little difference in the power of discordant
twin or case control designs, however, smaller differ-
ences especially below 10 %, required 178 pairs of mono-
zygotic twins or 211 control and 211 cases to detect 7 %
methylation differences genome-wide significance with a
statistical power of 80 % (Table 1) [91, 93]. These esti-
mations have only been performed for array-based
EWAS and useful information or guidelines on
sequencing-based EWAS are unfortunately absent. The
surge of sequencing-based technologies and the possibil-
ity of greater in-depth examination genome-wide of
methylation differences requires guidelines for best prac-
tices. Not solely guidelines concerning study design,
sample size, and power but also guidelines concerning
interpretation and importance of the small methylation
differences that are regularly observed together with co-
variables and confounding factors such as gender, age, and
smoking that will significantly affect the methylation.

Study purpose

The current interest in DNA methylation is primarily to
exploit its potential as a biomarker. In both malignant
and complex non-malignant diseases, work has centred
on associating methylation changes with the external en-
vironment, particularly to exploit the latency between
exposure and disease development. In both the DOHaD
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and ‘foetal origins’ models, early-life events induce epi-
genetic changes that are maintained lifelong. Similarly,
many environmental factors, e.g. chemical, biological
(e.g. toxins, allergens), or heavy metal exposure alter the
epigenome, ultimately increasing the risk of developing
cancer [94, 95], for example, asbestos exposure leads to
DNMT overexpression, highly specific methylation pat-
terns, and eventually malignant pleural mesothelioma
[96, 97]. In both cases, there is a considerable period of
latency from the exposure to clinically discernible dis-
ease ranging from a few years (autism, obesity) to many
decades (cardiovascular disease, mesothelioma). During
this latent period, the epigenetic marks are, however,
present. If the interest in DNA methylation is solely as a
biomarker, then the question of the origin and biological
relevance of these changes is somewhat irrelevant. If the
observed changes can be robustly validated and repli-
cated, then their simple representation of a change in
the sampled cell population may be adequate for their
exploitation as a biomarker [8, 98]. However, when
changes are observed in purified cell populations, such
subtle changes in methylation may give significant
insight into underlying pathophysiological mechanisms.
If we consider post-partum depression (PPD), pre-
symptom onset epigenetic markers have been identified,
potentially allowing the identification of susceptible
women [99]. Although the epigenetic markers had a
>80 % predictive accuracy and have significant potential
as PPD biomarkers, they also provide significant mech-
anistic insight into the pathophysiology of PPD. It has
long been postulated that PPD is linked to the significant
fluctuation in hormonal levels during pregnancy and, in-
deed, the epigenetic marks have all been linked to 17
oestradiol (E2). Although PPD has a range of previously

Table 1 Estimated cohort sizes for 80 % power at individual loci and genome wide in twin and case-control EWAS designs (from

[93], under CC BY 4.0 licence)

Difference Twin Case-control
o0 P<005 P<1x107° P<005 P<1x107°

t test® Wilcox® t test” Wilcox® t test® Wilcox® t test” Wilcox®
7 30 30 178 178 37 37 211 211
8 25 25 145 149 30 30 169 169
9 20 20 17 117 24 24 137 137
10 17 18 98 102 20 21 12 110
" 15 15 81 83 17 18 96 95
12 13 13 71 71 15 16 80 80
13 11 12 63 69 13 13 70 70
14 10 " 55 62 " 13 61 63
15 9 10 50 57 10 " 54 57

at test, paired t test

PWilcox, Wilcoxon signed-rank test

°t test, two-sample t test

dWilcox, Wilcoxon rank-sum test
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identified biological and environmental risk factors, it is
unlikely to have a single underlying cause, and the
methylation changes identified may represent a ‘final
common pathway’ [100] integrating many potential
pathways. However, this highlights that differentially
methylated regions are not exclusively biomarkers as
they are often reported, but may provide significant
insight into the underlying mechanisms.

Overall, we are forced to conclude that there is cur-
rently no accurate estimate of what represents a genuine,
biologically relevant, change in methylation and what
may be ascribed to any of a multitude of external fac-
tors, although it should be emphasised that all these
outside factors contribute to measurable differences in
the observed phenotype, and that small changes may
represent a genuine biological difference.

Methylation: single CpG or clusters?

It is becoming clear that despite numerous reports of
single CpGs associating with disease phenotypes, methy-
lation levels are regulated in clusters. This has
brought into question the functional effect of limited
changes to the methylation level of single CpG dinu-
cleotides [38, 101]. Using the NR3CI as an example,
that methylation over a region of ~45 consecutive
CpGs within one of the many promoter regions effi-
ciently silenced the associated transcripts [102]. How-
ever, methylation of smaller regions of ~125 bp
(~12CpGs) reduced promoter activity by 75 % [47].
There is currently no evidence for the NR3CI that
single CpG methylation has functional effects on gene
expression [38]. Both individual [67] and promoter-
wide [103] CpG methylation increases have been as-
sociated with clinical post-traumatic stress disorder
(PTSD) symptoms. Our NR3CI methylation data con-
cords with the latter observation, where a strong
distance-dependent correlation throughout the NR3CI
promoter was observed both in man [73, 101] and rat
[104], suggesting that for the NR3C1, methylation oc-
curs in clusters over ~80 bp. Similar results have
been observed at the whole epigenome level as well
as the population level [105, 106]. Importantly, at the
population level, methylation clusters appeared to be-
have in a manner similar to genetic variants with
multiple clusters of methylation in ‘linkage-disequilib-
rium’ covering distances up to 300 kbp [107].

Towards a mechanism linking subtle methylation
changes to phenotypes?

The glucocorticoid receptor as a model

The glucocorticoid receptor (NR3CI, GR) has well-
characterised transcriptional and translational variability.
The association of receptor levels and variants with dis-
ease [108—110] has made it a particularly useful model
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to explore both the functional relevance and the effects
of small methylation changes [102, 111-114] and the
association between methylation and pathology at the
single gene level [51, 73, 101, 115]. The NR3CI 5’ struc-
ture, containing multiple alternative non-coding first
exons (1A to 1J) with a multitude of transcription factor
binding sides (Fig. 2a), was initially reported by to be
responsible for the quantitative, spatial, and temporal ex-
pression of the NR3C1 [108-110]. Recently, however,
NR3CI’s transcription was shown to be exceptionally
permissive rather than being initiated at fixed positions
(Fig. 2). We observed a total of 358 statistically signifi-
cant transcription start sites (TSS) located in 38 contigu-
ous loci in the absence of any particular stimuli, with a
further 185 stimuli specific [111]. For instance, demeth-
ylation with 5-AZA-2'-deoxycytidine (AZA) had a
profound influence on the TSSs used, with 127 stimuli-
specific TSSs induced by demethylation. This permissivity,
covering a large 3-kbp region, is called transcriptional
microvariability (Fig. 2) [111]. Although such microvaria-
bility appears to be stochastic, in the case of the NR3C], it
has a significant effect on translation. Small differences in
TSS location (<10 nt) within any given locus redirected
ribosomes to initiate translation from internal (down-
stream) ATG codons, altering the balance of the transla-
tional GR isoforms produced (Fig. 2) [25]. A shift in TSS
location results in an altered mRNA secondary structure
and half-life and influences the overall translational effi-
ciency in a ‘length-dependent, but sequence-independent
manner’ [111, 113]. For the NR3CI, this microvariability
vastly inflates the associated proteome. The GR is classic-
ally cytosolic; however, we have demonstrated that the
membrane bound form of the receptor (mGR [31]) is
derived from the classical NR3C1 gene [114], and further
refined its molecular origin to the epigenetically regulated
alternative first exon, 1D [113]. As such, microvariability
influences not only the final protein form but also the final
cellular distribution of the GR proteins. Our data lead us
to conclude that physiological differences in glucocortic-
oid secretion and response are the result of DNA methyla-
tion altering TSS/first exon usage, with the consequentially
proteomic difference [49, 73, 102, 108, 116—118]. Import-
antly, our data suggest that, at least for the NR3C1, neither
single nor clusters of CpGs that are methylated switch off
transcription of any particular splice variant, rather, they
orchestrate the final proteomic landscape, and potentially
alter the splicing internally or at the 3" end [113, 119].

Expanding the mechanism from the NR3C1 to the
complete transcriptome and proteome?

It has been recognised for many years that both the
complexity and phenotypic diversity increase as the rela-
tive size of non-coding genomic regions and the regula-
tory elements and variability within them increase
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with permission)

Fig. 2 a A schematic representation of the NR3CT 5" UTR structure, showing the alternative first exons (TA-1J, CpG island: HEI),
transcription factor binding sites (7-25), transcriptional loci (B1-B5), and microvariable transcription start sites (-). Transcription factor

binding sites: (.) IRF-1 and IRF-2 (position 1); () glucocorticoid response elements (GRE, positions 2, 3, 8, 11, 14, and 22); (.) c-Myb, c-
Ets1/2 and PU1 (position 4); (.) Ying Y and 1 (positions 5, 6, 7, and 25); (m) Sp1 binding sites (positions 9, 10, 12, 13, 16, 19, 20, 21, and
24); (.) Ap-1 (position 15); (.) NGFI-A binding site (position 17); () glucocorticoid response factor-1 (GRF-1, position 18); (o) Ap-2

(position 23). b Structure of the GR mRNA with the internal ATG translation initation codons, a western blot demonstrating the different transcrip-
tional isoforms (from [113] with permission), and the frequency of the different protein isoforms with increasing 5" UTR length (adapted from [111]

throughout evolution [120, 121]. Features like alternative
first exons, transcriptional microvariability, and alterna-
tive in-frame downstream ATG initiation codons are
found genome-wide; ~60 % of all genes are thought to
possess a highly variable 5" structure with many alterna-
tive first exons [122], and this transcription variability
has been reported in many cases to be responsible for
spatio-temporal gene expression patterns [123]. Simi-
larly, multiple alternative in-frame ATG translation initi-
ation codons within mature mRNA are found
ubiquitously through evolution, occurring in many plant,
invertebrate, and vertebrate species [124—126].

In light of data on the origin and evolution of new
TSSs and exons in different species [127-130], transcrip-
tional microvariability is not unexpected, and now,
several reports have observed transcription starting over
small multiple small loci genome-wide [122] and in
model organisms [131]. Multiple alternative in-frame
ATG translation initiation codons have been observed in
a wide range of genes. Although no systematic review of
their occurrence has been performed, they are thought
to be ubiquitous and cover both leaky ribosome
scanning and internal ribosome entry [132]. These obser-
vations and the ubiquity of the features made researchers
suggest that the 5" UTR, together with intergenic regions
and the 75 % of the human and mouse genomes that
are transcribed are the key to understanding the vastly
inflated proteome [111, 120, 133]. It therefore seems lo-
gical that the mechanisms outlined for NR3CI above
should be expandable to the complete transcriptome and
proteome. Irrespective of whether 5’ variability comes
from the mRNA structure, the TSS location, transcrip-
tional microvariability, or alternative mRNA splicing, this
variability will give rise “to high complex and diverse
transcriptomes and proteomes” [111] (Fig. 3).

Re-defining a ‘gene’?

The significant increase in transcriptional and transla-
tional complexity observed for the NR3CI concords
with the recent movement towards re-defining a
‘gene’. While the definition of ‘gene’ has changed con-
siderably over the last century, the current definition
used worldwide for genome annotation is ‘a DNA
segment that contributes to phenotype/function. In

the absence of demonstrated function a gene may be
characterized by sequence, transcription or homology’
[134]. This definition has come under scrutiny over
the last decade [135, 136]. Large-scale sequencing
projects such as ENCODE/GENCODE have identified
several phenomena that are changing our perception
of what a gene is, including universal alternative spli-
cing, pervasive and intergenic transcription, and dis-
persed patterns of transcription regulation [137-139].
Gerstein et al. metaphorically described the classical
definition of a gene as ‘subroutines in the genomic
operating system’ [135]. This analogy was further
broken down into the genome being a complete hu-
man ‘operating system’ and with gene being a clear,
well-defined ‘subroutines’ where a genomic region is
assembled as in a homologous manner to computer
code, with transcription and translation considered
the homologues of calling and running a subroutine.
In this analogy, gene elements (5°, 3 UTR, intron,
exon, etc.) were considered as the syntax. GENCODE
and subsequent data have called this neat definition
into question. The vastly inflated transcriptome and
proteome suggest that the process is rather ‘higgledy-
piggledy’ or stochastic, with the gene ‘subroutine’ very
poorly defined with many starting points. Post GEN-
CODE, the definition of a gene was simplified taking
into account this variability as ‘a gene is a genomic
sequence (DNA or RNA) directly encoding functional
product molecules, either RNA or protein’ [135]. The
two definitions can be compared to strict Boolean or
fuzzy logic. This definition is amenable to the integra-
tion of data, such as ours, from the epigenetic regula-
tion of the NR3C1, as it would appear that a
combination of genetic and epigenetic variants under-
pin and orchestrate the higgledy-piggledy or fuzzy
processes into a concerted, specific response to the
external environment.

Conclusions

It has become clear that DNA methylation occurs either
as discrete hyper- and hypomethylation coupled with a
clear on/off switch of genes as often observed in onco-
genes, and easily dissected molecular mechanisms, or in
a second paradigm as a more subtle complex process
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where small (<10 %) methylation changes have been
associated with divers phenotypes and epigenetic pro-
gramming events. Despite the observational association
studies’ aim to increase our understanding of the envir-
onmental impact on phenotype development, the under-
lying mechanisms linking subtle methylation changes to
an eventual phenotype remained unaddressed (Fig. 3).
Consequently, hampering our interpretation of the asso-
ciations with subtle changes in methylation due to a lack
of data addressing the true biological relevance and
function of such small differences.

We are now starting to gain insight into the function and
relevance of such small changes in methylation from genes,
such as NR3CI. These data suggest that the 5" UTR is the
key to controlling gene expression. Small changes in methy-
lation throughout this region impact mechanisms such as
alternative splicing and transcriptional microvariability, al-
tering enhancer and insulator use, and the function of regu-
latory elements. Methylation of single CGs affect the TSS
usage within a gene promotor region, i.e. silence a specific
location, whereas methylation of multiple closely related
CG’s will rather silence a transcription loci, i.e. a whole site
of adjacent TSSs. Recent studies demonstrate that small
changes in methylation levels seem to be regulated in clus-
ters rather than single CpGs. But whether they act as single
CpGs or in clusters, these small changes do not function as

an on/off switch, rather redistributing the transcriptional
landscape, affect translational isoform production, and or-
chestrating the final proteomic landscape.

Technologies such as next-generation sequencing
(NGS) have enabled researchers to study these subtle
methylation changes in greater detail genome-wide. The
emerging approach, combining both NGS and single cell
technology, will allow a far more in depth analysis of this
phenomenon and its importance overall as well as on
the single-cell level. The recognition and appreciation of
the functional significance of such small differences in
methylation highlights the importance of unaddressed
EWAS questions, particularly in identifying the correct
confounding variables. Being able to control for different
sources of variability has become more important in
order to ensure the small changes observed are genuine
biological differences and to be able to subsequently in-
terpret them.
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