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Abstract

Background: A key focus in cancer research is the discovery of biomarkers that accurately diagnose early lesions in
non-invasive tissues. Several studies have identified malignancy-associated DNA methylation changes in blood, yet
no general cancer biomarker has been identified to date. Here, we explore the potential of blood DNA methylation
as a biomarker of pan-cancer (cancer of multiple different origins) in 41 female cancer discordant monozygotic
(MZ) twin-pairs sampled before or after diagnosis using the Illumina HumanMethylation450 BeadChip.

Results: We analysed epigenome-wide DNA methylation profiles in 41 cancer discordant MZ twin-pairs with
affected individuals diagnosed with tumours at different single primary sites: the breast, cervix, colon, endometrium,
thyroid gland, skin (melanoma), ovary, and pancreas. No significant global differences in whole blood DNA
methylation profiles were observed. Epigenome-wide analyses identified one novel pan-cancer differentially
methylated position at false discovery rate (FDR) threshold of 10 % (cg02444695, P = 1.8 × 10−7) in an intergenic
region 70 kb upstream of the SASH1 tumour suppressor gene, and three suggestive signals in COL11A2, AXL, and
LINC00340. Replication of the four top-ranked signals in an independent sample of nine cancer-discordant MZ
twin-pairs showed a similar direction of association at COL11A2, AXL, and LINC00340, and significantly greater
methylation discordance at AXL compared to 480 healthy concordant MZ twin-pairs. The effects at cg02444695
(near SASH1), COL11A2, and LINC00340 were the most promising in biomarker potential because the DNA
methylation differences were found to pre-exist in samples obtained prior to diagnosis and were limited to a 5-year
period before diagnosis. Gene expression follow-up at the top-ranked signals in 283 healthy individuals showed
correlation between blood methylation and gene expression in lymphoblastoid cell lines at PRL, and in the skin
tissue at AXL. A significant enrichment of differential DNA methylation was observed in enhancer regions (P = 0.03).

Conclusions: We identified DNA methylation signatures in blood associated with pan-cancer, at or near SASH1,
COL11A2, AXL, and LINC00340. Three of these signals were present up to 5 years prior to cancer diagnosis,
highlighting the potential clinical utility of whole blood DNA methylation analysis in cancer surveillance.
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Background
Despite global research efforts, cancer remains one of the
leading causes of death in economically developed coun-
tries, second only to cardiovascular disease [1, 2]. Early
and accurate detection greatly increases the odds of suc-
cessful treatment. Furthermore, considering the world-
wide expected increase in cancer incidence [3], the need
for new cost-effective detection or prediction methods to
improve disease outcome, such as accurate and precise
biomarkers is paramount. One key area of focus is the de-
velopment of cancer biomarkers in non-invasive tissues,
such as peripheral blood or serum, which can accurately
diagnose early lesions, and hence, improve survival, and
even identify individuals at risk [4–6].
DNA methylation is a molecular mark that has a great

potential as biomarker for early cancer detection in non-
invasive tissues. It is a relatively stable epigenetic mark
that can be influenced by DNA sequence variation, but
also environmental factors and stochastic changes that
occur over a lifetime [7–11]. It provides a potential link
between environmental conditions and exposures with
changes in gene activity either directly or in combination
with genetic susceptibility by influencing penetrance and
expressivity [12]. Aberrant DNA methylation is associated
with a broad range of diseases [13], age [14], environmen-
tal factors such as smoking [8, 15–18], and is especially
prevalent in human cancer tissues [19, 20]. Epigenetic
changes that occur in carcinogenesis can be detected in
early neoplastic tissues, as well as tumour-derived DNA in
plasma or serum of patients [21].
A complex interaction of environmental factors, stochas-

tic events, and genetic susceptibility can lead to cancer de-
velopment. Blood samples are known to reflect the health
status of an individual and evaluating whole blood or blood
cell types in particular, might reveal specific or systemic
changes in the host that are associated with malignant dis-
ease. Indeed, DNA methylation signatures in blood have
been associated with cancerous and pre-cancerous primary
locations such as the breast [22, 23], colon [24], bladder
[25], and ovary [26]. To the best of our knowledge, no
study to date has attempted to identify pan-cancer epigen-
etic biomarkers, that is, epigenetic biomarkers indicative of
cancer of multiple different origins, in whole blood sam-
ples. However, pan-cancer analyses have been conducted
directly in tumour tissues, for example, the Cancer
Genome Atlas Research Network launched a pan-cancer
project in 2012 [27], and other recent studies that have
identified pan-cancer DNA methylation patterns in dif-
ferent tumour tissues [28, 29]. The identification of a
blood-based DNA methylation biomarker that can pre-
dict cancer or pan-cancer development would be a
highly valuable asset to the current screening processes,
as well as contributing to understanding potential com-
mon systemic changes associated with disease.

The aim of the present study was to explore whole
blood DNA methylation patterns in cancer-discordant
female monozygotic (MZ) twin-pairs to identify pan-
cancer-associated epigenetic changes. MZ twins are
matched for age, sex, cohort effects, many maternal in-
fluences, and early environment factors, and have nearly
identical genomes. Discordant MZ studies are therefore
a particularly powerful and less biased design for detect-
ing disease-related epigenetic differences [30]. In the
current study, we analysed blood samples that were
taken from up to 11 years before or up to 5 years after
cancer diagnosis, which allowed us to explore biomarker
stability over time. This is the first study in MZ twin-pairs
to explore pan-cancer-associated blood DNA methylation
changes with a focus on the detection of early neoplastic
development. Our results identify four CpG sites that are
associated with cancer status, with follow-up replication
and gene expression analyses, and highlight signals with
promising biomarker potential.

Results
Global methylation profiles in cancer-discordant monozy-
gotic twin-pairs
We analysed genome-wide DNA methylation profiles in
whole blood samples of 41 female monozygotic twin-
pairs discordant for cancers of the solid organs. Affected
individuals in this sample had cancers at various primary
sites: the breast, cervix, colon, endometrium, thyroid
gland, skin (melanoma), ovary, and pancreas (Fig. 1a).
To assess global DNA methylation variation, unsuper-
vised hierarchical clustering of unadjusted normalised
DNA methylation values was performed. Thirty-five of
the 41 MZ twin-pairs (85.4 %) clustered with their co-
twin (Fig. 1b). The remaining MZ twin-pairs were clus-
tered by array, underlining the importance of correcting
for technical covariates in downstream analyses. Subse-
quently, the top 1000 probes with the highest standard
deviations were assessed with unsupervised hierarchical
clustering, to determine if the most variable CpG sites
combined were associated with cancer status. All MZ
twin-pairs now clustered together and confirmed that
MZ twin-pairs were globally more similar to each other,
compared to unrelated individuals with the same affec-
tion status (cancer vs. non-cancer). Furthermore, MZ
twin-pairs showed high within-pair correlations in nor-
malised unadjusted DNA methylation values (mean Spear-
man’s rank correlation coefficient (rS) = 0.986), which was
significantly greater than pairing at random, or pairing at
random by affection status (Fig. 1c, P = 2.2 × 10−16). The
high within-pair correlation is comparable to genome-
wide average correlations estimated in newborn twins,
ranging from 0.98 to 0.99 for the placenta, cord blood
mononuclear cells, and human umbilical vascular endo-
thelial cells [31]. A similar average correlation is seen in
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peripheral blood at 15 years (0.99) [32] and middle-aged
individuals (0.98) [33] as well as in the adipose tissue of
the middle-aged individuals (0.992) [34].

Pan-cancer-associated differentially methylated positions
Differences in DNA methylation levels were next analysed
at single CpG sites across the genome within 41 female
MZ twin-pairs discordant for cancer development. DNA
methylation values were adjusted for technical and bio-
logical covariates by using the first five principle compo-
nents that explained 46 % of variance in the data. The first

five principle components were significantly associated
with variables that included technical covariates (batch and
array), blood cell type composition, but not cancer status
(see “Methods” section). The epigenome-wide association
scan (EWAS) analysis identified one novel pan-cancer dif-
ferentially methylated position (DMP) at a false discovery
rate (FDR) threshold of 0.10 for probe cg02444695 (P =
1.8 × 10−7) located in an intergenic region. Additionally,
three suggestive pan-cancer DMPs (P < 1.0 × 10−5) were
identified for probes cg26079695 in COL11A2, cg27094856
in AXL, and cg21046959 in LINC00340 (Table 1, Fig. 2a).

Fig. 1 Diagnostic characteristics and global methylation profiles of 41 cancer-discordant MZ twin-pairs. a Number of cases for each primary
location of cancer, where a blood sample was obtained before (white) and after (black) cancer diagnosis. b Dendrogram of the unadjusted global
methylation profiles. Annotation bars denote each individual’s cancer status, type of cancer (identical for both twins in a pair), and family identifier
(identical for both twins in a pair). c Pair-wise correlation in DNA methylation profiles shows greater similarity within MZ pairs, compared to pairs
of unrelated individuals, either paired at random or at within affection status
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Table 1 Top-ranked results from EWAS of 41 cancer discordant MZ twin-pairs

Discovery EWAS
N = 41 MZ twin-pairs
(prior to and after diagnosis)

Replication
N = 9 MZ twin-pairs
(NTR replication)

Discordant vs healthy MZ pairs
N = 9 vs N = 480
(NTR variability)

EWAS prior to diagnosis
N = 15 MZ twin-pairs
(prior to diagnosis only)

CpG Position (hg19) Associated
gene

Location Rank
EWAS

Mean
difference*

P value Mean
difference*

P
value

P value Rank
EWAS

Mean
difference*

P value

cg02444695 Chr6:148950185 – – 1 0.70 1.80 × 10−7 −0.64 0.26 0.09 10 0.88 2.40 × 10−5

cg26079695 Chr6:33143273 COL11A2 Intron 2 −0.67 3.32 × 10−6 −050 0.23 0.34 1518 −0.88 4.10 × 10-3

cg27094856 Chr19:41732589 AXL Intron 3 0.56 3.41 × 10−6 0.02 0.96 0.05 3801 0.51 9.71 × 10−3

cg21046959 Chr6:22180833 LINC00340 Transcript 4 −0.53 8.89 × 10−6 −0.43 0.37 – 407 −0.73 1.21 × 10-3

*The mean differences are determined using adjusted DNA methylation values and calculated as cancer − unaffected twin
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The most associated pan-cancer DMP, cg02444695,
exhibited consistently higher DNA methylation levels in
cancer-affected twins compared to the healthy co-twins
(Fig. 2b). The CpG-site falls in an intergenic region, 70 kb
upstream of the nearest gene, SASH1, a known tumour
suppressor gene previously associated with aggressive
tumour growth and metastasis formation in different types
of cancer. Of the three genome-wide suggestive probes
(Table 1, Additional file 1), cg27094856 was located in the
fourth intron of the AXL gene, which is implicated in
many cancers and is a therapeutic target for antibody-
based therapies [35–37]. Another suggestive signal was
obtained at cg21046959 directly in LINC00340, and the
LINC00340 transcript has been linked to both neuroblast-
oma and ovarian tumours [38, 39].
We pursued replication at the four top-ranked results

in an independent twin sample from the Netherlands

Twin Registry (NTR). First, we analysed nine cancer-
discordant MZ twin-pairs from NTR with the same ana-
lysis pipeline used for the discovery findings. We ob-
served a similar direction of association at the probes,
except for cg02444695 (Table 1, Additional file 2), but
no results surpassed nominal significance in the replica-
tion sample, which may be due to the very small sample
size. Second, we assessed how much variation in DNA
methylation occurs at the top-ranked CpG sites in a
healthy population. We expect if the observed changes
are not stochastic effects and due to cancer status, to see
less variation at these sites in a healthy population than
cancer-discordant twin-pairs. To this end, data for the
three of the four top-ranked probes were available for
both the nine cancer-discordant MZ twin-pairs and 480
healthy MZ twin-pairs from NTR. We compared the ab-
solute within-pair differences in DNA methylation at

Fig. 2 Pan-cancer epigenome-wide results in 41 discordant MZ twin-pairs. a Manhattan plot of the epigenome-wide association results in 41
pan-cancer-discordant MZ twin-pairs, where each point represents the observed −log10 P value at a CpG-site. b Direction of association at the
top-ranked signal cg02444695, near SASH1. Results are plotted using normalised unadjusted beta values of cancer-affected individuals (left) and
healthy individuals (right). The lines connect co-twins in twin-pairs and indicate a consistent direction of the effect with an average of 0.7 % within
twin-pairs with a range of 0.9 to 3.0 %. The three suggestive probes are included in Additional file 1. c Pan-cancer DMR at TIMM44. Results are
plotted using adjusted DNA methylation values at each CpG site in the DMR for individuals affected by cancer (red) and healthy co-twins (blue).
Smooth (LOESS) lines with standard error are plotted for both groups. The CpG site driving the signal is at chr19:8,008,850 (hg19)

Roos et al. Clinical Epigenetics  (2016) 8:7 Page 5 of 16



cg02444695, cg26079695, and cg27094856 (Table 1,
Figures in Additional file 3). We observed greater within-
pair difference in DNA methylation in cancer-discordant
twins compared to healthy twins, with nominally signifi-
cant effects at cg27094856 in AXL (healthy median 0.78 %
vs. cancer median 1.44 %, P = 0.047), and near significant
effects at cg02444695 near SASH1 (healthy median 1.48 %
vs. cancer median 2.32 %, P = 0.091).

Pan-cancer-associated differentially methylated regions
We next aimed to identify potential pan-cancer DMRs,
that is, larger genomic regions containing multiple CpG-
sites that exhibit consistently different DNA methylation
levels between the discordant MZ twin-pairs. We ap-
plied the ‘bump hunting’ method [40] to define DMRs
with few modifications to account for twin structure
present in our dataset. We kept the paired structure in
the data and used the differences in PC-adjusted DNA
methylation values, as described above, per twin-pair in
the peak-calling algorithm. One DMR was identified on
chromosome 19:8,008,080-8,009,137 (hg19) spanning
~1 kb (P = 0.01, Fig. 2c). The DMR is mainly driven by a
single CpG (chromosome 19:8,008,850) ranked 24th in
the single-CpG EWAS and its two adjacent CpGs that
are hypermethylated in cancer-affected twins. This re-
gion overlaps a 5′ CpG island within an active promoter
across multiple tissue types (according to ChromHMM),
approximately ~1500 bp from the transcription start site
(TSS) of TIMM44. TIMM44 has previously been associ-
ated with familial non-medullary thyroid carcinoma [41],
aggressive serous ovarian cancers [42] and breast cancer
recurrence [43].

No enrichment for cancer risk factors smoking and age
Enrichment for the two major risk factors for cancer de-
velopment, age and smoking, was assessed in the 500
top-ranked pan-cancer DMP CpG sites. We obtained
previously published age and smoking DMPs in whole
blood, and assessed whether these CpG-sites tended to
co-occur with the pan-cancer DMPs identified in the 41
discordant MZ pairs. The first five PCs used to adjust
DNA methylation levels in the EWAS were not signifi-
cantly associated with either smoking or age; however,
they could account for some of the variation observed of
these variables. Enrichment for age DMPs was assessed
using the results of Steegenga et al. [44] that combined
eight studies totalling 7318 age DMPs that were also
available in our genome-wide dataset. There was no en-
richment (eight probes, P = 1) within the top 500 ranked
probes for known age DMPs, as compared to the
remaining probes genome wide. To assess for enrich-
ment of smoking signals, we used smoking DMP results
from the largest whole blood DNA methylation study to
date using the HumanMethylation450 BeadChip by

Zeilinger et al. [8]. There were 948 smoking DMPs that
were also available in our genome-wide dataset, and we did
not observe an enrichment of smoking DMPs in the top
500 ranked EWAS associations (three probes, P = 0.089).
None of the four top-ranked probes had been previously
associated with age or smoking status. Finally, no significant
enrichment was observed in the top 500 results from an
EWAS performed correcting only for batch effects and esti-
mated cell counts (see “Methods” section). Taken together,
the pan-cancer DMPs seem indicative of a more complex
representation of the risk factors or disease biology.

Biomarker potential: methylation analysis in samples
obtained prior to diagnosis
To identify pan-cancer DMPs that could serve as bio-
markers for early diagnosis, we performed analyses taking
into account the time of cancer diagnosis. We selected a
subset of 15 discordant MZ twin-pairs from the 41 female
MZ twin-pairs where blood samples were obtained prior
to date of official cancer diagnosis, in a 0–5-year period
preceding diagnosis (Fig. 1a). EWAS in the 15 MZ pairs
was performed using the same approach as the analyses in
the 41 MZ twin pairs, and the top-ranked results included
signals in the promoters (within 200 bp of the TSS) of
genes COX7C and U2AF1 that have been previously
linked to cancer (Table provided in Additional file 4). Spe-
cifically, the second ranked association in COX7C was lo-
cated in a region previously identified as one of the nine
loci that most significantly associated with bladder cancer
in whole blood samples [45], and in both analyses, hyper-
methylated effects were observed in cancer-affected indi-
viduals. In a pan-cancer tumour tissue analysis, recurrent
somatic mutations identified in U2AF1 were shown to in-
duce splicing inducing transcriptome changes [46]. Our
previous most-associated pan-cancer DMP (cg02444695
near SASH1 in 41 MZ pairs) remained strongly significant
(P = 2.40 × 10−5) and with the same direction of associ-
ation in the new EWAS prior to cancer diagnosis, and was
now ranked tenth overall (Table 1, Fig. 3a). The suggestive
probes from the original 41 MZ pair EWAS also remained
nominally significant in the new analysis and in the same
direction of association (Table 1), and in the majority of
cases (cg02444695, cg26079695, cg21046959), greater dif-
ferences between MZ twin-pairs were identified in the
samples collected before diagnosis.

Pan-cancer-associated biomarker stability over time
We next explored the relationship between the time of
blood sample extraction and the observed DNA methy-
lation differences in cancer-discordant twins at the four
top-ranked pan-cancer DMPs and the pan-cancer DMP
located at COX7C identified above in more depth. The
greatest DNA methylation difference at the top-ranked
probe (cg02444695 near SASH1) between the MZ twin-
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pairs was observed when the DNA sample was obtained
earlier in the same year as cancer diagnosis (Fig. 3b).
The second- (cg26079695 in COL11A2) and fourth-
(cg21046959 in LINC00340) ranked probes displayed
greatest effects in the 5-year period prior to official diag-
nosis whereas the third probe (cg27094856 in AXL)
showed the largest differences in the 5-year period after
official diagnosis. There was no significant correlation
between time to diagnosis and age at blood sample col-
lection (P = 0.29, Additional file 5: Figure S1A); there-
fore, these results cannot be explained by the effect
chronological age. The top-ranked probe shows differen-
tial methylation across all ages included in the large
sample (Additional file 5: Figure S1B).
The observed early DNA methylation change between

MZ twin-pairs was further explored for the top-ranked
probes by including five additional cancer-discordant
MZ twin-pairs where blood samples were obtained
between 5 and 11 years prior to cancer diagnosis
(Additional file 5: Figure S1C–F). At the top-ranked probe
(cg02444695), the DNA methylation levels show a reverse
pattern prior to 5 years to the diagnosis, the time window
of the main study (Additional file 5: Figure S1C). There-
fore, we conclude that DNA methylation differences at
cg02444695 do not arise from treatment, as these changes
can be observed in individuals specifically up to 5 years
prior to cancer diagnosis.

Functional follow-up of pan-cancer differential
methylation results
The four top-ranked pan-cancer DMPs and the pan-
cancer DMR were first explored for association with gene

expression levels of the closest available transcripts. Ana-
lyses were performed in 283 healthy individuals for whom
both whole blood DNA methylation levels and gene ex-
pression profiles from the multiple tissues (the lympho-
blastoid cell lines (LCL), skin, and adipose) were available.
We identified two nominally significant correlations
of DNA methylation at cg21046959 with LCL gene
expression of the closest protein-coding transcript of PRL,
located ~100 kb upstream of the CpG-site (r = 0.17,
P = 4.5 × 10−3), and at cg27094856 with skin tissue ex-
pression levels of AXL (r = −0.15, P = 0.01) (Fig. 4a, b). We
did not observe these correlations in the other available
tissues (Table 2). ENCODE annotation data identified the
CpG correlated to expression of PRL to be located in a
heterochromatin block in the GM12878 B-lymphocyte cell
line, although within an active promoter and weak enhan-
cer in human embryonic stem cell line (H1-hESC) and
leukaemia cell line (K562), respectively. The CpG site
negatively associated with AXL expression levels in the
skin tissue is identified by ENCODE to be located in a
strong enhancer in epidermal keratinocytes and inactive
or poised promoter in the GM12878 B-lymphocyte cell
line. Higher expression levels of AXL, as described previ-
ously are implicated in proliferation, migration, and resist-
ance to therapy of many cancers [35–37].
We then tested for enrichment of functional annota-

tions within the 500 top-ranked pan-cancer DMPs com-
pared to the remaining CpG sites used within the study,
hypothesising that this analysis could reveal systemic
changes in the body associated with malignant tumour
development (Fig. 4c). A nominally significant enrich-
ment (P = 0.03) was observed for enhancers (pooled data

Fig. 3 Differential methylation with respect to time of cancer diagnosis. a Unadjusted DNA methylation values at cg02444695 (near SASH1) in affected
individuals (red) and healthy co-twins (blue), shown with respect to time of diagnosis (years) with smooth (LOESS) lines fitted for both groups.
The orange vertical line represents the time of diagnosis. b Methylation differences within twin pairs at the four top-ranked DMPs and
cg04533633 (at COX7C). Each smooth (LOESS) line represents the methylation difference (affected− unaffected twin) at an individual probe (see legend)
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Table 2 Gene expression analysis in of top ranked probes from EWAS in 283 healthy individuals

LCL cell lines Adipose tissue Skin tissue

CpG Associated
gene

Location Nearest gene expression
transcript probe

Name CpG distance r P value r P value r P value

cg02444695 – – ILMN_2185984 SASH1 77 kb upstream −0.02 0.79 0.01 0.91 0.03 0.59

cg26079695 COL11A2 Intron ILMN_2311456 COL11A2 – 0.04 0.46 0.07 0.21 0.09 0.17

cg27094856 AXL Intron ILMN_1701877 AXL – 0.01 0.91 0.07 0.20 −0.15 0.01

cg21046959 LINC00340 Transcript ILMN_1809352 PRL 106 kb downstream 0.17 4.5 × 10−3 0.03 0.59 0.02 0.74

cg14044916 TIMM44 TSS1500 ILMN_1784031 TIMM44 – 0.02 0.75 0.05 0.44 0.04 0.55

Fig. 4 Functional follow-up of top-ranked pan-cancer DMPs. Adjusted whole blood DNA methylation profiles compared to adjusted gene expression
levels for (a) cg21046959 in blood and ILMN_1809352 (PRL) in LCLs, and (b) cg27094856 in blood and ILMN_1701877 (AXL) in skin. Data are obtained
from 283 healthy middle-aged females and lines represent the least squares regression fit. c Enrichment analysis of genomic annotation categories
within the 500 top-ranked cancer DMPs. The bars indicate the difference in proportion of DMPs compared to the remainder of probes used in the
study in the corresponding genomic annotation class. Nominally significant results were obtained for the ‘enhancer’ category (P = 0.03)
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from ENCODE) and driven by state 7 “weak enhancer”
ChromHMM category (P = 0.03). In addition, we observed
weak non-significant depletion of differential methylation
in CGI shores, repressed regions, and weakly transcribed
regions.

Discussion
This study examined MZ twin pairs discordant for mul-
tiple types of cancer to identify a pan-cancer DNA
methylation signature in peripheral blood independent
of host genetic variation. We identified one novel
epigenome-wide significant pan-cancer DMP at a FDR
threshold of 10 %, located in an intergenic region up-
stream of a known tumour suppressor gene SASH1, and
three suggestive pan-cancer-associated signals in the
genes COL11A2 and AXL, and in LINC00340, two of
which have previously been linked to cancer (AXL,
LINC00340). In a subset analysis of whole blood samples
obtained before cancer diagnosis, we identified a signal
in the promoter of COX7C, at the same site where whole
blood DNA methylation was previously associated with
bladder cancer [45]. We also considered regional-based
DNA methylation changes, and observed one potential
pan-cancer DMR in the TIMM44 gene, which was also
previously linked to cancer. Despite cancer discordance,
we did not observe global differences in DNA methylation
profiles and found that MZ twin-pairs exhibited greater
within-pair correlation than random pairing of individuals,
as previously reported in healthy twins [31–34, 47].
The peak genome-wide significant pan-cancer DMP at

cg02444695 upstream of the SASH1 tumour suppressor
gene, showed consistently higher DNA methylation in
the cancer-affected compared to their healthy co-twins,
on average 0.7 % (range −0.9 to 3.0 % in normalised un-
adjusted DNA methylation levels). SASH1 expression
has been negatively associated with aggressive tumour
growth and metastasis formation in different types of
cancer, including the breast, colon, and bone [48–50].
Annotation data from the ENCODE project identified
the region harbouring cg02444695 as a weak transcribed
region proximal (~500 bp) to a weak/poised enhancer,
based on ChromHMM in the GM12878 B-lymphocyte
cell line (LCL) which is biologically closest to our whole
blood sample. Consistent with this, we observed a weak
negative correlation between whole blood DNA methyla-
tion and LCL SASH1 expression (see section Gene expres-
sion analysis of top ranked probes, Table 2). However,
Epstein-Barr virus (EBV) transformation for LCLs impacts
DNA methylation profiles [51] and results in less variabil-
ity in gene expression in mature LCLs [52]. Direct com-
parison between whole blood and LCL gene expression
has revealed these sources of variation to be distinct,
although LCL expression changes have been associated
with phenotypes such as smoking [53]. Although we could

not directly replicate the differential effect at cg02444695,
this may be due to the small replication sample size of
nine cancer-discordant MZ twin-pairs. However, we ob-
served near significant greater blood methylation variabil-
ity at this site in cancer-discordant twins compared to
healthy concordant twins. The DNA methylation differ-
ences observed at this most associated pan-cancer DMP
persisted in samples that were obtained prior to cancer
diagnosis, indicating that this signal is not driven by
cancer treatment and can be detected prior to or dur-
ing early tumour development and could represent
accrued environmental risk factor exposures, common
systemic effects due to the presence of the tumour, or
surrogate changes of the tumour. The effect is particularly
strong in a critical time window of a maximum of 5 years
prior to diagnosis, which makes it a very promising blood-
based biomarker candidate.
Two of the genome-wide suggestive pan-cancer DMPs

were also located in cancer-related gene AXL and
lncRNA LINC00340. Cg27094856 was located in the
fourth intron of the AXL gene, which is implicated in
proliferation, migration, and resistance to therapy of
many cancers and is a therapeutic target for antibody-
based therapies [35–37]. Hypermethylation was observed
in twins affected with cancer, and this effect was also ob-
served in the replication sample of nine MZ twin-pairs,
although it did not surpass nominal significance in this
small sample. Furthermore, similar to the results for
cg02444695, there was significantly greater blood methy-
lation variability at cg27094856 in cancer-discordant
twins compared to healthy concordant twins. A negative
correlation was observed between DNA methylation at
cg27094856 and the protein-coding transcript of AXL in
the skin tissue only. Higher expression levels of AXL are
found in many cancers tissues and implicated in prolifera-
tion, migration, and therapy resistance [35–37]. However,
we did not observe a correlation in LCLs suggesting that
this could be a biomarker in whole blood for common sys-
temic effects. Exploring differential methylation results
at this site with respect to time of diagnosis suggests
that the majority of differential methylation arises in
the samples after cancer diagnosis; therefore the
methylation effect may be as a result of cancer treatment,
systemic immune response to the presence of the tumour,
or the tumour itself.
The second suggestive signal in a cancer-related gene

was obtained at cg21046959 in LINC00340, and showed
hypomethylation in cancer-affected twins. This LINC00340
transcript has been identified as a neuroblastoma suscepti-
bility gene and was shown to be hypermethylated within
its promoter in clear cell ovarian tumours [38, 39]. This
is consistent with the observed direction of association
in our results, as gene body hypomethylation and promoter
hypermethylation are both associated with decreased
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expression [54]. We explored DNA methylation with the
available gene expression data, but unfortunately, tran-
scriptomic data was not available for LINC00340. However,
we identified a positive correlation between DNA methyla-
tion at cg21046959 in whole blood and gene expression of
PRL in LCL cell lines, but not in the skin or adipose tissue
in 283 healthy female individuals. Previously, greater ex-
pression of PRL has been associated with progression of
tumour development in different cancers [55–57]. Differ-
ential methylation effects at this locus were greatest in twin
pairs sampled 2 years (range 0–5) prior to cancer diagno-
sis, and minimal after cancer diagnosis, suggesting that this
locus also is of biomarker potential. The third genome-
wide suggestive pan-cancer DMP was located in the
COL11A2 gene, which to our knowledge has not been
linked to cancer. This site also exhibited the greatest differ-
ential methylation effects within 0–5 years before diagno-
sis, therefore suggestive of biomarker potential.
Analysis of blood samples preceding diagnosis identi-

fied a signal in the promoter of the COX7C gene. The
same site was previously associated with bladder cancer
in whole blood samples [45]. Interestingly, none of the
twins included in this study were diagnosed with cancer
of the bladder as of yet. This suggests that the common
observed effects prior to cancer diagnosis could include
bladder cancer as well and requires further follow-up.
In addition to single-CpG-based analyses, we also con-

sidered differential methylation effects that spanned larger
genomic regions. The genome-wide DMR analysis had at-
tenuated findings, but highlighted a top-ranked pan-cancer
DMR in the promoter of the TIMM44 gene. Germline gen-
etic variants in this gene have been associated with familial
non-medullary thyroid carcinoma [41]. Furthermore, an in-
tragenic CpG island in TIMM44 has been found to be
hypomethylated in aggressive serous ovarian cancers [42],
and its expression is positively associated with recurrence
after chemotherapy in breast cancer patients [43]. Given its
implication in multiple cancers, this region requires further
follow-up with higher resolution technologies.
To our knowledge, this is the first study to explore

pan-cancer blood biomarkers in cancer-discordant MZ
twin-pairs. One of the limitations of our study is that
cancer is a heterogeneous disease with differing aetiology
across many tissue types. Therefore, considering mul-
tiple types of cancer could potentially dilute cancer
type-specific effects and may reduce power to detect
true associations. However, pan-cancer signatures have
previously been identified in tumour tissues spanning
changes in DNA methylation as well as the proteome,
somatic mutations, and somatic copy-number alterations
[28, 58–61]. These findings show that shared signals
across different tumour types can occur, and that these
may also be associated with common systemic effects or
surrogate changes.

The primary aim of our study was to identify blood-
based pan-cancer biomarkers. These effects may capture
either a general systemic (immune) response of the body
to tumour development, accrued environmental risk ex-
posures leading to cancer development, or changes that
are present across cell types. A limitation is that although
blood is an ideal sample for non-invasive biomarker
screening, it is a surrogate tissue with a heterogeneous cell
population. Here, we addressed cellular heterogeneity by
correcting for biological covariates that capture the pro-
portion of major white blood cell fractions. Our analyses
of blood-based pan-cancer biomarkers detect signals in
known tumour-associated genes, and extend previous
findings of pan-cancer DNA methylation signatures to
blood. Although we corrected for cellular heterogeneity,
the identified signals may also reflect minor immune cell
fractions or rare cell subtypes that are not covered by the
applied cell-type correction, as shown for the GPR15
smoking findings in whole blood samples [62]. Further re-
search is needed to investigate if these signals persist in
sorted blood cell types, in the tissue of the primary
tumour site, and tumour tissue itself, for example, to iden-
tify if these changes are present across cell types and could
be surrogate changes of the tumour internal environment.
Future studies are also needed to explore the longitudinal
stability of these changes in different cell types over time.
By using a discordant MZ twin design, our aim was to

identify systemic epigenetic changes that are independent
of genotype or early environment. On the other hand, re-
cent publications have identified genetic variants associ-
ated with DNA methylation (methylation quantitative trait
loci), and these could potentially also interact with the en-
vironment. Future studies in larger population-based sam-
ples will be necessary to establish whether the DNA
methylation signals identified here, also interact with gen-
etic variants, or are subject to gene-environment interac-
tions. We assessed whether our top-ranked results were
associated with specific environmental disease risk factors,
such as age and smoking. We therefore compared the
most-associated pan-cancer signals to previously identified
age and smoking methylation signals, but found no evi-
dence that risk factors impact the identified cancer DMPs.
Therefore the changes that we have detected are not
simply biomarkers of these cancer risk factors. Whereas
the BMI difference within a twin pair was not corre-
lated with cancer incidence of the twins, three out of
the 41 pairs had greater BMI in the twin diagnosed
with cancer who was classified as obese within the BMI
range of 30–40 kg/m2. However, the very small sample
suggests that this concordance may have a negligent or
very small effect on the results.
A MZ disease-discordant twin design of 41 twin-pairs

in the discovery stage results in good power to detect
moderate changes in DNA methylation. This study
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design is especially powerful in detecting differences in
DNA methylation relatively independent of genetic vari-
ation with the need of fewer samples. On the other
hand, the use of a surrogate tissue and the exploration
of such a heterogeneous phenotype may reduce study
power [63]. We estimate that we had 56 % power to de-
tect the effect size of our top ranked probe at a conser-
vative Bonferroni cut-off with the available sample [64],
and would require 98 discordant twin pairs to reach
80 % power. The direct replication sample consisted of
only 9 discordant MZ pairs of mixed sex, which provide
low (10 %) mean power to detect the differential methy-
lation effect observed at the top-ranked signal at nom-
inal significance, and no power at a Bonferroni cut-off.
However, access to these rare samples, can still give us
an indication whether similar effects are observed in an
independent dataset.

Conclusions
In conclusion, this is the first pan-cancer analysis of
cancer-discordant twins using blood samples collected
up to 5 years before the diagnosis. In this MZ cancer-
discordant study, we identified one novel significant
pan-cancer signal and three suggestive results in whole
blood samples. The top-ranked pan-cancer signal was
upstream of a known tumour suppressor gene, and the
methylation effect was observed prior to diagnosis,
making it a strong blood-based cancer biomarker can-
didate. Altogether, three of the four DNA methylation
signals exhibited differential methylation effects prior
to cancer diagnosis, and show potential, if can be robustly
replicated by others, to have clinical utility as pan-cancer
biomarkers.

Methods
Sample selection
Detailed information regarding cancer diagnosis was ob-
tained from the National Cancer Registry at the Office
for National Statistics (ONS) for twin-pairs registered
with the TwinsUK Adult Twin Registry. Written in-
formed consent from all subjects was obtained in ac-
cordance with Guy’s & St Thomas’ NHS Foundation
Trust Ethics Committee (EC04/015—15-Mar-04). The
twins in this registry were similar in means and ranges
of quantitative phenotypes from an age-matched popula-
tion in the UK [65]. DNA methylation data for 41
middle-aged (age range 42–79, median age 61 years old)
female MZ twin-pairs of European descent were in-
cluded in the study. Discordant MZ twin-pairs were se-
lected based on the criteria that one twin was diagnosed
at least once with malignant tumour development of a
solid organ while the co-twin was never diagnosed with
malignant tumour development to date, in the period
ranging from 4 to 21 years after cancer diagnosis of the

co-twin (median = 10.3 years). In total, cancers at eight
different primary locations were included: the breast
(23 pairs), cervix (1 pair), colon (10 pairs), endometrium
(1 pair), thyroid gland (1 pair), melanoma (3 pairs), ovary
(1 pair), and pancreas (1 pair). Whole blood samples for
DNA methylation profiling were obtained within 5-years
prior to diagnosis (15 pairs) and post diagnosis (26 pairs).
Samples were excluded if individuals had blood and lymph
system-related cancers, skin cancer except melanoma (i.e.,
basal cell carcinoma and squamous cell carcinoma), cer-
vical cancers except adenocarcinoma, as well as blood
samples obtained outside the 5-year window surrounding
cancer diagnosis for the main study.
The 41 cancer-discordant MZ twin-pairs were assessed

for discordance in body mass index (BMI), alcohol in-
take, and smoking, which are considered to be major
risk factors for cancer development. The mean BMI
across all subjects was 26.9, and 21 out of 41 pairs had a
greater BMI in the cancer-affected twin than in the un-
affected co-twin. The mean BMI within-pair difference
was 1.6 kg/m2, with three pairs that had a difference
greater than 6 kg/m2 concordant with cancer status.
Self-reported alcohol intake did not differ significantly
within twin-pairs. In terms of smoking habits, 29 MZ twin-
pairs were concordant: 19 MZ twin-pairs were non-
smokers, 1 MZ twin-pair was current smoker, and 9 MZ
twin-pairs were ex-smokers (stopped smoking at least
3 years before blood sample collection). The smoking-
discordant 12 MZ twin-pairs comprised of 7 MZ twin-
pairs including an ex-smoker and non-smoker co-twin,
and 5 MZ twin-pairs including an ex-smoker and current
smoker co-twin.
To assess the biomarker potential of methylation

signals, one follow-up analysis included five additional
MZ twin-pairs where blood samples were obtained 5–
11 years prior to the diagnosis only. The additional five
cancer-discordant MZ twin-pairs (age range 38–62, me-
dian age 57) were discordant for cancers at two different
primary locations, the breast (3 pairs) and colon (2 pairs).
There was no discordance in smoking or alcohol intake
habits. The BMI of these individuals ranged from 20.5 to
27.8 kg/m2, and the median BMI within-pair difference
was 0.5 kg/m2.

Genome-wide DNA methylation data
Genome-wide DNA methylation profiles were obtained
from 92 bisulfite-converted DNA whole blood samples,
assayed by Illumina Infinium HumanMethylation450
BeadChip in two batches of 24 and 68 samples. The Infi-
nium array targets 485,764 CpG sites across the genome
and quantifies DNA methylation levels at a single CpG
resolution as beta values, denoting the ratio of intensity
signal from the methylated probes over the sum of in-
tensity signals from both unmethylated and methylated
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probes, resulting in a beta value between 0 (unmethy-
lated) and 1 (methylated). The probes cover 99 % of
RefSeq genes and are distributed across the genome in
the following manner: 20.75 % in promoter regions, 5 %
in 5′ untranslated regions (UTR), 32.30 % in gene bod-
ies, 3 % in 3′ UTR, and 24.60 % intergenic regions; and
14 % of CpG-sites not near genes in the genome [66].
Pre-processing consisted of five initial stages of quality

control. First, three sets of probes were removed: probes
that failed detection in at least one sample and with a
bead count less than three in more than 5 % of the sam-
ples (n = 3325), probes for which the 50 bp sequence
aligned to multiple locations in the genome (n = 17,764),
and probes located on the sex chromosomes (n = 11,650)
[67]. The remaining number of probes for analysis was
453,627. Second, the data was inspected visually for out-
liers using beta density plots, boxplots, and a heatmap of
pair-wise correlation coefficients of genome-wide DNA
methylation patterns. Third, MZ twin-pairs were verified
using their known genotype and the 57 autosomal con-
trol SNP probes on the array. Fourth, 203 genomic
imprinted regions were assessed using the R package
wateRmelon [68], and no extreme outliers were detected.
Lastly, probes were removed if they contained SNPs oc-
curring in European populations with a frequency of
>1 % and where the SNPs were located within 10 bp of
the probe CpG (n = 17,544) [69]. The beta values were
normalised using the BMIQ method to correct for probe
type bias [70].
Principal component analysis (PCA) was performed on

normalised beta values (N(0,1) at each probe. The first
five principle components (PCs) combined explained
46.8 % of the total variance and were tested for associa-
tions with cancer status and likely covariates for DNA
methylation data including array, position on the array,
age, batch, and blood cell counts (CD4+ T cells, CD8+ T
cells, granulocytes, monocytes, natural killer (NK) cells,
and B cells) estimated using a published algorithm [71].
No association between cancer status and the first five
PCs could be detected; however, significant associations
(P < 4.1 × 10−3) with CD8+ T cells, CD4+ T cells, natural
killer cells, granulocytes, monocytes, batch, and array
were identified.

Gene expression profiles
Gene expression profiles of the lymphoblastoid cell lines
(LCLs), skin tissue, and adipose tissue from 283 healthy
female individuals of European descent of the TwinsUK
Adult Registry were obtained from the Multiple Tissue
Human Expression Resource (MuTHER) project as pre-
viously described [72]. In short, punch biopsies (8 mm)
were taken from a photo-protected area adjacent and in-
ferior to the umbilicus of which the subcutaneous adi-
pose tissue and skin tissue were dissected. LCLs were

generated through EBV-mediated transformation of B-
lymphocytes from peripheral blood samples collected at
the same time point. RNA was extracted and expression
profiling was performed using Illumina Human HT-12
v3 BeadChips. Probes with less than three beads present
were excluded and log2-transformed expression signals
were normalised separately per tissue, with quantile nor-
malisation of the replicates of each individual followed
by quantile normalisation across all individuals. Gene
expression follow-up at each individual CpG site from
the methylation analysis was performed using the near-
est Illumina expression probe.
Whole blood DNA methylation in the same 283

healthy female individuals of European descent from
TwinsUK was profiled using Illumina Infinium Human-
Methylation450 BeadChip. Blood methylation data pro-
cessing and quality control was performed as previously
described.

Statistical analysis
Analysis of global DNA methylation variation was per-
formed using unsupervised hierarchical clustering analysis
with Euclidean distances and complete linkage method.
Within twin-pair correlations where assessed for all CpG
sites between discordant MZ twin-pairs and as individuals
randomly assigned to one of 41 pairs (permuted 100
times) either within disease status or independent of dis-
ease status. Correlation was assessed using a Spearman’s
rank test. A two sample t test was performed to test for
significant differences in correlation between the groups.
To identify differentially methylated positions (DMPs)

associated with cancer discordance, a linear model was
fitted on the normalised beta values per probe and the
first five PCs. The PCs capture not only known variance
due to technical covariates, such as array and batch, but
also variability introduced by the mixture of different
blood cell types present in whole blood samples. This
method is similar to reference-free computational ap-
proaches applied in recent published methods to control
for cell heterogeneity and noise in large-scale datasets
[73, 74]. The difference of DNA methylation residuals
was calculated within twin-pairs in consistent direction
(cancer-affected twin − healthy twin) and was followed
by a one-sample t test on these data. Results were con-
sidered significant if they surpassed a false discovery rate
(FDR) threshold of 10 %, estimated using qvalue in R.
Suggestive results were considered if they surpassed
nominal P value of 1 × 10−5. The top results were com-
pared to DMP analyses using different methods for
adjusting for blood cell types and technical covariates,
including the computational approach ‘RefFreeEWAS’
(using PairsBootRefFreeEwasModel) [73] and an ap-
proach using the covariates identified by PCA earlier de-
scribed (batch, granulocytes, CD8 T cells, and NK cells).

Roos et al. Clinical Epigenetics  (2016) 8:7 Page 12 of 16



The top-ranked probe, ranked first in all three methods,
and the suggestive probes had P values <1 × 10−03 across
the three approaches.
Differentially methylated regions (DMRs) associated

with cancer discordance were identified using R package
‘bumphunter’ [40]. Regions were identified of at least
three consecutive probes with a maximum gap of 500 bp
between the locations of each probe. The difference in
adjusted DNA methylation values (described above for
DMP analyses) was calculated within twin-pairs in con-
sistent direction (cancer-affected twin − healthy twin)
and was compared to a group without DNA methylation
differences using bumphunter. The cut-off used was set at
0.6 with 1000 permutations with potential DMRs identified
with a P value <0.05 and family-wise error rate (FWER)
P value <0.5, as estimated within bumphunter [40].
To assess whether pan-cancer DMPs were also likely to

be associated with environmental cancer risk factors such
as age and smoking, we selected previously published
DMPs for age [44] and smoking [8] in whole blood. We
then counted the occurrence of age or smoking DMPs
within the top 500 ranked cancer DMP probes, and in the
remainder of the probes in this study (453,127). Enrich-
ment was assessed using Fisher’s exact test.
Gene expression analysis at genes in or near the top-

ranked DNA methylation probes was performed in a
sample of 283 healthy individuals in multiple tissues. A
linear mixed-effects model was fitted on the expression
data with age, BMI, batch, concentration (skin tissue
only) as fixed effects, and family and zygosity as random
effects. A similar linear mixed-effects model was fitted
on the blood DNA methylation data in these individuals
with age, BMI, array, position on the array, and granulo-
cytes, monocytes, CD8 T cells (estimated) as fixed effects,
and family and zygosity as random effects. Residuals from
both models were compared with Pearson correlation.

Replication
Replication was pursued in MZ twin pairs registered
with the Netherlands Twin Register (NTR). Detailed in-
formation regarding cancer diagnosis was obtained
through record linkage with the Netherlands Cancer
Registry (NKR). DNA methylation data and white blood
cell counts were available for 703 MZ pairs who took
part in the NTR biobank project [75] of which 15 were
identified as discordant for any type of cancer. Discord-
ant MZ twin-pairs for replication were selected based on
the criteria that one twin was diagnosed at least once
with malignant tumour development while the co-twin
was never diagnosed with malignant tumour develop-
ment to date. After excluding pairs with blood samples
collected >5 years after the cancer diagnosis and pair
discordant for Hodgkin’s disease, mature B cell or cervical
cancer, nine middle-aged (age range 35–72, median age

52 years old) MZ twin-pairs were selected for the replica-
tion analysis, and these were four male and five female
MZ twin-pairs. In total, cancers at six different pri-
mary locations were included: the breast (3 pairs), menin-
ges (1 pair), pituitary gland (1 pair), prostate (2 pairs),
rectum (1 pair), and soft tissue (1 pair).
Direct replication of the findings at the four top-ranked

signals was pursued in the nine NTR cancer-discordant
MZ pairs using the same quality control, normalisation,
and analysis pipeline as the original discovery analysis in
41 MZ pairs. In addition, we also assessed whether
cancer-discordant twins showed greater methylation vari-
ability compared to healthy concordant MZ twins at the
top-ranked cancer probes. The variability analysis was per-
formed on normalised (functional normalisation [76])
betas at three of the four top-ranked probes available in
the overall NTR dataset, comparing 9 cancer-discordant
to 480 healthy concordant MZ twin-pairs for which blood
samples were obtained on the same time point. In the
variability analysis, absolute within-pair methylation
differences were determined of the 480 healthy MZ
twin-pairs as well as the within-pair differences of the 9
cancer-discordant MZ twin-pairs and assessed significance
by a Mann-Whitney U test.

Genomic annotation analysis
Significant and suggestive results were annotated with re-
spect to defined CpG islands (CpG Islands [CGI], shores,
shelves) and relative to RefSeq genes (promoter, 5′UTR
end, gene body, 3′UTR, intergenic). The top-ranked re-
sults were further explored using data generated from the
ENCODE project for histone modification signatures used
in ChromHMM state analysis, DNase I hypersensitivity
sites, and transcription factor binding sites.
Enrichment of functional genomic elements was per-

formed at the top 500 pan-cancer-ranked DMP probes,
compared to the remainder of the probes in this study
(453,127). Enrichment was performed with respect to
the majority of annotation categories described above.
We used ChromHMM classifications at 15 chromatin
states of the GM12878 cell line from ENCODE data
[77, 78]. Analyses were initially performed over 15 states,
and subsequently, we also merged states active promoter
(state 1), weak promoter (state 2), and poised promoter
(state 3) were into a single ‘promoter’ category, and states
strong enhancer (states 4 and 5), and weak enhancer (states
6 and 7) into a single ‘enhancer’ category. Enrichment tests
were performed in the merged and individual categories,
and nominally significant results were obtained for state
weak enhancer (state 7) and merged enhancer category.
Fisher’s exact test was used to assess significance.

Availability of supporting data
The dataset will be uploaded to GEO.
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Additional files

Additional file 1: Figure S1. Pan-cancer top-ranked results in 41
discordant MZ twin-pairs. Direction of association at [A] cg26079695 in
COL11A2, [B] cg27094856 in AXL, and [C] cg21046959 in LINC00340. Results
are plotted using normalised unadjusted beta values of cancer-affected
individuals (left) and healthy individuals (right). The lines connect co-twins
in twin-pairs and indicate a consistent direction of effect. (PDF 78 kb)

Additional file 2: Figure S1. Replication of four top-ranked pan-cancer
DMPs in 9 cancer discordant MZ twin-pairs. Direction of association at
[A] cg0244695 near SASH1, [B] cg26079695 in COL11A2, [C] cg27094856
in AXL, and [D] cg21046959 in LINC00340. Results are plotted using normalised
unadjusted beta values of cancer-affected individuals (left) and healthy
individuals (right). The lines connect co-twins in twin-pairs and indicate a
consistent direction of effect. (PDF 88 kb)

Additional file 3: Figure S1. Variability at three top-ranked pan-cancer
DMPs in 9 cancer discordant and 480 healthy MZ twin-pairs. Histogram
with density overlay of absolute differences of 480 healthy MZ twin-pairs
with median (blue) and density and median of differences between 9
cancer discordant MZ twin-pairs (red). At [A] cg0244695 near SASH1,
[B] cg26079695 in COL11A2, and [C] cg27094856 in AXL. (PDF 143 kb)

Additional file 4: Table S1. Top-ranked results from EWAS of 15 cancer
discordant MZ twin-pairs prior to diagnosis. (XLSX 42 kb)

Additional file 5: Figure S1. Differential methylation with respect to
age and time of cancer diagnosis. [A] Time to diagnosis compared to
age at blood sample collection, the line represent the least squares
regression fit. [B] Unadjusted DNA methylation values at cg02444695
(near SASH1) in affected individuals (red) and healthy co-twins (blue),
shown with respect to age at blood sample collection (years) with
smooth (LOESS) lines fitted for both groups. [C–F] Unadjusted DNA
methylation values in affected individuals (red) and healthy co-twins
(blue), shown with respect to time of diagnosis (years) with smooth
(LOESS) lines fitted for both groups with blood samples collected 5 to
11 years before cancer diagnosis. The orange and black vertical lines
represent the time of diagnosis and time window of the main study
respectively. At [C] cg0244695 near SASH1, [D] cg26079695 in COL11A2,
[E] cg27094856 in AXL, and [F] cg21046959 in LINC00340. (PDF 185 kb)
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