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Abstract

Background: The quantification of global DNA methylation has been established in epigenetic screening. As more
practicable alternatives to the HPLC-based gold standard, the methylation analysis of CpG islands in repeatable
elements (LINE-1) and the luminometric methylation assay (LUMA) of overall 5-methylcytosine content in “CCGG”
recognition sites are most widely used. Both methods are applied as virtually equivalent, despite the hints that their
results only partly agree. This triggered the present agreement assessments.

Results: Three different human cell types (cultured MCF7 and SHSY5Y cell lines treated with different chemical
modulators of DNA methylation and whole blood drawn from pain patients and healthy volunteers) were
submitted to the global DNA methylation assays employing LINE-1 or LUMA-based pyrosequencing measurements.
The agreement between the two bioassays was assessed using generally accepted approaches to the statistics for
laboratory method comparison studies. Although global DNA methylation levels measured by the two methods
correlated, five different lines of statistical evidence consistently rejected the assumption of complete agreement.
Specifically, a bias was observed between the two methods. In addition, both the magnitude and direction of bias
were tissue-dependent. Interassay differences could be grouped based on Bayesian statistics, and these groups
allowed in turn to re-identify the originating tissue.

Conclusions: Although providing partly correlated measurements of DNA methylation, interchangeability of the
quantitative results obtained with LINE-1 and LUMA was jeopardized by a consistent bias between the results.
Moreover, the present analyses strongly indicate a tissue specificity of the differences between the two methods.

Background
Epigenetic effects are exerted by various factors such as
early social experiences [1–3], physical training [4], age
[5], nutritional or chemical factors such as royal jelly [6],
benzene [7], asbestos, smoking [5], and drugs [8]. For
example, drugs may interfere with epigenetics [8] inclu-
ding all classical mechanisms such as histone modifica-
tions, DNA methylation [9, 10], and further regulatory
processes of gene expression [11, 12]. This interference
can be intended as with epigenetic therapeutics or unin-
tended as common drugs may also exert epigenetic

(side) effects [8]. The consequences reach from none, via
modulating the disease or introducing disease indepen-
dent symptoms, up to a possible hereditability of epige-
netic fingerprints provided that epigenetic transmission,
so far only shown in plants [13], extends to animals.
Moreover, the influences between drugs and epigenetics
are mutual. Not only can drugs modulate epigenetics,
but epigenetics is also increasingly recognized as a
source of interindividual variability in drug effects [11].
Quantification of epigenetic modulations has therefore
manifold applications [14].
Assessing global DNA methylation is a frequent used

marker for epigenetic screening. It captures the DNA
methylation also at unknown genetic locations while the re-
sults of average DNA methylation correlate with the methy-
lation of some trait-relevant genes [15]. The gold standard
in this field is HPLC quantification of the 5-methylcytosine
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content (methyl group added to the 5-carbon position of a
cytosine) within the whole genome that occur mostly at
CpG sites [16]. However, due to its high demand in DNA
amount and the difficulty to apply the method in high
throughput approaches [17], alternatives have been deve-
loped [18]. Widely accepted are (i) the cumulative analysis
of methylation at CpG sites in repeatable elements such as
long interspersed nuclear element 1 (LINE-1) [18] dis-
persed in more than 500,000 copies across the whole
human genome [19–21] and (ii) the luminometric methyla-
tion assay (LUMA) of overall 5-mC content in “CmCGG”
recognition sites across the whole genome [22].
The utility of both biomarkers is supported by the cor-

relation of their results with the HPLC gold standard
[23, 24]. However, both methods address different recog-
nition sites within the genome. Specifically, while LINE-
1 is overrepresented in A+T rich regions, LUMA recog-
nition sites are more dense in C+G rich regions [25].
Nevertheless, both methods are widely used as markers
of global methylation [26–36] as if they were equivalent.
Consistent with their biological differences, however,
doubts have been raised about such equivalence. Indeed,
the two methods quantified the global DNA methylation
in colon biopsies, cell lines [24], and human blood cells
[37] differently. However, this was based on limited sam-
ple sizes [23, 24] and DNA methylation ranges [37].
Considering the increasing importance of the assessment
of unknown epigenetic effects such as of drugs [8] or ali-
mentary materials [14], where a definite set of target
genes for such epigenetic effects can often not be prede-
fined, the present study aimed at systematic assessment
of the agreement between the two bioassays. With a
clinical focus analogously to a previous investigation
[38], the analyses were performed in human blood cells
that are frequently the only easily available biological
material in human studies [26–36]. However, to increase
the range of global DNA methylation, human-derived cell
populations (MCF7 and SHSY5Y cell lines) were added
following treatment with methylation modifying sub-
stances. This provided a total of 238 samples. The under-
lying hypothesis of the present method comparison was
the non-agreement between the two assays, as suggested
by the biological differences of their recognition sites.

Methods
Study design and subjects
The two different global DNA methylation markers
(LINE-1 pyrosequencing, LUMA) were assessed in three
independent sample sets that were generated (i) in vitro
from human cell lines (MCF7 and SHSY5Y) or (ii) whole
blood samples acquired from healthy volunteers (one
set) or (iii) pain patients (two sets). The in vitro ap-
proach served to induce a broad variation of DNA
methylation as the required suitable basis for correlation

analysis using known modulators of DNA methylation
to the cell culture under highly controlled laboratory
conditions. The LINE-1-based data had been analyzed
previously in a non-redundant context addressing the
effect of drug exposure on DNA methylation [39]. To
picture the clinical setting, whole blood-derived DNA
collected from either healthy subjects or chronic pain
patients was analyzed. The in vivo assessments followed
the Declaration of Helsinki and were approved by the
Ethics Committee of the Goethe University, Frankfurt
am Main, Germany. Informed written consent from each
participating subject had been obtained. The actual health
status of the healthy volunteers was ascertained by me-
dical history and physical examination including vital
signs. Exclusion criteria were a current clinical condition,
any other actual diseases, and drug intake within a week
except oral contraceptives. Patient’s samples were available
from a previous assessment of chronic pain patients
treated with either opioid or non-opioid analgesics [38].

DNA sample acquisition
Human blood samples
DNA from whole blood samples and opioid-related phe-
notypes was available from previous studies [40–42]. Co-
hort 1 consisted of 83 (26 men, 57 women, aged 39.6 ±
7.02) healthy subjects that were drawn randomly from a
control cohort. Cohorts 2 and 3 comprised pain patients
in tertiary care. Cohort 2 contained 29 (14 men, 15
women, aged 47.8 ± 7.36) pain patients with an opioid
treatment duration of ≥1 year and an average daily
opioid dose of 52.69 ± 22.11 mg of oral morphine equi-
valents [43, 44]. Cohort 3 consisted of 19 (2 men, 17
women, aged 45.7 ± 11.63) pain patients who had re-
ceived no opioids during their analgesic therapy (Tables 1
and 2). Sex and age matching was not possible due to
insufficient human material for LINE-1 and LUMA as-
sessments each in two independent measurements.

Cell culture and exposure to known modulators of DNA
methylation
Since the human blood samples did not provide suffi-
cient variability in DNA methylation for the present ana-
lyses, human cell lines were added in which the desired
broad range of methylation could be induced by treating
the cells with known modulators of DNA methylation.
Two human cell lines were chosen, i.e., MCF7 cells that
is a breast cancer-derived cell line and SHSY5Y cells that
possess a neuronal character. The choice was based on
the criteria (i) human origin consistent with the present
clinical focus, (ii) reported ability to respond with
decreased DNA methylation to the stimulation with the
demethylating agent 5-Aza-2′-deoxycytidine (5-Aza-
CdR), which can be inhibited by simultaneous treatment
with S-adenosyl methionine (SAM).

Knothe et al. Clinical Epigenetics  (2016) 8:60 Page 2 of 17



MCF7 cells were cultured in Dulbecco’s modified
Eagle’s medium (DMEM) +GlutaMax™ (Gibco, Darmstadt,
Germany) supplemented with 10 % (v/v) fetal calf serum
(FCS) and 1 % penicillin/streptomycin (PAA, Cölbe,
Germany). SHSY5Y cells were obtained from the DZMS
Collection of Microorganisms and Cell Cultures
(Braunschweig, Germany) and were grown in 1:1 mixed
Ham F12 and Minimum Essential Medium (MEM)
(Gibco, Darmstadt, Germany) supplemented with 15 %
(v/v) FCS, 1 % Minimum Essential Medium Non-
Essential Amino Acids (MEM NEAA, Gibco, Darmstadt,
Germany), 2 mM L-glutamine (Gibco, Darmstadt,
Germany), and 1 % penicillin/streptomycin (PAA, Cölbe,
Germany) at 37 °C in humidified atmosphere containing
5 % CO2. In prior to drug treatment, cells were seeded at
a density of 3 × 105/10 cm2 and allowed to settle for 24 h
in the complete media. Subsequently, cells were incu-
bated for 72 h (MCF7, SHSY5Y) or 7 days (SHSY5Y) in

the presence of the known or potential modulators of
DNA methylation at various concentrations Table 1.
Drug treatment conditions have been reported else-

where [39]. In brief, 5-Aza-2′-deoxycytidine (5-Aza-
CdR), a cytidine analogue, covalently traps DNMTs, and
RG108, a specific DNMT inhibitor, directly blocks the
active site of the enzyme which are expected to lead to
global DNA hypomethylation [45–48]. S-adenosyl me-
thionine (SAM) is a methyl donor that is catalyzed by
DNMTs to form 5-methyl cytosine at CpG sites [49],
thereby, it is expected to increase DNA methylation or
at least inhibit global hypomethylation induced by 5-
Aza-CdR [50]. 2,4-Dichlorophenol (DCP) is an environ-
mental pollutant reported to increase global methylation
[51]. Methadone was chosen as opioid because it had
been involved in the largest group of patients (heroin ad-
dicts) in whom the clinical association of opioid-induced
hypermethylation had been observed [38]. On every day,

Table 1 Samples, conditions, and concentrations used for the assessment of methylation levels by means of LINE-1 and LUMA, of
which the cell lines had been obtained previously [39]

Data
subset

Tissue
(cell type)

Age (mean ± SD)
(years)

n (total number
of replicates)

Condition Treatment duration Concentrations

MCF7 Human breast cancer cell line – 6 Untreated 3 days –

7 DMSO 3 days 0.1 (%)

9 5-Aza-CdR 3 days 0.1/0.3/1 (μM)

7 SAM 3 days 10/50/100 (μM)

5 DCP 3 days 0.1/1/10 (mg/l)

11 Methadone 3 days 1/10/25/50/75/100 (μM)

6 RG108 3 days 10/50/70/100 (μM)

4 5-Aza-CdR + SAM 3 days 0.3 + 50/100 (μM)

2 5-Aza-CdR + DCP 3 days 0.3 (μM) + 10 (mg/l)

9 5-Aza-CdR +
Methadone

3 days 0.3 + 10/25/50/75/100
(μM)

2 5-Aza-CdR + SAM+
DCP

3 days 0.3 (μM) + 100 (μM) + 10
(mg/l)

2 RG108 + DCP 3 days 100 (μM) + 10 (mg/l)

3 SAM + DCP 3 days 100 (μM) + 10 (mg/l)

SHSY5Y Human neuronal cell line – 7 Untreated 3 days/7 days

7 DMSO 3 days/7 days 0.1 (%)

12 5-Aza-CdR 3 days/7 days 0.1/0.3/0.5/1 (μM)

1 SAM 3 days 30 (μM)

3 Methadone 3 days 10/100 (μM)

1 5-Aza-CdR + SAM 3 days 0.3 + 30 (μM)

3 5-Aza-CdR +
Methadone

3 days 0.3 + 10/100 (μM)

Human
blood

Healthy subjects 39.57 ± 7.02 83 Untreated –

Pain patients, opioid treated 47.83 ± 7.36 29 Opioid analgesics >1 year 52.69 mg ± 22.11 OMEa

Pain patients non-opioid treated 45.68 ± 11.63 19 Non-opioid analgesics
aOral morphine equivalents; opioid doses were converted to daily oral morphine equivalents (OME) using previously published conversion factors [43, 44]
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Table 2 Descriptive and inference statistics of the two assays

Descriptives Paired tests Method of 95 % limits of agreement between measurements (“Bland-Altman”)

Data subset
(cell type)

LINE-1
(mean ± SD
and (range)) (%)

LUMA
(mean ± SD
and (range)) (%)

Wilcoxon
signed rank test

Spearman
Correlation
(95 % CI)

Mean
difference
(fixed bias)
(95 % CI)

Significance
of mean
deviation
from 0

KS-test of normal
distribution
of differences

95 %
confidence
limits of
agreement

Slope
(proportional bias)
(CI of estimate)

Significance
of deviation
of slope
from 0

MCF7 60.96 ± 11.99
(34, 76.18)

67.8 ± 11.99
(34.36, 78.34)

V = 2476,
p = 6.22 × 10−10

ρ = 0.58 (0.38, 0.74),
p = 5.53 × 10−8

−6.8
(−8.3, −5.3)

1.93 × 10−13 D = 0.1183,
p = 0.24

−19.5, 5.8 −0.00046
(−0.13, 0.13)

0.99

SHSY5Y 59.01 ± 11.54
(31.91, 71.65)

55.66 ± 11.99
(24.89, 67.65)

V = 74,
p = 4.66 × 10−5

ρ = 0.8 (0.56, 0.92),
p = 1.31 × 10−8

3.3
(1.9, 4.8)

3.16 × 10−5 D = 0.068241,
p = 0.99

−4.6, 11.3 −0.04
(−0.16, 0.08)

0.53

Human blood 92.4 ± 2.75
(77.9, 98.8)

72.3 ± 3.1
(61.9, 78.5)

V = 0,
p <2.2 × 10−16

ρ = 0.35 (0.18, 0.51),
p = 3.25 × 10−5

20.1
(19.5, 20.7)

3.41 × 10−103 D = 0.086144,
p = 0.29

13.4, 26.8 −0.2
(−0.44, 0.045)

0.11

KS-test Kolmogorov-Smirnov test
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media were replaced and compounds were added
freshly. Methadone hydrochloride (Fagron, Barsbüttel,
Germany) was dissolved in Dulbecco’s phosphate-
buffered saline (DPBS) without CaCl2 and MgCl2 (Gibco,
Germany, Darmstadt; 14190-094). 5-Aza-CdR, SAM,
DCP (Sigma-Aldrich, Taufkirchen, Germany), and
RG108 (Biomol, Hamburg, Germany) were dissolved in
DMSO and mixed with solvent to obtain a final concen-
tration of 0.1 % DMSO (0.25 % for RG108) to the cell
media during incubation. Cells incubated with 0.1 %
solvent alone or without any substance addition (i.e., the
control condition) served as controls.

Quantification of global DNA methylation
DNA isolation
Genomic DNA was extracted from cell line materials
and whole blood samples with the DNeasy Blood and
Tissue Kit (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol and eluted in water. Genomic
DNA obtained from blood samples was concentrated
using vacuum rotation (45 °C for 25 min) to reach at
least a final concentration of 50 ng/μl.

Methylation analysis of retrotransposon LINE-1
The analysis of LINE-1 DNA methylation was per-
formed identically as described previously in full detail
[18]. Bisulfite treatment was performed using the EZ
DNA Methylation-Gold Kit (Zymo Research, Freiburg,
Germany) with 0.5–1 μg genomic DNA as instructed
by the manufacturer.
The analyzed region of a CpG island located in the

promoter region (L1Hs) DNA (PubMed GenBank
X58075.1; lower strand) has the bisulfite-converted se-
quence 5′-TTTTGAGTTAGGTGTGGGATATAGTTTYG
TGGTGYGTYGTTTTTTAAGTYGGTTTGAAAAGCT
AATATTCGGGTGGGAGTGATTCGATTTTTTAGGT
GCGTTCGTTATTTTTTTTTTTGATTCGGAAAGGG
AATTTTTTGATTTT-3′ where the 146-bp PCR prod-
uct contains four analyzed CpG methylation sites (bold)
and annealing sites for the PCR primers (underlined) and
the sequencing primer (italic), respectively [7, 52]. PCR
reactions were run on a Mastercycler nexus gradient flex-
lid device (Eppendorf, Hamburg, Germany) in a 50-μl re-
action volume including 5-μl bisulfite-treated DNA,
mixed with 0.5 μl MyTaq™ HS DNA Polymerase (5 U/μl)
(Bioline, Luckenwalde, Germany), 10 μl 5× MyTaq Reac-
tion Buffer, 0.2 μl of each PCR primer (100 μM), and
34.1 μl HPLC-purified water. The following PCR pro-
gram was used: 95 °C for 1 min, 40 amplification cycles
at 95 °C for 15 s, 56 °C for 15 s, 72 °C for 15 s, and a
final elongation step at 72 °C for 5 min.
The analysis of the global methylation marker LINE-1

was done by means of Pyrosquencing™ (Qiagen, Hilden,
Germany) as described previously [7, 38, 52]. In brief,

50 μl of the PCR templates were processed and purified
with the PyroMark Vacuum Prep Worktable (Biotage,
Uppsala Sweden) and subsequently annealed to the se-
quencing primer (5′-AGTTAGGTGTGGGATATAGT-3′)
at 80 °C for 2 min as instructed by the manufacturer.
Sequence analysis took place on a PSQ 96 MA System

using the PyroMark Gold Q96 Reagents (Qiagen, Hilden,
Germany) with the sequence to analyze TTYGTGGT
GYGTYGTTTTTTAAGTYGGTTT. Pyro Q-CpG met-
hylation software (version 1.0.9) had been used to deter-
mine the nucleotide dispensation order (ATCAGTGT
GTCAGTCAGTCTAGTCTG). LINE-1 methylation va-
lues represent the mean percentage methylation across
all four CpG sites, which were measured in duplicate
samples within one run. In addition, each sample was
measured in two independent runs, which were subse-
quently averaged.
The accuracy of the analyses was verified by adding

positive and negative control samples. Specifically,
each run included control DNA from the EpiTect
PCR Control DNA Set (Qiagen, Hilden, Germany)
that contained both bisulfite-converted 100 % methy-
lated and completely unmethylated DNA as positive
controls and unconverted unmethylated DNA as
negative control. The bisulfite-converted methylated
control DNA reached on average 75.08 ± 0.68 %
methylation while the bisulfite-converted unmethy-
lated control DNA reached only 3.37 ± 0.21 % methy-
lation, which agrees with published values [18]. The
negative PCR control did not show specific spikes for
any injected nucleotide, which demonstrated assay
specificity. All absolute methylation values were sub-
sequently calibrated to the methylated and unmethy-
lated control DNA to cover a range from 0 to 100 %.
Non-CpG cytosine residues were used as built-in con-
trols to verify the bisulfite conversion. The acceptable
percentages for passed and checked quality were
adjusted to the complete bisulfite-converted controls
supplied by Qiagen. Samples not meeting the criteria
for complete bisulfite conversion or pyrosequencing™
quality control checks were excluded. The interassay
coefficients of variation for duplicates were 2.38 % for
cell-line samples and 1.18 % for blood samples.

Luminometric methylation assay
The luminometric methylation assay (LUMA) was per-
formed as described previously [22] with modifications
previously proposed [24]. A common used isoschizomer
pair to investigate global DNA methylation pattern is
HpaII and MspI; HpaII digestion is inhibited if the
internal cytosine is methylated (CmCGG) at recognition
site whereas MspI is insensitive to CpG methylation
within this sequence [37]. DNA methylation level is
defined as the HpaII/MspI ratio that would be 1.0 if the
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DNA is completely unmethylated and would approach
zero if the DNA is completely methylated [22, 53]. Be-
cause of reported star activity of EcoRI [24], we used
MfeI, a methylation-insensitive restriction enzyme, as
normalization reference. Four hundred to five hundred
nanograms of genomic DNA was cleaved with either
HapII +MfeI or MspI +MfeI in two separate 20 μl reac-
tions containing 2 μl of 10× Tango Buffer (330 mM
Tris-acetate, 100 mM Mg-acetate, 660 mM K-acetate,
0.1 mg/ml BSA, Thermo Scientific, Schwerte, Germany),
5 U of HpaII (10 U/μl; NEB, Frankfurt, Germany) or
MspI (20 U/μl; NEB, Frankfurt, Germany), and 2.5 U of
MfeI (10 U/μl; NEB, Frankfurt, Germany) at 37 °C for
16 h using a PSQ 96 Plate Low (Qiagen, Hilden,
Germany). The incubation time could be reduced to 4 h
without impacting the completion of the enzymatic reac-
tion. Subsequent to digestion, 20 μl of annealing buffer
(Qiagen, Hilden, Germany) was added to the cleavage
reactions and samples were assayed in duplicate using
the PSQ 96 MA System (Biotage AB, Uppsala, Sweden)
and PyroMArk Gold Q96 reagents (Qiagen, Hilden,
Germany). The sequence AC/TCGA was analyzed in
SNP mode with ACTCGA nucleotide dispensation
order. The dispensation order of dNTPs were dATPαS
(step 1); mixture of dGTP + dCTP (step 2); dTTP (step
3); mixture of dGTP + dCTP (step 4); water (step 5); and
dATPαS (step 6). Peak heights were calculated using the
PyroMark™ ID software and HpaII/MfeI and MspI/MfeI
ratios were determined as (dGTP + dCTP)/mean(-
dATP,dTTP) for each reaction. The HpaII/MspI ratio
was then calculated as (HpaII/MfeI)/(MspI/MfeI), and
methylation level was obtained as Methylation (%) = (1-
HpaII/MspI) × 100. Samples with peak heights <2 (blood
samples) or <1 (cell samples), MspI/MfeI ratio >4.2, and
peak heights at dispensation peak 6 of more than 25 %
relative to dispensation peak 1 were excluded from the
analysis (modified [54]). The interassay coefficients of
variation for duplicates were 3.28 % for cell samples and
2.17 % for blood samples.
The accuracy of the analysis was verified by including

in each run an unmethylated probe of lambda phage
DNA as 0 % control and a completely methylated probe
of lambda phage DNA as 100 % control. All absolute
methylation values measured in the three subsets of
DNA samples, respectively, in human cell types were
calibrated to the methylated and unmethylated lambda
phage DNA control to cover the range of 0–100 %.

Data analysis
The data analysis employed several bioinformatics
methods to assess the agreement between the percent-
ages of DNA methylation quantified by the LINE-1- or
LUMA-based method. The analyses cover and extend
previously proposed approaches to the statistics for

laboratory method comparison studies [55]. It included
(i) standard analysis of variance and correlation, (ii) vis-
ual inspection, (iii) the method of 95 % limits of agree-
ment between measurements by two methods, (iv)
Gauss mixture modeling, and (v) linear regression.

Analysis of variance and correlation, visual inspection
The first four analyses were performed using the R
(version 3.2.1 for Linux; http://CRAN.R-project.org/)
and SPSS (version 23 for Linux, IBM SPSS Statistics,
Chicago, USA) software environments on an Intel Xeon®
computer running on Ubuntu Linux 14.04 64-bit. In a
first analytical approach, differences between DNA
methylation assessed either by LINE-1 methylation or by
LUMA were explored by submitting the data to analysis
of variance for repeated measures (rm-ANOVA). “LINE-
1/LUMA” was taken as within-subject factor and “data
subset” (n = 3, Table 1) as between-subject factor, with
post hoc Wilcoxon signed rank test-based [56] ex-
ploration of single differences. The α level was set at
0.05 and corrected for multiple testing according to
Bonferroni [57]. Additional statistics included nonpara-
metric correlation analyses calculating Spearman’s ρ
[58], for which 95 % confidence intervals (CI) were ob-
tained using 1000 bootstrap resamplings [59]. This was
followed by the second approach, visual inspection of
the scatter plot of the data and its placement relative to
the line of equality.

Assessment of method agreement and bias
Absent correlation would discourage an agreement be-
tween the two assays. However, as pointed out previously,
correlation analysis assesses the degree of association
rather than the agreement between the methods and is
insensitive to a possible bias [60]. Therefore, a third ana-
lytical approach employed the method of 95 % limits of
agreement between measurements by two methods pro-
posed by Bland and Altman [61]. For each data subset,
differences in DNA methylation between the LINE-1- and
LUMA-obtained magnitudes of DNA methylation were
plotted against the mean of the two measurements (Fig. 3).
The mean difference was an estimate of the fixed bias and
tested for significant deviation from 0 on the basis of a
one-sample t test. The 95 % confidence interval of the dif-
ferences marked the limits of agreement for the two
methods. A linear regression of the difference between
the methods against their average indicated a relationship
of the discrepancies between the measurements and the
true value, which in the case of a slope significantly differ-
ing from 0 denoted the proportional bias. Calculations
were performed using the R packages “BlandAltmanLeh”
(B. Lehnert, https://cran.r-project.org/web/packages/Bland
AltmanLeh/index.html) and “epade” (A. Schulz, https://
cran.r-project.org/web/packages/epade/). Normality of
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the distribution of the differences between the two
methods was assessed by means of Kolmogorov-Smirnov
tests [62].

Pattern analysis of interassay differences
A data-subset specificity of the above differences was ex-
plored by fitting a mixture of Gaussian distributions
(Gaussian mixture model (GMM) to their empirical dis-
tribution (Pareto density estimation (PDE)[63]) as given
by the equation

p xð Þ ¼
XM

i ¼ 0
wiN xjMeani; SDið Þ

¼
XM

i ¼ 1
wi⋅

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2⋅π⋅SDi

p ⋅e
−

x−Meanið Þ2
2⋅SD2

i ð1Þ

where N(x|Meani , SDi) denotes Gaussian probability
densities with means, Meansi , and standard deviations,
SDi , while the wi is the mixture weights indicating the
relative contribution of each component Gaussian to the
overall distribution, and M denotes the number of com-
ponents in the mixture. GMM fitting was performed with
our R package “AdaptGauss” (M. Thrun, https://cran.r-
project.org/web/packages/AdaptGauss/index.html; [64]),
using the root mean square error between PDE and
GMM as the fit criterion. The limits between the different
Gaussians are defined by Bayes decision boundaries [65],
i.e., the probability a data point being assigned to a spe-
cific Gaussian was calculated by an application of Bayes’
theorem [66], and the resulting grouping of the data was
subsequently explored for association with data subsets,
respectively, tissues, by applying a decision-tree algorithm
[67] that used the information index, f(p) = − p ⋅ ln(p), to
find optimal (local) dichotomic decisions. The method is
invariant under transformations of the variables, robust
with respect to outliers, and allows estimation of the mis-
classification rate [68]. The resulting tree model was
cross-validated using a leave-k-out approach, where k was
a randomly picked tenth of the total sample and the tree
models were built 100 times with the respective
remaining data. Calculations were done using the “rpart”
function of the similarly named R package (B. Ripley;
https://cran.r-project.org/web/packages/rpart/index.html).

Regression approach
The tissue-dependent relation between LINE-1 and
LUMA measurements was further explored in a fifth
analytical approach that employed linear modeling per-
formed with the non-linear mixed effects modeling
(NONMEM) software (version 7.3, Icon, Dublin, Ireland
[69]). The analysis searched data-subset specific devia-
tions from a y-intersection of zero and a slope of the

value of one of the linear model expressed by extending
its reduced form of

MethylationLINE1 ¼ Intersection þ Slope
� MethylationLUMA ð2Þ

to

MethylationLINE1 ¼ Intersection þ θInt;Subset1 ::Subset3
� �

þ Slope � θSlope;Subset1 ::Subset3
� �

� MethylationLUMA

ð3Þ
where

θInt,Subset1.. Subset3 and θSlope,Subset1.. Subset3

The θs were allowed to take values differing from 0
or 1, for intersections and slopes, respectively, for each
specific data subset while the values of the θs were
fixed at values of 0 or 1, respectively, for all other sub-
sets. For example, for the MCF7 cell line, θInt,Subset1and
θSlope,Subset1 described the deviations of the linear rela-
tionship from the other samples. The parameters were fit
only for the MCF7 data while they remained fixed at 0 or
1 when other data was analyzed. The full linear model
thus consisted of eight structural parameters θ, of which
θ1 and θ2 denoted the global intersection and slope of the
linear relationship, and θ3..8 accounted for the set-specific
deviations from this global relationship and an additive
residual error modeled as MethylationObserved = Methyla-
tionPredicted + ε, in which ε is a parameter with a mean of
zero and a variance of σ2.
During the fitting process, parameters θInt,Subset1.. Subset3

and θSlope,Subset1.. Subset3 were introduced into the model
in a stepwise fashion. Whether or not a specific θ
remained part of the final model was established based
on goodness-of-fit assessments, i.e., Occam’s razor or the
principle of parsimony was applied. The simpler model
was preferred to the more complex model as long as an
additional parameter did not provide a significantly bet-
ter fit. The main test was a likelihood ratio test, and
therefore, the indicator of improvement of the fit was a
change in minus twofold the log likelihood (Δ−2LL), and
the χ2 approximation with the number of degrees of free-
dom equal to the difference in the number of parameters
between two models was applied to judge statistical sig-
nificance. Thus, the full model included an additional
term and the reduced model involved the fixing of the
respective term to a neutral value, i.e., 1 for factors
and exponents and zero for summands. The α level
was set at 0.05, which implies a significance criterion
of Δ−2LL <-3.84; for further details of the fitting process
refer to [69]. Calculations were performed using “first
order conditional estimation” [69].
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Confidence intervals (95 %) of parameter values were
calculated from 1000 runs of the final model with data
sets that were obtained by bootstrap resampling [59]
from the original data set [70], using PDxPop (version
5.10, Icon, Dublin, Ireland) for NONMEM. The limits of
the 95 % confidence intervals of the parameter estimates
were obtained as the 2.5th and 97.5th percentiles of the
results of the 1000 model runs.

Results
Five applied methods were consistent with finding a
disagreement between the magnitudes of DNA methy-
lation measured with the LINE-1 or the LUMA method
(Fig. 1). The first analytical approach, standard analysis
of variance, identified differences between the assays
that additionally differed among the three data subsets.
A second approach was visual in nature. By looking at
the scatterplot in Fig. 2, it is clear that the majority of
DNA methylation values measured by the LINE-1 se-
quence lay above or below the line of equality. The
third approach, the Bland and Altman method (Fig. 3),

verified this observation by finding a fixed bias in all three
data subsets. This in its extent additionally appeared to
differ among data subsets. The fourth analytical approach
(Fig. 4), Gauss mixture modeling (GMM), found groups of
interassay differences that partially allowed identifying the
underlying tissue. The fifth analytical approach, linear re-
gression (Fig. 2), substantiated the observation of a tissue
dependency of the relationship between the measure-
ments taken by the two methods. The results of the differ-
ent analyses will be reported in detail in the following.

Visual inspection and analyses of variance and correlation
The distribution of the global DNA methylation of hu-
man blood, MCF7 cells, and SHSY5Y cells indicated dif-
ferences between the two methylation markers LINE-1
and LUMA (Fig. 1). In MCF7 cells, the global DNA
methylation appeared to be slightly smaller when
assessed using LINE-1 than when assessed using LUMA.
In the other data subsets, the opposite was observed, i.e.,
DNA methylation appeared to be slightly larger when
assessed using LINE-1 than when assessed using LUMA.

Fig. 1 Raw observations and distribution of the global DNA methylation. The beanplots [91] show the single observations as stacked small lines in a one-
dimensional scatter plot, surrounded by the probability density function (pdf) of the distributions. Each panel displays a single subset of the data (Table 1).
It is composed of two beanplots of which the upper shows the raw methylation data based on the LINE-1 assay (dark colored, with different color of each
data subset) and the lower shows the data based on the LUMA assay (light colored). Box and whisker plots of the identical data are overlaid on the
beanplots. They have been constructed using the minimum, quartiles, median (solid line within the box), and maximum. Outliners are shown as points
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Data-subset specific interassay differences were substan-
tiated by significant main effects of the rm-ANOVA fac-
tors “data subset” (df = 2,235, F = 200.11, p = 1.81 × 10
−51) and “LINE1/LUMA” (df = 1,235, F = 252.57, p =
4.11 × 10−39) and by a significant interaction “LINE1/
LUMA” by “data subset” (df = 2,235, F = 823.72, p =
6.62 × 10−107). The differences were statistically signifi-
cant for all data subsets (Wilcoxon signed rank tests: all
p value <0.001, Table 2). Additional visual inspection of
the scatterplot of the LINE-1 versus the LUMA mea-
surements (Fig. 2) indicated that only data acquired in
SHSY5Y cells was scattered around the line of equality
while samples acquired in MCF7 cells were located
below and those acquired in human blood samples
above that line. Finally, a statistically significant correl-
ation of the DNA methylation between the two assays
was observed in all data subsets (Table 2), however, only
weakly in blood samples.

Method agreement and bias
Applying the method of 95 % limits of agreement identi-
fied significant bias between the results obtained with
the two bioassays. This was observed as a deviation from
zero of the differences between the DNA methylation
measured using LINE-1 and that measured in the same
sample using LUMA (Fig. 3). The deviation of that

difference from zero was statistically significant in all data
subsets (one-sample t tests: p < 0.001, Table 2). Differences
between assay results were normally distributed as indi-
cated by non-significant Kolmogorov-Smirnov tests. A
fixed bias between the results obtained with the two assays
was observed, that is, the deviation of that difference from
zero was consistent across the observed range of DNA
methylation, i.e., the slope of a regression line through this
difference did not significantly differ from zero (Table 2)
indicating that the bias between both measurements was
independent form the degree of methylation.

Pattern of interassay differences
Interassay differences among human blood, MCF7 cells,
or SHSY5Y were large enough to render the LINE-1-
LUMA difference in DNA methylation as a good pre-
dictor of tissue origin. The multimodal distribution of the
differences could be described by a mixture model with
M = 3 Gaussians (Fig. 4). Bayesian decision limits of −6.3
and 12.3 % DNA methylation were observed. Different
data subsets were unequally represented among the
Gaussians (χ2 = 299.67, df = 8, p < 2.2 × 10−16). This pro-
vided a basis to build a decision-tree algorithm (Fig. 4)
that was able to predict from the originating tissues (data
subsets) in which Gaussian an interassay difference will
be placed at a cross-validated accuracy of 83.6 %.

Fig. 2 Scatterplot of the raw measurements (n = 238, Table 1) of global DNA methylation using the LINE-1 (ordinate) vs. the LUMA (abscissa)
based bioassays, differently colored for single data subsets. The solid magenta line marks identity, and the dashed or dotted lines colored as the
respective data show the results of the linear regression analysis for each data subset (Table 1)
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Linear regression
Finally, linear regression analysis was used to further
characterize deviations of the results obtained from
both assays from the line of identity (Fig. 2). The
approach employed goodness-of-fit-based statistics to
substantiate tissue-dependent deviations of the linear
model from a y-intersection of zero and a slope of a
value of one (Eq. 3). The goodness of fit was greatly
improved when allowing separate parameter values for

each data subset (Δ−2LL = −532.877, p < 0.0001). How-
ever, this was not statistically supported for every data
subset, and when allowing certain subsets to share pa-
rameter value, the fit was not always worsened.
The final model indicated the following results (Table 3).

Firstly, the two in vitro cell lines differed with respect to
their y-intercepts, i.e., the y-intercept for the MCF7 cell
line was zero while that for the SHSY5Y cell line was
located at 9 % and that for the blood cells was located at

Fig. 3 Plots of the differences between the measurements of DNA methylation using the LINE-1 and the LUMA based bioassays, for respective
data subsets. Left: plots of the difference between the means of the two techniques (Bland and Altman plots [60]). Each dot illustrates a single
difference. The fixed bias is represented by the gap between the X axis, corresponding to a zero difference (magenta solid line) and a solid blue
line parallel to the X axis. The limits of agreement are indicated by the red dashed lines that limit the 95 % confidence interval (±1.96 standard
deviations) of the measurement differences on either side of the mean difference. The proportional bias is indicated by a solid trend line in the
same color as the data points. Right: distribution histogram of the differences between the measurements of the two assays. The dashed line
represents normal distribution. Kolmogorov-Smirnov test for normal distribution accepted normality (p > 0.05). The plots were drawn using the
“epade” (A. Schulz, https://cran.r-project.org/web/packages/epade/) package

Knothe et al. Clinical Epigenetics  (2016) 8:60 Page 10 of 17

https://cran.r-project.org/web/packages/epade/


Fig. 4 (See legend on next page.)
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71.1 % DNA methylation. This was statistically supported
by a non-significant increase in −2LL when the intersec-
tion parameter was fixed at a value of 0 for the MFC7 cell
line (θInt,Subset1; Δ−2LL = +1.178) but a significant increase
when the same was done for the SHSY5Y cell line
(θInt,Subset2; Δ−2LL = +97.882; p < 0.0001) or for the blood
cells (θInt,Subset3; Δ−2LL = + 445.892; p < 0.0001). Secondly,
the final linear regression model indicated that the two
cell lines shared the same slope of 0.8978 as −2LL raised
only non-significantly by 0.02 (p > 0.05) when setting
θSlope,Subset1 equal to θSlope,Subset2 while associating the
same slope also to the blood cells worsened the fit.
Thus, the results of the regression analysis indicated
differences among tissue types consisting of (i) the cell
lines shared the same slope but had a significantly dif-
ferent y-intercept and (ii) the blood sample differed
from the relationship observed in the cell lines with
respect to both y-intercept and slope of the linear

relationship between LINE-1- and LUMA-derived mea-
surements of global DNA methylation.

Discussion
Different approaches applied to the agreement of global
DNA methylation measured by LINE-1 and LUMA in
three different DNA sample subsets consistently rejected
the assumption of complete agreement between the two
bioassays (Fig. 1). Moreover, the differences between the
two assays were tissue-dependent.
The disagreement of the two assays seems biologically

plausible as the two assays pursue different basic ap-
proaches not necessarily leading to the same picture of
global DNA methylation. LINE-1 and LUMA differ with
respect to their CpG recognition sites at the DNA. Spe-
cifically, DNA methylation occurs to 70–80 % of cyto-
sines that locate within CpG dinucleotides [71]. This
corresponds to 3–5 % of all cytosines of the human

(See figure on previous page.)
Fig. 4 Pattern of differences between the measurements of DNA methylation using the LINE-1 and the LUMA based bioassays. Top: distribution
of the differences observed in a total of n = 238 samples. Single differences are shown as colored dots matching the three data subsets (Table 1).
The density distribution is presented as probability density function (PDF), estimated by means of the Pareto density estimation (PDE [63]; black
line). A Gaussian mixture model (Eq. 1; GMM) was fit (red line) to the data, for which the number of mixes was M = 3 (blue dotted lines). The Bayesian
boundaries between the three Gaussians are indicated as magenta vertical lines. Middle: mosaic plot showing the unequal distribution (χ2 test:
p < 2.2 × 10−16) of the data subset specific interassay differences (ordinate) among the three Gaussians (abscissa). The width of each cell is
proportional to the number of measurements it comprises. Bottom: decision-tree showing the hierarchical criteria of assignment of an interassay
difference to a Gaussian based group based on the originating tissue, i.e., data subset. The derived algorithm associated the majority of data
from MCF7 cells, SHSY5Y cells, or blood cells to different Gaussians in the form of the following: “If the analyzed tissue consists not of cell lines
(MCF7, SHSY5Y), then the LINE-1-LUMA differences belong to Gaussian 3 (counted from left to right refer to Fig. 4), and else, if the cell line is
MFC7, then the differences belong to Gaussian 1, else they belong to Gaussian 2.” The model provided correct assignment at a cross-validated
accuracy 83.6 %. Three numbers in the middle of the nodes display the proportion of single interassay differences in that node that really belonged to
Gaussian #1, #2, or #3. At the bottom of each node is the percentage of data belonging to this node from all data (rounded to integer). The plot of the
tree was obtained using the “fancyRpartPlot” function of the R package “rattle” (G. Williams; https://cran.r-project.org/web/packages/rattle/index.html [92])

Table 3 Parameters and estimated values of the final linear model of the data-subset specific relation of LINE-1 and LUMA assay-based
measurements of global DNA methylation. The full model was given as MethylationLINE1 = (Intersection + θInt, Subset1.. Subset3) +
(Slope × θSlope, Subset1.. Subset3) × MethylationLUMA + ε, where Intersection and Slope are structural parameters of the linear model
denoted during the fitting as θ1 and θ1, respectively, θInt,Subset1.. Subset3 and θSlope, Subset1.. Subset3 are data subset specific modulators
of the structural parameter values, denoted during the fitting as θ3..12, and η1 and ε accounts for the additive error in the fit of the
percent methylation data acquired by means of two different assays. The final model was the result of the model building
favoring the best but sparsest model based on goodness-of-fit statistics

Parameter Value (and % SEE) 95 % bootstrap CI

Y-intersection (% methylation) = θ1 0 (fixed) –

θ3 = θInt,Subset1 0 (fixed) –

θ4 = θInt,Subset2 9.03 (9.5) (7.3, 19.9)

θ5 = θInt,Subset3 71.1 (8.4) (58.7, 87)

Slope = θ2 0.38 (1.1) (0.32, 0.4)

θ6 = θSlope,Subset1 θ 6 = θ7 = 2.68 (0.7) (2.2, 2.8)

θ7 = θSlope,Subset2 SlopeSubset1,2 = 2.68 · 0.38 = 0.9

θ8 = θSlope,Subset3 0.88 (27.7) (0.2, 1.3)

SlopeSubset3 = 0.88 · 0.38 = 0.29

SEE standard error of parameter estimate, fixed the parameter was not estimated but set at the shown value, CI 95 % confidence interval of parameter estimate,
obtained from 1000 model runs of the final model with bootstrap resampled data
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genome [72]. CpG dinucleotides are enriched in CpG
islands, repetitive sequences, and CpG island shores [73]
and in approximately 60 % of all gene promoters [74, 75].
The LINE-1-based assay selectively measures the methy-
lation of CpG islands located within long interspersed
nucleotide elements (LINE). These have a length of up to
6 kb and with >500,000 copies account for approximately
17–20 % of the human genome [19–21]. However, LINE-
1 is unevenly distributed throughout the genome [76],
and in addition, most of them are excluded from genomic
regions containing housekeeping genes [77]. LINE-1 is
most frequently methylated in somatic tissues, where an
estimated one third of DNA methylation occurs in these
repetitive sequences [78] and particularly dense in X
chromosomes [17, 25]. By including four CpG positions
within the LINE-1 sequence, the pyrosequencing assay
recognized 2,000,000 CpG sites when 500,000 copy num-
bers are estimated through the genome, i.e., roughly 7 %
of the whole CpG dinucleotide contents of the human
genome. However, not all LINE-1 elements are of full
length; most of them are truncated and just about 10,000
LINE-1 elements contain a 5′UTR. Therefore, the effec-
tive recognized CpG dinucleotide content should be
lower than 7 % [79].
In contrast to the LINE-1-based assay, the LUMA

method measures the DNA methylation also outside re-
petitive elements [22]. However, the target sequence
CCGG of its restriction enzyme HpaII does also not
cover all CpGs. Of the 28,000,000 CpG dinucleotides in
the human genome, 4.14 % are within HpaII target sites
(CCGG) located in repetitive elements and 3.90 % in
unique sequences [25]. HpaII covers 11.7 and 12.9 % of
CpGs in promoter and CpG islands, respectively [80].
C+G-rich regions of the genome have been associated
with increased gene numbers [81, 82], higher amounts
of CpG islands [83], and enhanced transcriptional
activity [82]. HpaII target sites are 15-fold enriched in
CpG islands so that analysis of HpaII digested sites
may over-represent potentially important regulatory
sequences [25, 84]. This is a further contrast to LINE-1
sequences, which are enriched in A+T-rich gene regions
[85] associated with fewer gene numbers and a lower
transcription rate. Furthermore, from their target se-
quences across the genome, LINE-1 and LUMA may
indeed measure different DNA methylation facets of epi-
genetic regulation of gene expression. This makes the
consistently observed disagreement between them as bio-
markers of DNA methylation biologically plausible.
The biological differences between LINE-1 and LUMA

may add technical differences of the assays. Specifically,
the CpG sequence targeted by LINE-1 pyrosequencing
in the 5′ region tends to be deleted at unknown fre-
quency. Approximately 2000 of the LINE-1 elements are
active [76] that can reintegrate into the human genome

results in generation of new LINE-1 sequences. There-
fore, the count of the analyzed elements is unstable and
may vary among different samples and individuals [17].
Moreover, primers should amplify the region of interest
regardless of its methylation status, but in practice,
complete independence of the methylation is often not
achievable due to a PCR bias favoring amplification of
unmethylated templates [86]. This may explain why the
methylation of the completely methylated controls was
not quantified as 100 % by the LINE-1-based assay (data
not shown). This resembles observations with this assay
in other laboratories [18]. Although linearity of the cali-
bration curve between non-methylated and completely
methylated controls allowed for a valid recalibration of
the results, the difference to the LUMA assay that quan-
tified the completely methylated control closer to 100 %
(95.7 %) is a factor contributing to the dissimilarity be-
tween the methods.
The analyses also pointed at a tissue dependency of

the degree of agreement between the LINE-1- and the
LUMA-based measurements of DNA methylation. This
agrees with independent evidence of tissue-specific dif-
ferential DNA methylation among 17 human somatic
tissues [87]. To further strengthen the observation of a
cell population-dependent effect, additional measure-
ments were performed assessing the DNA methylation
level in further seven cell lines using the two assays. This
additional set of samples comprised a mixture of HEK
293 (human embryonic kidney), KELLY (human neuro-
blastoma cells), Jurkat (human T lymphocytes), MDA-
MB-468 (human mammary gland/breast cancer), HeLa
(human cervical cancer), HT29 (human colon carcin-
oma), and THP1 (human monocytes from acute mono-
cytic leukemia) cells. Following laboratory assays, the
DNA methylation data obtained with the LINE-1 were
plotted against those obtained with the LUMA method
(Fig. 5). This scatterplot showed that the location of
most data points was not on or close to the line of
equality. Hence, differences between LINE-1- and
LUMA-based measurements of global DNA methylation
seem to be a consistent observation in various cell or tis-
sue types, not restricted to the tissue types chosen for
the present main analyses.
As in the present analysis, human blood was used as a

frequent material in clinical epigenetic studies [26–36];
it is important to note that the heterogeneous compos-
ition of different blood cells within whole blood samples
has an influence on the determined global methylation
[37, 88, 89]. Therefore, associations of global methyla-
tion patterns with certain health-associated conditions,
such as with inflammatory diseases, can be the result of
a cell composition effect. To avoid such influences, the
use of better-defined cell population should be consi-
dered. Moreover, the DNA extraction method can
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influence the measurement of global DNA methylation.
In the present case, however, both assays were run on
the same DNA samples, which reduces the probability
that the differences between LINE-1- and LUMA-based
readouts were caused by cell composition effects within
blood samples or by an extraction bias.
Finally, while the statistical analyses and biological rea-

soning provided support for rejecting an agreement be-
tween the two common biomarkers of global DNA
methylation, the present method comparison cannot
provide a choice of the better method as a test against

the gold standard as provided by an HPLC analysis.
Since the gold standard HPLC specifies the DNA methy-
lation level as the percentage of 5-mC relative to the
whole cytosine amount of genomic DNA, the surrogate
markers LINE-1 and LUMA specify the DNA methyla-
tion as the percentage of 5-mC in CpG dinucleotides
within the recognition side. Therefore, a comparison of
absolute values with the true value from HPLC analysis
is not possible. Moreover, the statistically significant cor-
relation between the results of the two assays in all data
subsets (Table 2) supported the utility of both methods
as global methylation markers. Indeed, an exploration of
the effects sizes, estimated as Cohen’s d [90], produced
by the various treatments to which the two cell lines
were exposed supported the suitability of both methods
to assess changes in DNA methylation. Specifically, a
permutation approach provided a total of 72 paired
comparisons between all different treatments (66 in
MCF7 cells and six in SHSY5Y cells). The values of
Cohen’s d [90] calculated for the effects resulting when
the LINE-1 based assay was used, and again, when the
LUMA method was used, it indicated comparable effect
sizes (Fig. 6) and were significantly correlated (Spear-
man’s ρ: 0.79, p < 0.0001). As the sample sizes were often
very small, the numerical results of this accessory ana-
lysis have, however, to be interpreted with caution.

Conclusions
Different approaches to the agreement of LINE-1- and
LUMA-based measurements of global DNA methylation
were applied to three human-derived cell types, and the
assumption of complete agreement between the two bio-
assays were consistently rejected. Although providing
partly correlated measurements of DNA methylation,
interchangeability of the quantitative results obtained

Fig. 6 Overview about the effect sizes, calculated as Cohen’s d, obtained when using the LINE-1 or the LUMA approach to the quantification of
global DNA methylation. A total of n = 72 effect sizes was calculated from a comparison of every treatment with every other treatment to which
the cell lines had been exposed (Table 2; DMSO and untreated conditions combined). The bar plot (left) shows the effect sizes that would be
obtained when using either the Line-1 (green) or the LUMA (gold) method in pairs for each paired comparison between two treatments. The
histogram (right) shows the high degree of superposition of the effect sizes that would be obtained when applying the two assays

Fig. 5 Scatterplot of measurements of global DNA methylation. In
several different cell lines, the LINE-1 (ordinate)- and the LUMA
(abscissa)-based bioassays were applied to quantify global DNA
methylation. The solid magenta line marks identity
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from the two methods was jeopardized by a consistent
bias between the results. Moreover, present analyses
strongly indicate a tissue specificity of the differences
between the two methods.
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