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Abstract

Background: DNA methylation profiles are responsive to environmental stimuli and metabolic shifts. This makes
DNA methylation a potential biomarker of environmental-related and lifestyle-driven diseases of adulthood.
Therefore, we investigated if white blood cells’ (WBCs) DNA methylation profiles are associated with myocardial
infarction (MI) occurrence.
Whole-genome DNA methylation was investigated by microarray analysis in 292 MI cases and 292 matched
controls from the large prospective Italian European Prospective Investigation into Cancer and Nutrition (EPIC)
cohort (EPICOR study). Significant signals (false discovery rate (FDR) adjusted P < 0.05) were replicated by mass
spectrometry in 317 MI cases and 262 controls from the Dutch EPIC cohort (EPIC-NL). Long interspersed nuclear
element-1 (LINE-1) methylation profiles were also evaluated in both groups.

Results: A differentially methylated region (DMR) within the zinc finger and BTB domain-containing protein 12
(ZBTB12) gene body and LINE-1 hypomethylation were identified in EPICOR MI cases and replicated in the EPIC-NL
sample (ZBTB12-DMR meta-analysis: effect size ± se = −0.016 ± 0.003, 95 % CI = −0.021;−0.011, P = 7.54 × 10−10; LINE-1
methylation meta-analysis: effect size ± se = −0.161 ± 0.040, 95 % CI = −0.239;−0.082, P = 6.01 × 10−5).
Moreover, cases with shorter time to disease had more pronounced ZBTB12-DMR hypomethylation (meta-analysis,
men: effect size ± se = −0.0059 ± 0.0017, PTREND = 5.0 × 10−4; women: effect size ± se = −0.0053 ± 0.0019, PTREND =
6.5 × 10−3) and LINE-1 hypomethylation (meta-analysis, men: effect size ± se = −0.0010 ± 0.0003, PTREND = 1.6 × 10−3;
women: effect size ± se = −0.0008 ± 0.0004, PTREND = 0.026) than MI cases with longer time to disease.
In the EPIC-NL replication panel, DNA methylation profiles improved case-control discrimination and reclassification
when compared with traditional MI risk factors only (net reclassification improvement (95 % CI) between 0.23
(0.02–0.43), P = 0.034, and 0.89 (0.64–1.14), P < 1 × 10−5).
(Continued on next page)
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Conclusions: Our data suggest that specific methylation profiles can be detected in WBCs, in a preclinical
condition, several years before the occurrence of MI, providing an independent signature of cardiovascular
risk. We showed that prediction accuracy can be improved when DNA methylation is taken into account
together with traditional MI risk factors, although further confirmation on a larger sample is warranted. Our
findings support the potential use of DNA methylation patterns in peripheral blood white cells as promising
early biomarkers of MI.

Keywords: DNA methylation, Myocardial infarction, Early biomarkers, Association study, Risk prediction, Risk
stratification

Background
Cardiovascular diseases (CVDs) are a leading cause of
mortality, morbidity, and hospitalization in the adult
population in Western countries and a major challenge
for developing countries that follow a Westernized-
lifestyle. Great attention has been given so far to lifestyle-
related CVD risk factors, such as unhealthy diet, smoking
habits, and lack of physical activity, whose deleterious
effects may be prevented through major lifestyle changes
or medical treatments. Apart from monogenic disorders
associated with cardiovascular risk (e.g., hypertrophic car-
diomyopathy, familial hypercholesterolemia), there is a
strong evidence that a family history of CVD and stroke
enhances individual CVD risks in relatives as compared
with a general population that points out the importance
of genetic factors in the etiology of CVDs.
Recent genome-wide association studies (GWASs) re-

ported several potential genetic risk factors for CVDs or
intermediate disease phenotypes such as type 2 diabetes,
obesity and overweight [1], hypertension [2], and altered
lipid profiles [3], underlying the importance of the gen-
etic component. However, the contribution of common
genetic variants to non-monogenic CVDs is likely to act
in combination with environmental factors or via epistatic
(gene-gene or gene-environment) interactions. As gene-
environment interactions are thought to be mediated by
epigenetic modifications of the genome, epigenetic regula-
tion can be rewarded as the boundary between the inher-
ited genomic asset and the environment, potentially
playing a major role in disease onset and severity [4]: epi-
genetic changes are in fact dynamic, can be modified both
during the early in utero development stages and across
lifetime by environmental factors as well as diseases, and
may be reversible reflecting environmental changes [5, 6].
DNA methylation at CpG dinucleotides is an epigenetic
mechanism mainly involved in gene expression regulation.
DNA methylation patterns across the genome are not
uniform: genetic regions spanning gene locations have
variable DNA methylation profiles which are linked to
regulatory functions (e.g., gene promoter methylation/de-
methylation regulates gene expression) and structural
functions in shaping local chromatin structures [7, 8];

instead, intergenic regions are usually heavily methylated,
since about 45 % of the mammalian genome consists of
transposable and viral elements that are silenced by
methylation [9]. Methylation levels of the repetitive long
interspersed nuclear element-1 (LINE-1) are generally
considered as a proxy for global DNA methylation, as
LINE-1 elements are widely distributed in the genome
and usually heavily methylated in the majority of normal
tissues. LINE-1 hypomethylation has previously been as-
sociated with ischemic heart disease and stroke [10] and
with altered levels of LDL and HDL [11].
Altered DNA methylation profiles have been linked to

oxidative stress [12], atherosclerosis [13], ageing [14, 15],
and a variety of human diseases ranging from neuro-
logical and autoimmune disorders to cancer [16–18]. In
addition to individual constitutive DNA methylation
profiles that could per se be associated with cardiovascu-
lar outcomes [19], subtle and progressive DNA methyla-
tion alterations mediated by lifestyle and environmental
exposures may in fact lead to dysregulation of several
metabolic pathways during lifetime and ultimately to
cardiovascular damage and disease [20]. However, the
few reports linking cardiovascular outcomes to DNA
methylation measured in blood cells or vascular tissue
[21–23] did not provide conclusive evidences of DNA
methylation involvement in CVD.
Apart from few reports of single CpG associations with a

disease or a phenotype, it is usually the cumulative methyla-
tion profile of neighboring CpG sites to be more likely asso-
ciated to a potential functional effect of the methylation
status, and the search for differentially methylated regions
(DMRs) able to differentiate groups of subjects with differ-
ent phenotypes or outcomes of interest is a common ap-
proach. Along this line, we conducted an epigenome-wide
association study (EWAS) to identify DMRs and LINE-1
methylation profiles associated to myocardial infarction
(MI) risk in the cardiovascular section (EPICOR) of the
Italian cohort of the European Prospective Investigation
into Cancer and Nutrition (EPIC) study and replicated
statistically significant findings in an independent case-
control study nested in the Dutch EPIC cohort (EPIC-NL)
with comparable biological samples and information.
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Furthermore, we tested whether MI risk prediction ac-
curacy can be improved when DNA methylation profiles,
measured at baseline in a preclinical condition, are taken
into account together with traditional MI risk factors.

Results
Descriptive statistics of the sample are reported in Table 1;
details on EPIC cohorts are provided in Additional file 1.
Statistically significant differences between cases and con-
trols were found in smoking habits, body mass index
(BMI) and/or waist-to-hip ratio (WHR), serum lipid pro-
file, and blood pressure, in both the discovery (EPICOR)
and the replication (EPIC-NL) studies (Table 1).
After raw methylation data quality controls (QCs), and

removal of cross-hybridizing and single-nucleotide
polymorphism-containing probes, 425,498 CpGs were
included into the following analyses.

Case-control differential methylation
In the EPICOR sample, 25,376 regions with correlated
methylation levels were identified with the A-clustering al-
gorithm [24] and subsequently tested for differential
methylation between cases and controls (see the “Methods”
section): the top-ranking 6 DMRs are reported in Table S1
(Additional file 2). However, only the first region reached
statistical significance (false discovery rate (FDR) Q < 0.05),
i.e., a 15-CpGs cluster within the gene body (exon 1) of the
zinc finger and BTB domain-containing protein 12 gene
(ZBTB12, gene ID: 221527) that was hypomethylated in
cases as compared to controls (effect size ± se = −0.019 ±
0.004, 95 % CI −0.03;−0.01, P = 1.94 × 10−7, Q = 0.005). To
check for sex-specific effects of the ZBTB12-DMR, we
stratified EPICOR subjects by sex and found the 15-CpGs
cluster still significantly hypomethylated in male cases
(effect size ± se = −0.023 ± 0.005, 95 % CI −0.03;−0.01, P =
1.06 × 10−6), but not in females (effect size ± se = −0.006 ±
0.006, 95 % CI −0.02;0.005, P = 0.29). Details on single
CpGs are reported in Table S2A (Additional file 2).
The genomic inflation factor for the overall EPICOR

sample was lambda = 1.023 (men, lambda = 1.043;
women, lambda = 1.017; Q-Q plots in Additional file 3:
Figures S1–S3).
LINE-1 differential methylation was also tested in the

EPICOR overall sample by logistic regression analysis: MI
cases had statistically significant LINE-1 hypomethylation
as compared to controls (effect size ± se = −0.511 ± 0.147,
95 % CI −0.80;−0.22, P = 5.00 × 10−4). At a sex-stratified
analysis, LINE-1 hypomethylation was still statistically
significant in men (effect size ± se = −0.520 ± 0.179,
95 % CI −0.87;−0.17, P = 0.004), but not in women (effect
size ± se = −0.496 ± 0.319, 95 % CI −1.12;−0.13, P = 0.12).
Additionally, for ZBTB12-DMR, we found a significant

sex-methylation interaction (P = 0.01), while for LINE-1
we found no evidence of interaction.

Results were replicated on the EPIC-NL panel, where
the methylation profile of the same ZBTB12-DMR identi-
fied in the discovery phase proved consistent with that of
the EPICOR discovery sample, with a cluster of 22 con-
tiguous CpGs significantly hypomethylated in Dutch MI
cases as compared to controls (effect size ± se = −0.013 ±
0.004, 95 % CI −0.02;−0.005 P = 5.82 × 10−4). Details on
ZBTB12-DMR single CpGs for the EPIC-NL study are
reported in Table S2B (Additional file 2).
At a sex-stratified analysis, ZBTB12-DMR was hypo-

methylated in both EPIC-NL men (effect size ± se = −0.014
± 0.007, 95 % CI −0.03;−0.001, P = 0.034) and women
(effect size ± se = −0.012 ± 0.004, 95 % CI −0.02;−0.004,
P = 0.006), with effect sizes more comparable between men
and women than in the EPICOR sample.
In the EPIC-NL panel, LINE-1 mean methylation

levels were lower than those of EPICOR, with an average
methylation of about 0.8 in EPICOR subjects (men:
mean ± sd = 0.844 ± 0.007; women: mean ± sd = 0.843 ±
0.007) and about 0.6 in EPIC-NL subjects (men: mean ±
sd = 0.624 ± 0.029; women: mean ± sd = 0.613 ± 0.023).
As seen in the EPICOR panel, we found LINE-1 hypome-
thylation also in Dutch cases as compared to controls,
although with a milder effect (effect size ± se = −0.132 ±
0.042, 95 % CI −0.21;−0.05, P = 0.001). In EPIC-NL men,
the sex-stratified LINE-1 analysis showed an effect size
similar to that found in EPICOR (effect size ± se = −0.40 ±
0.085, 95 % CI −0.57;−0.23, P = 2.22 × 10−6), while in
EPIC-NL women the effect was much lower and statisti-
cally non-significant (effect size ± se = −0.016 ± 0.046,
95 % CI −0.11;0.07, P = 0.73).
In the Dutch panel, we found no evidence of sex-

methylation interaction for ZBTB12-DMR, while we
found a statistically significant interaction for LINE-
1 (P = 0.0003).
The observation of sex-methylation interactions in both

the discovery and replica panels, and further consider-
ations addressed in the “Discussion” section, suggested to
consider men and women separately in all the subsequent
analyses.
To achieve an overall estimate of the effects of

ZBTB12-DMR and LINE-1 methylation across the two
subject panels, we performed a meta-analysis of the EPI-
COR and EPIC-NL studies.
The estimated ZBTB12-DMR effects were effect size ±

se = −0.016 ± 0.003 in the overall sample (P = 7.54 × 10−10,
95 % CI = −0.021;−0.011, Cochran’s Q = 0.005, d.f. = 1,
PHET = 0.83), effect size ± se = −0.020 ± 0.004 in men (P =
1.82 × 10−7, 95 % CI = −0.027;−0.012, Cochran’s Q = 0.007,
d.f. = 1, PHET = 0.79), and effect size ± se = −0.010 ± 0.003
in women (P = 0.005, 95 % CI = −0.017;−0.003, Cochran’s
Q = 0.004, d.f. = 1, PHET = 0.84).
The estimated LINE-1 effects were effect size ± se =

−0.161 ± 0.040 in the overall sample (P = 6.01 × 10−5,
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Table 1 EPICOR and EPIC-NL sample descriptive

EPICOR men EPICOR women EPIC-NL men EPIC-NL women

Cases Controls Cases Controls Cases Controls Cases Controls

(N = 188) (N = 188) (N = 104) (N = 104) (N = 116) (N = 83) (N = 201) (N = 179)

n (%) n (%) n (%) n (%) n (%) n (%) n (%) n (%)

Center

Varese 42 (22.34) 42 (22.34) 67 (65.69) 67 (65.69)

Ragusa 19 (10.11) 19 (10.11) 3 (2.94) 3 (2.94)

Turin 127 (67.55) 127 (67.55) 23 (22.55) 23 (22.55)

Naples – – 11 (10.78) 11 (10.78)

Utrecht – – 149 (74.13) 140 (78.21)

Bilthoven 116 (100) 83 (100) 52 (25.87) 39 (21.79)

Smoking status

Never 33 (17.55) 50 (26.60) 53 (50.96) 73 (70.19) 19 (16.38) 18 (21.69) 60 (29.85) 85 (47.49)

Former 70 (37.23) 87 (46.28) * 11 (10.58) 13 (12.50) * 34 (29.31) 32 (38.55) 48 (23.88) 48 (26.81) *

Current 85 (45.21) 51 (27.13) 40 (38.46) 18 (17.31) 62 (53.45) 33 (39.76) 89 (44.28) 45 (25.14)

NA 1 (0.86) 4 (1.99) 1 (0.56)

Menopausal Status

Premenopause 27 (25.96) 26 (25.00) 43 (21.39) 42 (23.46)

Post-menopause 77 (74.04) 78 (75.00) 158 (78.61) 137 (76.54)

Mean ± sd Mean ± sd Mean ± sd Mean ± sd Mean ± sd Mean ± sd Mean ± sd Mean ± sd

Age at recruitment (years) 50.98 ± 6.93 50.92 ± 7.01 55.02 ± 7.40 55.01 ± 7.51 51.51 ± 7.68 51.11 ± 8.30 58.56 ± 8.74 59.30 ± 8.12

Avg. follow-up (years) 12.98 ± 2.29 13.26 ± 2.06 12.24 ± 1.97 12.66 ± 1.16 13.07 ± 5.21 15.25 ± 2.31** 11.61 ± 4.92 14.27 ± 2.62**

Avg. TTD (years) 7.14 ± 3.88 – 6.54 ± 3.57 – 5.44 ± 3.22 – 5.76 ± 3.06 –

BMI (kg/m2) 27.05 ± 2.96 26.35 ± 3.12** 26.95 ± 4.69 25.93 ± 5.11 27.12 ± 3.30 27.08 ± 3.15 26.47 ± 4.24 26.05 ± 4.17

WHR 0.94 ± 0.06 0.93 ± 0.06** 0.83 ± 0.06 0.79 ± 0.06** 0.95 ± 0.08 0.94 ± 0.08 0.82 ± 0.07 0.80 ± 0.07**

Total cholesterol (mmol/L) 6.10 ± 1.12 5.86 ± 1.22 6.42 ± 1.23 6.36 ± 1.16 6.24 ± 0.95 5.79 ± 0.97** 5.51 ± 0.98 5.27 ± 0.98**

LDL cholesterol (mmol/L) 3.94 ± 1.00 3.60 ± 1.01** 4.07 ± 1.15 3.97 ± 1.01 3.60 ± 0.94 3.34 ± 0.92 3.44 ± 0.82 3.19 ± 0.77**

HDL cholesterol (mmol/L) 1.30 ± 0.29 1.48 ± 0.37** 1.55 ± 0.39 1.76 ± 0.41** 1.11 ± 0.28 1.12 ± 0.28 1.16 ± 0.33 1.27 ± 0.36**

Triglycerides (mmol/L) 1.89 ± 0.99 1.71 ± 1.04 1.74 ± 1.43 1.38 ± 0.57** 2.28 ± 1.27 2.28 ± 1.46 1.77 ± 0.98 1.54 ± 0.91**

SBP (mmHg) 137.47 ± 16.56 135.04 ± 19.03 144.36 ± 9.77 136.76 ± 10.08** 134.43 ± 17.61 128.51 ± 14.93** 138.50 ± 22.23 133.59 ± 20.76**

DBP (mmHg) 85.38 ± 8.96 84.97 ± 10.80 86.08 ± 22.13 84.97 ± 19.02 84.96 ± 10.71 80.60 ± 10.19** 81.99 ± 11.20 79.22 ± 11.18**

Alcohol (gr/day) 23.46 ± 20.26 24.98 ± 20.90 6.29 ± 10.78 8.76 ± 15.43 19.42 ± 21.89 18.41 ± 22.27 7.55 ± 11.24 8.44 ± 12.21

LDL low-density lipoprotein, HDL high-density lipoprotein, SBP systolic blood pressure, DBP diastolic blood pressure, TTD time to disease, WHR waist-to-hip ratio
*Chi-square test P < 0.05; **t test P < 0.05
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95 % CI = −0.239;−0.082, Cochran’s Q = 0.85, d.f. = 1,
PHET = 0.35), effect size ± se = −0.422 ± 0.076 in men
(P = 3.42 × 10−8, 95 % CI = −0.572;−0.272, Cochran’s Q =
0.06, d.f. = 1, PHET = 0.81), and effect size ± se = −0.025 ±
0.046 in women (P = 0.576, 95 % CI = −0.115;0.064,
Cochran’s Q = 0.70, d.f. = 1, PHET = 0.40).

DNA methylation and MI risk
The MI risk associated to ZBTB12-DMR and LINE-1
hypomethylation was estimated in the EPIC-NL replica
panel: recursively partitioned mixture model (RPMM)
classes and LINE-1 class (as defined in the “Methods”
section) were tested for association with MI under dif-
ferent models, from unadjusted to fully adjusted.
When comparing the ZBTB12-DMR lowest methyla-

tion class (RPMM3) with the highest methylation class
(RPMM0), we found MI risk to be significantly associ-
ated with hypomethylation in the EPIC-NL women (fully
adjusted, OR = 2.75, 95 % CI 1.39–5.45, P = 0.004), while
in EPIC-NL men the association was statistically non-
significant (fully adjusted, OR = 2.60, 95 % CI 0.79–8.56,
P = 0.116), although direction and effect size were similar.
We also found a higher MI risk associated with LINE-1

lower methylation class in EPIC-NL men (fully adjusted,
OR = 1.95, 95 % CI 1.02–3.71, P = 0.043, ref. group above
the median). No difference was found in EPIC-NL women
(fully adjusted, OR = 1.05, 95 % CI 0.65–1.67, P = 0.850)
(Additional file 2: Table S3A).
The same analysis was performed on the EPICOR dis-

covery sample: even though in this case the ORs cannot
be considered as indicative of a true estimate of risk be-
ing EPICOR subjects the discovery panel, the analysis
was nevertheless done to assess whether the progressive
inclusion in the model of additional variables, namely
traditional risk factors (TRFs), could modify the estimate
of risk or, on the contrary, if DNA methylation may
independently contribute to MI risk. No significant
evidence of inflation/deflation of the DNA methylation-
related MI risk estimate was found nor for the EPIC-NL
panel nor for the EPICOR panel when progressively add-
ing TRFs as covariates in the model (Additional file 2:
Tables S3A and B).

Discrimination, reclassification, and calibration on EPIC-NL
samples
We assumed two models, including the following: (1)
TRFs only and (2) TRFs plus the ZBTB12-based RPMM
classes and LINE-1 methylation class. According to the

net reclassification improvement (NRI) and integrated
discrimination improvement (IDI) indices (Table 2), a
statistically significant improvement in prediction per-
formance was achieved when adding the DNA methyla-
tion profiles to the set of baseline predictors (i.e., TRFs),
both for EPIC-NL male and female groups. Furthermore,
we found an improvement in discrimination (Table 2,
DeLong’s test) comparing the area under the receiver
operating curves (AUC) of the two models (Table 2 and
Fig. 1), although it was not statistically significant.
The calibration plots confirmed the goodness of fit of

both the TRFs only and TRFs + Methylation models
(Fig. 2, Hosmer-Lemeshow test), with a better perform-
ance of the second one.

DNA methylation and time to disease
The trend test on EPICOR and EPIC-NL subjects, strati-
fied by study and by sex, highlighted a more pronounced
ZBTB12-DMR hypomethylation in cases with shorter
time to disease (EPICOR and EPIC-NL meta-analysis,
men: PTREND = 0.0005, women PTREND = 0.0065; Table 3).
Similarly, LINE-1 was hypomethylated in cases with
shorter time to disease (meta-analysis, men: PTREND =
0.0016, women PTREND = 0.026; Table 3).
At a post hoc power analysis, our study was well pow-

ered (86 and 82 % for male and female groups, respect-
ively) to identify DMRs with effect sizes equal to half of
the standard deviation, considering alpha equal to the
FDR threshold of significance (Q = 0.05).

Discussion
In this study, we investigated whether white blood cells’
(WBCs) DNA methylation profiles may be associated
with MI risk. We examined clusters of adjacent CpG
sites with correlated methylation levels under the as-
sumption that they could be more reliable indicators of
the underlying biological function than the single CpG
methylation measurement. As we found evidences of
sex-methylation interactions in both the analyzed panels,
in our study the analyses were stratified by sex, in order
to account for sex-related differences in DNA methyla-
tion profiles of genomic regions, of which “genomic
imprinting” is a well-known example, and to account for
sex-specific cardiovascular risks. For coronary heart dis-
ease, sex differences in incidence, disease manifestations,
and mortality are well recognized [25], and men and
women seem not to share the same cardiovascular risk
factors [26–29]. Moreover, patterns of sex-specific

Table 2 Discrimination and reclassification indices, EPIC-NL validation sample

AUCTRF (95 % CI) AUCTRF + M (95 % CI) DeLong’s test P NRI (95 % CI) PNRI IDI (95 % CI) PIDI

EPIC-NL men 0.66 (0.58–0.74) 0.70 (0.63–0.78) 0.147 0.47 (0.19–0.76) 0.001 0.04 (0.01–0.08) 0.004

EPIC-NL women 0.66 (0.61–0.72) 0.69 (0.63–0.74) 0.095 0.23 (0.02–0.43) 0.034 0.03 (0.01–0.05) 0.001
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methylation have been reported in literature, and there
is a general consensus on the occurrence of sex-biased
autosomal DNA methylation in specific genes and re-
gions, although with contrasting results [30–32]. Sex-
associated differential DNA methylation in autosomal
loci has been reported in genes associated to traits/dis-
eases with different incidence rates according to sex
[33], as well as in hormone-related genes, suggesting a
differential regulation, potentially exerted via methyla-
tion [31]. Differential DNA methylation may account for
the differences in metabolic profiles of men and women,
possibly leading to the different incidence, prevalence,
symptoms, ages at onset, and severity of CVDs reported
in literature.
In the EPICOR discovery panel, we identified a 15-

CpGs cluster within the ZBTB12 gene that was signifi-
cantly differentially methylated in Italian MI cases and
controls and that was also significantly hypomethylated
in MI cases in the independent Dutch panel. Moreover,

ZBTB12-DMR showed a trend towards more pro-
nounced hypomethylation in subjects with a short time
to disease (TTD) both in the Italian and in the Dutch
samples.
ZBTB12-DMR spans a ~250-bp region in ZBTB12

exon 1: although the role of gene-body methylation in
transcriptional regulation is not fully understood, yet
there are evidences of a role of the first exon’s DNA
methylation in transcriptional silencing and, putatively,
in alternative splicing [34]. All of our samples belong to
the EPIC cohort, for which no biospecimen suitable for
transcriptome analyses is available to address the rela-
tionship between ZBTB12 methylation and gene expres-
sion levels. To cope with this issue, we explored ZBTB12
DNA methylation/gene expression relationship in cryo-
preserved peripheral blood mononuclear cells from ~80
healthy young subjects belonging to another ongoing
study, for which we already measured methylation and
gene expression levels: in our data, ZBTB12 messenger

Fig. 1 Receiver operating curves (ROC), EPIC-NL validation sample. Model 1 (TRFs, dotted line) includes age, sex, center of recruitment, smoking
habits, BMI, WHR, lipid levels, blood pressure, menopausal status in women. Model 2 (TRFs + Meth, solid line), as model 1 plus ZBTB12-RPMM
classes, LINE-1 methylation profile. a EPIC-NL men. b EPIC-NL women. Statistics in Table 2

Fig. 2 Calibration plots, EPIC-NL validation sample. Goodness of fit, model 1 (TRFs, triangles) vs model 2 (TRFs + Meth, dots). Hosmer-Lemeshow
test: men: PTRF = 0.118, PTRF + M = 0.414; women: PTRF = 0.636, PTRF +M = 0.724. a EPIC-NL men. b EPIC-NL women. Statistics in Table 2
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RNA (mRNA) abundance was below the background
level (as assessed by Illumina HumanHT12 gene expres-
sion BeadChip), while ZBTB12 methylation levels were
comparable to that of EPICOR and EPIC-NL controls
(data not shown). No relationship was found also with
the gene expression levels of the nearby genes (data not
shown). Data mining in freely available resources (e.g.,
BioGPS, AceView, ProteinAtlas, Genome Atlas) confirmed
the generalized low ZBTB12 mRNA level in tissues and
cell types, although ZBTB12 protein is detectable in many
tissues, including cardiovascular tissues. Although no clear
function is described for ZBTB12, this protein is probably
involved in transcriptional regulation, like other members
of the ZBTB family of methyl-CpG binding proteins
(MBPs). This is also supported by its mainly nuclear
localization. MBPs bind to methylated DNA and recruit
chromatin remodeling co-repressor complexes, resulting
in compaction of chromatin into its transcriptionally in-
active state [35]. Specifically, members of the ZBTB family
function as mediators of epigenetically controlled gene
silencing by recognizing symmetrically methylated CpG
sites and sequence-specific non-methylated sites [8, 35].
According to the Human Protein Reference Database

[36], ZBTB12 (HPRD ID: 15691) directly interacts with
Harvey rat sarcoma viral oncogene homolog (HRAS)
and Ras-associated protein 1 (RAP1) GTPase-activating

protein 1 (RAP1GAP). RAP1GAP downregulates the
activity of RAP1, a small GTPase involved in several
aspects of cell adhesion, including angiogenesis [37].
HRAS, a member of the RAS oncogene family, is a key
transducer in several growth-signaling events that may
trigger cardiovascular complications such as angiogen-
esis and vascular permeability [38] and may be involved
in inflammatory proliferative arterial diseases, including
atherosclerosis and restenosis after angioplasty [39]. The
RAS-MEK-ERK cascade has been described as implicated
in cardiac hypertrophy and heart failure, and ERK signal
transduction pathways were associated with cardiac hyper-
trophy [40].
In addition to gene-/region-specific DNA methylation,

we investigated the cumulative DNA methylation profile
of LINE-1 repetitive sequences and found LINE-1 hypo-
methylation in MI cases, statistically significant in men
in both panels, but not in women. LINE-1 hypomethyla-
tion was associated to cardiovascular-related traits in
previous studies [10, 11], and it is associated to MI and
shorter TTD in the present study. DNA hypomethyla-
tion is regarded as a cause of genomic instability, and as
a matter of fact, LINE-1 hypomethylation was found in
several conditions, including cancer [41], autoimmune
diseases [42], and CVDs [10]. Specifically, global hypome-
thylation of genomic DNA and gene-specific methylation

Table 3 DNA methylation and time to disease (TTD)

ZBTB12 LINE-1

TTD classa Rangeb Effect size 95 % CI se PTREND Cochran’s Q Effect size 95 % CI se PTREND Cochran’s Q

EPICOR men

TTD class 1 8.89–14.66

TTD class 2 5.23–8.88 −0.0054 −0.0090;−0.0018 0.0018 0.0036 −0.0009 −0.0016;−0.0003 0.0003 0.0044

TTD class 3 0.26–5.20

EPIC-NL men

TTD class 1 6.97–12.31

TTD class 2 3.53–6.86 −0.0093 −0.0182;−0.0005 0.0045 0.0389 −0.0035 −0.0070;0.00003 0.0018 0.0537

TTD class 3 0.23–3.52

Meta-analysis −0.0059 −0.0093;−0.0027 0.0017 0.0005 0.65c −0.0010 −0.0017;−0.0004 0.0003 0.0016 2.03c

EPICOR women

TTD class 1 8.16–14.02

TTD class 2 4.40–8.06 −0.0056 −0.0106;−0.0007 0.0025 0.0250 −0.0008 −0.0017;0.00004 0.0004 0.0636

TTD class 3 0.33–4.30

EPIC-NL women

TTD class 1 7.35–12.30

TTD class 2 4.40–7.21 −0.0047 −0.0106;0.0011 0.0030 0.1147 −0.0011 −0.0032;0.0010 0.0011 0.2970

TTD class 3 0.04–4.38

Meta-analysis −0.0053 −0.0091;−0.0015 0.0019 0.0065 0.05c −0.0008 −0.0016;−0.0001 0.0004 0.0263 0.07c

aHealthy controls (TTD class 0) were used as the reference group. Cases were divided in tertiles (TTD classes 1 to 3)
bMinimum and maximum TTD (i.e., time lapse in years from enrollment to occurrence of MI) for each class
cd.f. = 1, P = not significant
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profiles have been associated to conditions already known
to predispose to CVDs, such as cellular ageing [43], ath-
erosclerotic plaques [44], menopausal state, and osteopor-
osis [45]. On the other hand, LINE-1 hypomethylation
could simply be a marker of increased WBC proliferation
due to inflammatory or immunological responses which
are known to be active during cardiovascular pathogenic
processes [10]. In vitro experiments on mouse embryonic
stem cells showed that folate deficiency affected the
homeostasis of folate-mediated one-carbon metabolism,
leading to reduced LINE-1 methylation [46]. In a targeted
analysis, we recently demonstrated on a subset of the EPI-
COR cohort (206 MI cases and 206 matched controls) an
inverse relationship between B vitamin intake and DNA
methylation of genes belonging to one-carbon metabolism
and homocysteine pathways [20]. These previous observa-
tions, together with our current finding of LINE-1 hypo-
methylation in cases compared to healthy controls,
suggest a link between DNA methylation patterns and
CVD risk conferred by low folate and B vitamin intake
that is worthy of further investigation.
Overall, this study analyzed 609 cases and 554 controls

and was sufficiently powered to detect effects of the mag-
nitude we found. The discovery and the replica panels
share homogeneous features: both belong to the European
EPIC cohort, subjects were all enrolled in the 1990s, and
biosamples were collected and stored at enrollment ac-
cording to shared standard protocols [47]. Nevertheless, a
limitation of the study is that while EPICOR cases and
controls were matched by age, sex, center, and season of
recruitment, this could not be achieved for the EPIC-NL
sample, since a DNA sample suitable for methylation
analysis was not available for all the subjects enrolled in
the EPIC-NL.
Another limitation is that the assessment of the

methylation levels was done with different methods for
the two panels. However, our approach that considered
the regional methylation profile as a whole instead of
single CpGs may contribute to overcome the bias due to
measure errors at the single CpG level, as highlighted
by the correlation between the methylation measures
of 16 control samples assayed with both BeadChip
and MassARRAY assays (Additional file 1). Moreover,
although the CpG positions assayed with the two methods
are not exactly the same due to technical constrains
(Additional file 1 and Additional file 3: Figure S4),
still the analysis of methylation data collected with
each one of the two different techniques highlighted a
cluster of CpGs with correlated methylation levels within
exon 1 of ZBTB12, hypomethylated in MI cases vs con-
trols. This complies with our study design assumption that
the methylation status of multiple CpGs with correlated
methylation could better describe the cumulative methyla-
tion status of the underlying region and that this could be

potentially related to the underlying biological function, if
any. The same goes for LINE-1 methylation, which is
defined as the cumulative DNA methylation status of the
several CpGs located in LINE-1 sequences across the
genome. Also in this case, different portions of LINE-1
sequence were investigated with the two techniques, i.e.,
CpGs scattered across the whole LINE-1 sequence were
analyzed on the BeadChip, whereas CpGs within base
pairs 335–767 of the LINE-1 promoter (GenBank acces-
sion number X58075.1) were analyzed by MassARRAY ac-
cording to Wang et al. [48] (Additional file 3: Figure S4).
Despite slight differences between EPICOR and EPIC-

NL panels in LINE-1 average methylation levels, argu-
ably due to the use of different methods and different
assayed CpGs, our results highlighted the same effect
trend in both the EPIC sub-cohorts.
When included in the same multivariate models, the

estimated risks associated to ZBTB12-DMR and LINE-1
methylation profiles were not attenuated by the adjust-
ment for known risk factors (Additional file 2: Table
S3A and B), suggesting that they independently contrib-
ute to MI risk estimate.
Moreover, we observed that discrimination between

MI cases and controls and prediction accuracy both im-
proved when DNA methylation was taken into account
together with TRFs, suggesting the DNA methylation
could be an independent predictor of MI risk, although
further confirmation on a larger sample is warranted.
Our results highlight the possibility to identify MI-

related methylation marks on DNA from blood samples
drawn in a preclinical condition, for some subjects many
years before the MI. Unfortunately, due to the initial
EPIC study design that envisaged only one blood sam-
pling at enrollment time, it was not possible to monitor
individual DNA methylation level changes at different
time points. Further replication in additional cohorts with
prospective design and biospecimens sampled at multiple
points along time is warranted to elucidate DNA methyla-
tion changes across time, from a “healthy” status to MI.
This will allow a better estimation of the ZBTB12-DMR
and LINE1 demethylation rates associated with increased
MI risk, in the view of a personalized risk assessment that
will take into account TRFs and MI risk biomarkers, such
as DNA methylation profiles.

Conclusions
To the best of our knowledge, this is the first paper
reporting an association between MI risk and DNA
methylation profiles identified from epigenome-wide
data in prospectively collected subjects with well-recorded
clinical endpoints and replicated in an independent
sample form the same large European prospective
cohort.
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Taken together, the reported results suggest the pos-
sible role of DNA methylation patterns in peripheral
blood white cells as promising early MI biomarkers to
be potentially used, together with TRFs, for individual
MI risk assessment.

Methods
Study population
For the discovery phase, 292 MI cases and 292 matched
healthy controls were recruited among those enrolled in
the EPICOR study [49], a case-cohort study nested
within the EPIC-Italy prospective cohort (~50,000 par-
ticipants) [50]. All EPICOR cases developed MI after
recruitment (average time to diagnosis 6.90 years). Cases
were identified at cohort follow-up from hospital dis-
charge databases and were then matched with healthy
controls from the same cohort without evidence of MI
at follow-up. Matching parameters were age at recruit-
ment (±1.5 years), sex, center, and season of recruitment.
Results from the discovery phase were replicated in an
independent sample of 317 Dutch subjects from the pro-
spective EPIC-NL cohort [51] who developed MI during
follow-up (average time to diagnosis 5.64 years) and 262
unmatched healthy controls from the same cohort. Details
on anthropometrics, lifestyle, biochemical measurements,
and MI definition are provided in Additional file 1.

Ethical considerations
Our study complies with the Declaration of Helsinki prin-
ciples and conforms to ethical requirements. All volun-
teers signed an informed consent form at enrollment in
the respective studies. The EPIC study protocol was ap-
proved by Ethics Committees of the International Agency
for Research on Cancer (Lyon, France), as well as by local
Ethical Committees of the participant centers. The EPI-
COR study was approved by the Ethical Committee of the
Human Genetics Foundation (Turin, Italy). For the Dutch
EPIC samples, approval was obtained by the Institutional
Review Board of the University Medical Center Utrecht
(Utrecht, the Netherlands) and the Medical Ethical Com-
mittee of TNO Nutrition and Food Research (Zeist, the
Netherlands).

DNA methylation measurement
DNA methylation was measured in DNA from WBCs col-
lected at subject enrollment into EPIC and stored in liquid
nitrogen [47]. The Infinium HumanMethylation450
BeadChip (Illumina Inc., San Diego, CA, USA) and the
MALDI-TOF mass spectrometry methylation assay
(Sequenom Inc., San. Diego, CA, USA) were used for the
discovery phase and the replication phase, respectively.
Laboratory methods for DNA methylation level measure-
ments are detailed in Additional file 1.

Whole-genome methylation data quality control and
normalization procedures
DNA methylation levels were measured as Beta-values,
ranging from 0 to 1. We excluded the following from the
analyses: (i) single Beta-values with detection P value ≥
0.01; (ii) CpG loci with detection P value ≥ 0.01 in more
than 20 % of the assayed samples; (iii) probes containing
SNPs with MAF ≥ 0.05 in the CEPH (Utah residents with
ancestry from Northern and Western Europe, CEU) popu-
lation; and (iv) samples with a global call rate ≤95 %.
From the 435,457 CpGs that passed QCs (~95 % of

BeadChip content), we further removed 9959 CpGs whose
methylation signal was detected by cross-hybridizing and
SNPs-containing probes [52].
A total of 292 matched case-control pairs and 425,498

CpG sites were used in the following analyses.
Background normalization was performed on raw

methylation data according to Marabita et al. [53].

Statistical analyses
Statistical analyses were conducted using the open
source R v3.0.1 package [54].
Analyses were performed stratifying by sex, in order to

account for the occurrence of sex-specific DNA methy-
lation and for the different cardiovascular risk profiles
between men and women (see the “Discussion” section).
Descriptive statistics of sample characteristics, anthropo-
metrics, lipid profiles, hypertension, and lifestyle habits
(smoke, alcohol consumption) was performed.

Case-control DMR analysis
We analyzed the EPICOR methylation data (discovery
phase, 425,498 CpGs) with the A-clustering algorithm
[24] to identify clusters of two or more neighboring CpGs
with correlated methylation levels.
The association between each one of the identified

methylation clusters and case-control status was tested
by generalized estimating equations (GEE) [55] to iden-
tify DMRs between MI cases and controls. We adjusted
the analyses for matching variables (age at recruitment,
center, season of recruitment, sex in the overall ana-
lyses), estimated WBC composition (for the EPICOR
panel only), and the major cardiovascular risk factors
[56], i.e., smoking status, BMI, blood pressure, and phys-
ical activity (for the EPICOR panel only). EPICOR sam-
ple analyses were additionally adjusted for “control
probes” principal components, while EPIC-NL analyses
did not require batch correction (see Additional file 1:
Removal of technical biases).
As fasting glucose measurement was missing for >20 %

of the EPICOR and EPIC-NL samples, glucose level was
excluded from the adjustment covariates. Lipid levels were
missing for 48 EPICOR subjects: lipid levels were omitted
as covariates too, after verification that inclusion or
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exclusion of this parameter did not substantially affect the
results (Additional file 1).
Due to the small number of subjects with incident dia-

betes identified at follow-up (n = 9), diabetes was not
included in the covariate list.
DMRs with FDR Q value < 0.05 were considered statis-

tically significant and investigated in the EPIC-NL sam-
ple with the same statistical approach. The Q statistic
[57] was used to assess heterogeneity between the two
sample panels: provided no heterogeneity was found, an
inverse variance-weighted fixed effect meta-analysis was
additionally carried out to achieve an overall estimate of
the two studies.

Case-control LINE-1 methylation analyses
To analyze LINE-1 methylation levels from BeadChip
data, we first identified all the BeadChip’s CpGs lying in
LINE-1 sequences according to the UCSC Genome
Browser database. The cumulative DNA methylation level
of LINE-1 sequences was computed, for each subject, as
the average methylation level across the 12,762 CpGs, out
of the >450K assayed on the BeadChip, that were anno-
tated in LINE-1 sequences. Case-control differences were
assayed by logistic regression, with methylation levels as a
continuous variable and the same adjustment used for the
case-control DMR discovery and replication analyses. For
replication purposes, the same analysis was performed on
the EPIC-NL samples using LINE-1 methylation data
from MassARRAY analysis (Additional file 1). A LINE-1
methylation meta-analysis of the two studies was also
done as described above.

DNA methylation and MI risk
EPICOR and EPIC-NL subjects, stratified by sex and by
study, were clustered with a RPMM algorithm [58] into
four classes according to their ZBTB12-DMR methylation
profile, irrespective of case-control status. Each subject
was also allocated to a LINE-1 methylation class (above/
below the median). The association between MI and DNA
methylation (as RPMM class or LINE-1 methylation pro-
file) was evaluated on the EPIC-NL panel by logistic
regression analysis, stratifying by sex.
Moreover, to test the dependence/independence of the

DNA methylation effects from the TRFs, we compared
the ORs associated to each RPMM class and to LINE-1
methylation status under three logistic regression models,
progressively including additional covariates at each step.
To this purpose, the same analysis was done on the EPI-
COR discovery panel as well, under the caveat that the
estimated ORs in this case should not be considered as a
risk estimate, being assessed in the discovery panel and, as
such, putatively inflated. Briefly, model 1 included the
matching variables only, model 2 included the whole set
of covariates used for the case-control DMR discovery

and replication analyses, and model 3 was fully adjusted
with the comprehensive set of variables as available in the
two studies. Further methodological details are provided
in Additional file 1.

Discrimination, reclassification, and calibration
We tested for the improvement in the performance of MI
risk prediction when including DMR and LINE-1 profiles
identified in the EPICOR dataset (discovery phase) by run-
ning discrimination and reclassification analyses on the
independent EPIC-NL dataset. Two models were com-
pared: the first one included only TRFs that were signifi-
cantly associated to MI in our study or reported in the
literature to be associated to MI (Fig. 1, legend); the
second one comprised TRFs as model 1 plus ZBTB12-
RPMM classes and LINE-1 methylation class.
For discrimination, we compared the AUC of the two

models by the DeLong test [59]. For reclassification, we
computed the NRI and IDI indices [60]. The goodness of
fit was evaluated by the Hosmer-Lemeshow (HL) test [61]
in order to assess the proper calibration of the model.

DNA methylation and TTD
Being EPICOR and EPIC-NL prospective cohorts with
incident MI cases identified during cohort follow-up, we
investigated the relationship between methylation and
TTD, i.e., the time lapse between blood collection and
the MI event. EPICOR and EPIC-NL cases, stratified by
study and by sex, were divided in tertiles according to
TTD. Control groups were used as reference. The occur-
rence of a linear trend between DNA methylation levels
and TTD, as the ordinal categorical variable, was tested
by GEE (details in Additional file 1).

Additional files

Additional file 1: Supplementary methods. A document with
supplementary materials, including the following: (1) subjects: cohort
details; lifestyle, anthropometrics, and biochemical measurements; and
outcome definition; (2) laboratory methods: EPICOR sample preparation;
discovery phase: Illumina Human450K Methylation Assay; replication
phase on EPIC-NL sample: Sequenom MassARRAY; and (3) supplementary
statistical methods: case-control differential methylation; removal of technical
biases; DNA methylation and MI risk; DNA methylation and time to disease
(TTD); supplementary references. (DOCX 73 kb)

Additional file 2: Supplemental Tables S1, S2, S3, and S4. Table S1.
top 6 genic DMRs in EPICOR MI overall cases vs controls. Table S2A.
details of the ZBTB12-DMR CpGs in EPICOR subjects. Table S2B. details
of the ZBTB12-DMR CpGs in EPIC-NL subjects. Table S3A. EPIC-NL MI risk,
adjusted models. Table S3B. EPICOR, adjusted models. Table S4A.
EPICOR case-control differential methylation analysis: comparison of
models with and without lipids adjustment. Table S4B. EPIC-NL case-control
differential methylation analysis: comparison of models with and without
lipids, batch, and WBCs adjustments. (DOCX 55 kb)

Additional file 3: Supplemental Figures S1, S2, S3, and S4.
Figure S1. quantile-quantile plot, EPICOR overall subjects. Figure S2.
quantile-quantile plot, EPICOR men. Figure S3. quantile-quantile plot,
EPICOR women. Figure S4. locations of ZBTB12 and LINE-1 CpG sites
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investigated by Sequenom MassARRAY. CpGs (in red) investigated within
ZBTB12-DMR, LINE-1, and flanking primers (upper case: complementary to
DNA; lower case: T7-promoter sequence and 10mer tag). CpG sites that
could not be tested individually due to MassARRAY technology constrains,
but had to be tested jointly with neighboring CpGs as a single unit, are
underlined: the methylation level is the cumulative value of all the sites
within the CpG unit. (ZIP 91 kb)
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