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Epigenome-wide and transcriptome-wide
analyses reveal gestational diabetes is
associated with alterations in the human
leukocyte antigen complex
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Abstract

Background: Gestational diabetes mellitus (GDM) affects approximately 10 % of pregnancies in the United States
and increases the risk of adverse health outcomes in the offspring. These adult disease propensities may be set by
anatomical and molecular alterations in the placenta associated with GDM.

Results: To assess the mechanistic aspects of fetal programming, we measured genome-wide methylation
(Infinium HumanMethylation450 BeadChips) and expression (Affymetrix transcriptome microarrays) in placental
tissue of 41 GDM cases and 41 matched pregnancies without maternal complications from the Harvard Epigenetic Birth
Cohort. Specific transcriptional and epigenetic perturbations associated with GDM status included alterations in the
major histocompatibility complex (MHC) region, which were validated in an independent cohort, the Rhode Island Child
Health Study. Gene ontology enrichment among gene regulation influenced by GDM revealed an over-representation of
immune response pathways among differential expression, reflecting these coordinated changes in the MHC region.
This differential methylation and expression may be capturing shifts in cellular composition, reflecting physiological
changes in the placenta associated with GDM.

Conclusions: Our study represents the largest investigation of transcriptomic and methylomic differences associated
with GDM, providing comprehensive insight into how GDM shapes the intrauterine environment, which may have
implications for fetal (re)programming.
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Background
Gestational diabetes mellitus (GDM) is the most common
hyperglycemic disorder in pregnancy. Characterized by
glucose intolerance that becomes clinically apparent near
the end of the second trimester, the prevalence of GDM
has doubled over the past 20 years, affecting approxi-
mately 10 % of pregnancies in the United States [1, 2]. In
addition to shared clinical features, women with GDM
have a substantially elevated risk of subsequent type 2 dia-
betes [3, 4], particularly in the presence of obesity [4, 5].
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Exposure to GDM in utero may also adversely impact the
health of the offspring, increasing the risk of macrosomia,
and conferring a predisposition for obesity, metabolic syn-
drome, cardiovascular complications, and diabetes [1, 6].
While the clinical manifestations and potential implica-
tions of GDM for the mother and fetus have been well
characterized, the molecular basis of GDM pathogenesis
is largely unknown.
As the primary interface of nutrient transfer between

mother and fetus, altered placental physiology has been
suspected to be a key component of GDM pathogenesis
and its impact on disease susceptibility in the offspring.
Anatomical and molecular alterations in the placenta as-
sociated with GDM include significantly lower fetal-to-
placental weight ratios [7], aberrant vascularization [8],
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and oxidative stress, potentially due to enhanced free
radical production and/or defects in the antioxidant de-
fenses [9]. Inadequate response to oxidative stress may
contribute to enhanced inflammatory conditions, exacer-
bated by obesity [10]. Since fetal gluconeogenesis is min-
imal [11], the majority of the glucose essential to fetal
growth and metabolism is transferred from the maternal
circulation via the placenta. Transplacental glucose flux
follows this maternal-to-fetal concentration gradient by
facilitated diffusion, which can be characterized as
flow-limited even at pathological glucose concentra-
tions [12, 13]. Consequently, GDM exposes the fetus to
abnormally high glucose levels, resulting in fetal hyper-
insulinemia [14] and an increase in fetal fat mass [15].
GDM may additionally affect amino acid transport [16]
and lipid concentrations, contributing to accelerated
low-density lipoprotein oxidation [17].
The impact of this adverse intrauterine environment is

in line with an abundance of epidemiologic evidence
purporting the Developmental Origins of Health and
Disease (DOHaD) [18, 19]. Due to their plasticity, epi-
genetic modifications provide one mechanism facilitat-
ing developmental adaptation to these conditions [20].
GDM has previously been associated with changes in
placental gene expression across the genome [21–24],
potentially reflecting changes in DNA methylation [25, 26].
In this study, we sought to understand the impact of
GDM on the regulation of the placental transcriptome
on the maternal (decidua basalis) side and how this is
associated with alterations in the epigenome. This study
represents the largest and most comprehensive integra-
tion of multi-omic data in this context, facilitating the
identification of complex regulatory changes associated
with GDM that may impact fetal (re)programming.
Results and discussion
Genome-wide methylation and expression was assessed
in the placentas (maternal-side) of 41 clinically con-
firmed cases of GDM and 41 matched pregnancies with-
out maternal complications from the Harvard Epigenetic
Birth Cohort (HEBC) at Brigham and Women’s Hospital,
Boston, MA, USA. Samples were matched based on
maternal age, pre-pregnancy BMI, method of concep-
tion, ethnicity, smoking status, and infant sex. Approxi-
mately 50 % of these women were normal weight
(18.5 ≤ BMI < 25) prior to pregnancy. Aside from two
previously underweight mothers, the remaining women
were either overweight (20 %; 25 ≤ BMI < 30) or obese
(29 %; 30 ≤ BMI). Birth weight and gestational age were
not associated with GDM in this study population
(Additional file 1: Table S1). Additional characteristics
of the population are presented in Additional file 1:
Table S1.
Among these 82 placenta samples, we assessed methy-
lation changes across the genome associated with GDM
using the 450K Infinium Methylation BeadChip. To
identify site-specific differences, methylation level at
each locus was modeled as a function of GDM, con-
trolling for potential confounding variables (Additional
file 1: Table S2; 20 most significant loci). Each model
was adjusted for chart-abstracted maternal age, pre-
pregnancy BMI, infant sex, maternal smoking, and in-
dependent surrogate variables associated with putative
sources of internal bias measured with error, specific-
ally self-reported maternal ethnicity and our indicators
for batch (chip, row, and column). Due to their more
intuitive biological interpretation, β values (range: 0–1;
low to high methylation) were utilized to identify
differentially methylated loci, using robust standard
errors to account for possible heteroscedasticity associ-
ated with the impact of the methylation level on intrin-
sic variability. GDM was most significantly associated
with a 0.00726-lower methylation level at one CpG
locus within the intron of CAPN1 (Additional file 1:
Table S2). Given the limits of differential methylation
detection above the technical variation of pyrosequenc-
ing, regions for validation were selected among the
greatest absolute shifts in methylation associated with
GDM, with a p value <0.001. In addition to these repli-
cation considerations, genomic context was factored
into candidate selection, with priority given to regional
changes detected via “bump hunting” (Additional file 1:
Table S3).
Based on this approach, we identified four candidate

regions for verification in our samples and validation in
an independent cohort (Fig. 1 and Table 1). These in-
cluded one locus within an enhancer and 5′UTR of
CCDC181, which was associated with a 0.137 (95 % CI:
0.068, 0.207) increase in placental methylation among
GDM mothers in our adjusted model (cg25464921). A
second locus, within the introns of HLA-H and HLA-J,
also exhibited significantly higher methylation with
GDM (cg23681866; 0.108 (95 % CI: 0.049, 0.168)).
These two sites were additionally within the two largest
differentially methylated regions associated with GDM
(Additional file 1: Table S3). The remaining two loci
chosen showed lower average methylation among the
placentas of GDM mothers in our adjusted models. For
the locus 285-bp upstream of the TSS of HLA-DOA,
the average difference was 0.117 (cg08147094; 95 % CI:
−0.177, −0.058), with a smaller difference of 0.089
(cg18506672; 95 % CI: −0.133, −0.044) at a locus associ-
ated with the promoter of SNRPN/SNURF. Validation of
these associations was performed by pyrosequencing of
placenta samples from GDM mothers and matched
normal pregnancies selected from the Rhode Island
Child Health Study (RICHS), consisting of mothers



Fig. 1 Regions selected for pyrovalidation based on observed association between GDM and methylation level on the microarray. Purple ovals
highlight the CpG site driving the selection of each candidate region, with purple boxes indicating regional changes detected via bump hunting.
Plots include site-specific methylation of GDM cases (blue) and matched controls (pink), and genomic context, including proximal CpG islands (green),
HUGO genes (teal; smaller width corresponding to UTR), and SNPs colored according to heterozygosity (increasing from yellow to red). Regions include
the following: a one within an enhancer and 5′UTR of CCDC181, b one 285-bp upstream of the transcription start site of HLA-DOA, c one associated
with the promoter of SNRPN/SNURF, and d one within the introns of HLA-H and HLA-J
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recruited following delivery at the Women and Infants
Hospital of Rhode Island (Additional file 1: Table S4).
Besides a regional change trending towards significance
upstream of HLA-DOA, none of the associations esti-
mated on the array replicated in the independent
cohort (Table 1). In contrast, pyrosequencing of these
regions in the HEBC identified significant differential
methylation of similar magnitude to the changes esti-
mated on the methylation array proximal to our four
candidates and among surrounding loci (with a trend
towards significance for the locus within HLA-H/HLA-J),
thus verifying the array findings. A failure to validate may
reflect a difference in the distribution of effect modifiers
between the two study populations. Compared to the
mothers from the HEBC, the RICHS mothers were youn-
ger, with a higher pre-pregnancy BMI, and a greater pro-
portion self-reporting white ethnicity (Additional file 2:
Figure S1). Accordingly, we investigated modification of
the association between methylation and GDM by mater-
nal age and BMI, dichotomized by the median of each in
HEBC, as well as self-reported ethnicity (Additional file 1:
Table S5). Among the RICHS placenta samples, we
identified significant effect modification of the asso-
ciation between GDM and methylation in the 5′UTR
of CCDC181 by maternal age (p value for interaction
p = 0.0122). Similar to the change observed in the
HEBC cohort, GDM was associated with a trend to-
wards higher methylation in older mothers, but among
the younger mothers in RICHS, placentas had signifi-
cantly lower average methylation at this context
(−5.807 % (95 % CI: −10.890 and −0.724)), respectively.
Within the region upstream of HLA-DOA, the impact of
GDM differed by maternal pre-pregnancy BMI category in
the validation cohort (p value for interaction p = 0.0387);
in the higher BMI category, GDM was associated with
lower methylation (−5.123 % (95 % CI: −8.825, −1.421)), as
observed in HEBC. Significantly lower methylation of this
HLA-DOA-associated region was also identified in the
maternal blood of the HEBC samples among the women
with a higher pre-pregnancy BMI (p value for inter-
action p = 0.0342; −6.039 % (95 % CI: −11.721, −0.357),
Additional file 1: Tables S6–S7).
In separate experiments, we assessed differential expres-

sion associated with GDM by interrogating expression



Table 1 Associations between GDM and methylation of candidate regions assayed by pyrosequencing in validation cohort (RICHS)
and verification set (HEBC)

A. Locus closest to candidate on microarraya

Association with GDM [coef (95 % CI)]

Gene in proximity CpG ID 450K array (beta) Validation set (%) Verification set (%)

HLA-DOA cg08147094 −0.12 (−0.18, −0.06) −3.24 (−7.93, 1.44) −13.95* (−20.50, −7.40)

HLA-H/HLA-J cg23681866 0.11 (0.05, 0.17) −1.96 (−7.46, 3.54) 6.21 (−0.18, 12.59)

SNRPN/SNURF cg18506672 −0.09 (−0.13, −0.04) −0.49 (−2.41, 1.43) −7.24* (−11.44, −3.04)

CCDC181 cg25464921 0.14 (0.07, 0.21) −3.28 (−7.90, 1.34) 9.02* (3.53, 14.52)

B. Regional change within pyrosequenced regionb

Association with GDM [coef (95 % CI)]

Gene in proximity Size of region (Candidate) 450K array (beta) Validation set (%) Verification set (%)

HLA-DOA 2 (CpG 1) – −3.01 (−6.17, 0.16) −9.23* (−13.67, −4.79)

HLA-H/HLA-J 3 (CpG 2) – −1.56 (−6.12, 3.01) 4.82 (−0.78, 10.42)

SNRPN/SNURF 2 (CpG 1) – −0.44 (−4.70, 3.82) −4.70 (−10.63, 1.23)

CCDC181 8 (CpG 6) – −2.42 (−6.89, 2.04) 9.34* (3.41, 15.27)
aAssociation between GDM and methylation of CpG site assayed by pyrosequencing in closest proximity to the site chosen for validation based on
methylation array data. The candidate locus in each region has the strongest association with GDM in our adjusted models. Linear model adjusted for
maternal age (years), pre-pregnancy BMI (kg/m2), infant sex, maternal smoking (yes/no), and self-reported ethnicity. Positive values indicate an increase in
methylation with GDM
bChange in methylation associated with GDM across pyrosequenced loci modeled using linear mixed models with a random intercept for sample, adjusting
for the same covariates. Positive values indicate an increase in methylation with GDM
*p < 0.05
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levels across the genome in a subsample of 55 placentas
assessed for genome-wide methylation changes using the
Affymetrix Human Transcriptome Array 2.0. Similar
statistical models were utilized to estimate associations
between expression levels and GDM, adjusting for the
same covariates used in our methylation models and
our data-driven estimated surrogates for batch and
ethnicity (Additional file 1: Table S8; top 20 unique cod-
ing genes, sorted by significance). Several of the most
significant changes in coding genes were within the ex-
tremely polymorphic major histocompatibility complex
(MHC) region on chromosome 6, represented by mul-
tiple haplotypes on the array. Playing a critical role in the
immune response, this complex encodes genes involved in
antigen presentation to T cells. Polymorphisms in the
region have been previously implicated in genetic suscep-
tibility to type 1 diabetes. GDM was associated with
decreased expression of both MHC class I (e.g., HLA-A,
HLA-B, and HLA-C) and MHC class II genes (e.g., HLA-
DQA2) (Additional file 1: Table S8; Additional file 2:
Figure S2). Given the observed differences in methylation
associated with GDM in this same region, we investigated
the correlation structure between methylation and gene
expression in this region, as well as the correlation in
expression among these genes (Fig. 2a, b). The verified
locus upstream of HLA-DOA showed a weak positive
correlation with HLA-DOA (ρ = 0.29), and a moderate
positive correlation with several other MHC genes (ρ =
0.27–0.475), whereas the CpG locus within the intron of
HLA-H/HLA-J was not correlated with any MHC genes
(Additional file 1: Table S9). However, none of these com-
parisons reached regional significance (Additional file 1:
Table S9). GDM was a stronger predictor of regional vari-
ation in expression across the MHC region than methyla-
tion (Fig. 2; Additional file 2: Figure S2). When averaged
across large blocks of CpG loci in this region, GDM was
not associated with shifts in methylation level, suggesting
more site-specific impacts. In contrast, the enrichment for
coordinated down-regulation of expression by GDM sta-
tus was unique to the MHC region. Generally, coordi-
nated changes across this region did not appear to be
dependent on direct proximity, suggesting higher order
regulation of these processes (Fig. 2). Three of the most
significant associations with GDM in our adjusted models
were verified by real-time PCR (qRT-PCR), chosen based
on consistent results between the gene-level association
with GDM and the exon-level associations for which
primers could be designed. A similar trend towards
decreased expression of HLA-C with GDM was observed,
but the associations with HLA-B and GPR174 were not
replicated using a distinct technology (Additional file 1:
Table S10). Validation of these genes by qRT-PCR was
also attempted in the RICHS, but the results were not
significant (Additional file 1: Table S10).
Pathway-level variation associated with GDM was

assessed by gene ontology (GO) enrichment among genes
associated with methylation and expression changes.
Compared to expression variation, methylation profiles



Fig. 2 (See legend on next page.)
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(See figure on previous page.)
Fig. 2 Coordinated regulation of expression and methylation in MHC region (chr6: 28477797–33448354). a Mapping the 72 regionally significant
(q value <0.05) Spearman correlations between site-specific methylation and gene-level expression and b the 100 strongest, regionally significant
(q value <0.05), pairwise Spearman correlations between gene expression levels. Mapped according to position on chromosome; green = positive
correlation; purple = negative correlation; tan histogram indicates density of genes in region; blue histogram indicated density of CpG loci in
region. c Plotting mean methylation and expression level for GDM cases (blue) and matched controls (red) and d the difference in mean
methylation and expression between these groups across the MHC region. e Plotting difference in mean methylation and expression between
GDM cases and controls across eight random regions to inform appraisal of coordinated regulation across MHC region. The eight regions
included the following: chr1:16318931–21396338 (red), chr11:1868700–6913644 (blue), chr12:52616097–57666521 (green), chr14:98919898–
103804291 (purple), chr17:35656660–40673466 (orange), chr5:174771462–179709813 (yellow), chr7:97501417–102576358 (brown), and
chr9:134394271–139329735 (pink). Methylation level was collapsed across loci within 5 kb, restricting the maximum cluster width to 10 kb.
Expression level was plotted at the transcription start site; for the plots of differential expression, gene labels were added for differences >0.10
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are more stable and may be more strongly associated with
early developmental patterns. Conversely, differential ex-
pression may be more reflective of maternal-fetal interface
during later development. Therefore, each form of
genome-wide data may be reflecting unique and meaning-
ful molecular variation that may impact future growth
patterns. Biological process GO enrichment was assessed
among the genes in proximity to the 648 CpG loci associ-
ated with GDM in our adjusted models at α level =0.001.
The most significantly enriched processes among methyla-
tion changes were associated with cellular metabolism and
response to external stimuli. However, this enrichment
was not significant after correcting for multiple testing
(Additional file 1: Table S11; Fig. 3). Using a less
stringent cutoff to identify ontologies enriched among
differential expression patterns, the 171 genes associated
with GDM in our adjusted expression models at α
level =0.01 were strongly enriched for the immune response
(Additional file 1: Table S12; Fig. 3). This enrichment
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Tables S11 and S12
reflected the strong association between GDM and
expression in the MHC region (Fig. 3).

Conclusions
This study represents the largest investigation of
genome-wide variation in placental transcriptional
regulation associated with GDM. Prior studies have
assessed the impact of GDM on genome-wide expres-
sion patterns in the placenta, in both the fetal and ma-
ternal side, with numbers of diagnosed cases ranging
from 2 to 19 [21–24]. While the genes with the largest
change in expression associated with GDM varied be-
tween study populations, a majority of these studies iden-
tified enrichment for inflammatory pathways among
observed differential expression. In one smaller study
assessing variation across the fetal-side placental methy-
lome, a distinct enrichment for metabolic disease path-
ways was observed [25]. Mirroring one of our findings,
this prior study found GDM was strongly associated with
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a change in methylation in proximity to VIPR1, a gene
suggested to play a role in controlling inflammation. An-
other study of 27 GDM-exposed South Asian mothers did
not identify fetal-side methylation shifts that overlapped
with either our study or the findings of Ruchet et al., sug-
gesting possible race/ethnicity-specific changes [26]. Both
prior studies of placenta methylation additionally investi-
gated variation in cord blood methylation and found min-
imal overlap between site-specific shifts [25, 26]. Our
study represents the first integration of genome-wide
methylation and expression data to identify distinct and
shared regulation. Through this multi-omic profiling, we
identified markers of physiological changes in the placenta
associated with intrauterine exposure to GDM. Given the
influence of the placenta on fetal development, these regu-
latory patterns may contribute to the fetal (re)program-
ming that has been associated with GDM exposure.
GDM shares several clinical features, lifestyle risk fac-

tors, and genetic susceptibility genes with type 2 diabetes
[27, 28], including an increased incidence of chronic sys-
temic inflammation [29–33]. In contrast to early insulin
sensitivity, the later part of normal gestation is character-
ized by maternal hyperinsulinemia and insulin resistance,
resulting in increased circulation of lipids and glucose to
meet the energy requirements of fetal growth [34]. With
amplified metabolic stress, such as with GDM and pre-
existing obesity, peripheral insulin resistance is more pro-
nounced and associated with increased concentrations of
circulating fatty acids and lipids [15, 35]. The changes in
insulin signaling may be induced by pro-inflammatory
cytokines and adipokines secreted from both the adipose
tissue and placenta of mothers with GDM [23, 36, 37],
which have been previously implicated in insulin resist-
ance among non-pregnant populations [38, 39]. Our
findings further support the premise that a diabetic
environment in utero instigates the overexpression of
inflammation-related genes in the placenta and suggest
the increased release of inflammatory molecules. These
shifts in expression may be more generally reflective of
the shifts in placenta cell composition associated with
the systemic inflammation characteristic of GDM.
In addition to this general immunomodulation, we

identified coordinated regulation in the major histo-
compatibility complex (MHC) region associated with
GDM, suggesting a potential autoimmune component
in pathogenesis that is more characteristic of type 1
diabetes. Contrary to the insulin resistance of type 2
diabetes, type 1 diabetes is characterized by the pro-
gressive destruction on pancreatic beta cells as a result
of T-cell-mediated autoimmunity, leading to insulin
deficiency and hyperglycemia. Polymorphisms within
class II human leukocyte antigen (HLA) genes coded in
the MHC region have been implicated in predisposi-
tions for type 1 diabetes [40–42]. These class II
molecules play a role in the presentation of antigenic pep-
tides to helper T cells, whereas class I molecules present
to cytotoxic T cells. Compared to the number of studies
focused on the clinical features shared with type 2 dia-
betes, there is a relative paucity of studies assessing the
similarities between GDM and type 1 diabetes. Approxi-
mately 10 % of GDM is suspected to represent an auto-
immune form, characterized by the presence of beta-call
cell autoantibodies [43], an increased frequency of type-1-
diabetes-related haplotypes in HLA class II genes [44, 45],
and a higher risk of late-onset type 1 diabetes [46–48].
More generally, GDM has been associated with increased
anti-HLA-class-II antibodies in maternal circulation, sug-
gesting reduced tolerance towards alloantigens [49], which
may play a role in GDM pathogenesis through inflamma-
tory activation. Our findings highlight a significant role of
the MHC region in the presentation of GDM, with a gen-
eral down-regulation of HLA genes among GDM-exposed
placentas. While GDM has not been associated with an
increased risk of type 1 diabetes in the offspring, shifts in
autoimmune cells in the placenta may impair the intra-
uterine environment, shaping fetal development. It is pos-
sible that the adverse changes associated with GDM may
be exacerbated by a higher pre-pregnancy BMI or higher
maternal age, as evidenced by our methylation stratifica-
tion results. Decreased placental methylation upstream of
HLA-DOA among GDM cases was observed in both the
HEBC and RICHS cohorts, particularly among the women
with a high pre-pregnancy BMI. In maternal blood
samples, we saw a similar decrease in methylation in this
region among these women. These results highlight
the heterogeneity of GDM but also suggest that additional
investigation into the regulation of the MHC region asso-
ciated with GDM is warranted.
Differential methylation and expression associated

with GDM likely also captures shifts in cellular compos-
ition, reflecting physiological changes in the placenta.
GDM has previously been associated with gross ana-
tomical changes, including increased placental weight,
diameter, and thickness among poorly controlled
diabetic women [8]. Our samples were excised from the
maternal (decidua basalis) side, which primarily con-
tains cytotrophoblasts, syncytiotrophoblasts, and extra-
villous trophoblasts. Previously observed histological
changes associated with GDM include villous edema,
fibrin deposits in the syncytiotrophoblast, and cytotro-
phoblast hyperplasia [8]. Changes in the regulation of
immunomodulatory genes in the placenta identified in
this and prior studies may reflect the infiltration of in-
flammatory cells into the placenta of diabetic mothers.
Unfortunately, purified placenta cell types have not
previously been analyzed on the Illumina Infinium
array to estimate and adjust for the impact of cellular
composition on our results [50]. However, these shifts
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in composition are potentially on the causal pathway.
Removing this component of the variation in methyla-
tion and expression would have likely precluded identi-
fication of the autoimmune component that has not
been thoroughly explored by prior studies. This is a
biological variation of interest given its role in shaping
the intrauterine environment.
Our study exhibits several strengths, including a large

population size, the integration of genome-wide methy-
lation and expression, the employment of technical
verification, and the use of an independent cohort for
validation. Beyond the general assessment of reproduci-
bility, validation in an independent cohort helped to
identify maternal characteristics that modified observed
epigenetic changes, further elucidating condition het-
erogeneity. While our candidate methylation changes
were verified in our study population by pyrosequenc-
ing, none of these shifts were significantly reproduced
in our validation cohort. For two of these regions, a
failure to validate reflected a difference in the distribu-
tion of measured effect modifiers between the two
study populations. Additional effect modification by
unmeasured factors, or additional unmeasured con-
founding, may account for the inability to validate cer-
tain regions. Due to our sample size, we could also not
explore the possibility of more complex models of inter-
action that may influence the association. The failure to
validate the expression microarray results by qRT-PCR
results may partially reflect technical differences between
the platforms. For instance, the qRT-PCR probes span
larger lengths of the transcriptome than what is repre-
sented with the exon levels analyzed by the microarray. In
addition, the greater temporal variability of expression
may make these changes generally more difficult to validate.
Future larger, more directed studies may be able to further
refine the specific populations susceptible to molecular
changes associated with GDM.
While methylation may be capturing regulatory pat-

terns established early in gestation or earlier shifts in
cellular composition, the identification of differential
expression is restricted to genes expressed perinatally.
By interrogating the methylome and transcriptome, we
are able to characterize the influence of GDM on pla-
cental gene regulation across gestation. This integration
provides comprehensive insight into the molecular
basis of GDM pathogenesis with possible implications
for fetal (re)programming.

Availability of supporting data
The data sets supporting the results of this article have
been deposited in NCBI’s Gene Expression Omnibus
and are accessible through GEO SuperSeries accession
number GSE70494 (http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE70494).
Methods
Study population
Our study population consisted of women enrolled in
the Harvard Epigenetic Birth Cohort (HEBC) at the
Brigham and Women’s Hospital (BWH) in Boston, MA.
The HEBC was initiated to study prenatal determinants
of epigenetic marks in cord blood and placenta. Data
and biospecimens for the HEBC were collected from
June 2007 to June 2009 and include 1941 mother-child
dyads [51]. Mother-infant dyads for the proposed study
have been selected as follows: “case” placenta samples
were selected among mothers with a clinical diagnosis
of gestational diabetes, excluding women with pre-
existing hypertension or pre-existing diabetes mellitus.
“Controls” were identified among samples with no ges-
tational diabetes, no pregnancy-induced hypertension,
no preeclampsia, and no previous hypertension or dia-
betes. Each case was individually matched to a control
with a maternal age within 5 years of the case, with the
same method of conception, ethnicity, smoking status,
and infant sex, and with the closest pre-pregnancy BMI
among mothers in the HEBC. Matching criteria was re-
laxed when the difference in pre-pregnancy BMI between
the case and closest control match was >5 kg/m2. Charac-
teristics for the case and control samples are summarized
in Additional file 1: Table S1; continuous variables are
summarized by the mean (SD), and categorical variables
are reported as counts (%).

Ethics statement
The study protocol was approved by the Institutional
Review Board of the Brigham and Women’s Hospital.
Completing the pregnancy questionnaire was considered
implied consent.

Sample preparation
Placenta and maternal blood samples were collected
immediately after delivery. Tissue samples collected
for DNA extraction were snap-frozen and stored in li-
quid nitrogen, with samples for RNA extraction stored
in RNAlater (Ambion, Carlsbad, CA) at −20 °C until
further processing. All placenta samples used in this
study were taken from the maternal (decidua basalis)
side near the umbilical cord.

DNA isolation
DNA was isolated from placenta tissue and maternal
blood samples using the QIAmp DNA Mini Kit (Qiagen)
according to the manufacturer’s instructions.

Illumina 450K methylation microarrays
Genomic DNA was bisulfite treated using the Zymo
EZ-96 DNA methylation kit (Zymo Research). For the
assessment of genome-wide DNA methylation, the

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70494
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70494
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Illumina 450K Infinium Methylation BeadChip was
used. The distribution of samples across chips was
blinded by randomly sorting de-identified matched sam-
ples to reduce the likelihood of systematic technical bias.
This array covers approximately 99 % of RefSeq genes,
with approximately 17.2 probes per gene region, and 96 %
of CpG islands, including the more tissue-specific CpG
island shores and shelves [52]. The 450K methylation mi-
croarrays were performed at The University of Southern
California’s (USC, CA, USA) USC Epigenome Center
(http://epigenome.usc.edu/).

Validation and verification of DNA methylation using
pyrosequencing
Four differentially methylated regions (Additional file 1:
Table S13) associated with GDM in our adjusted
models were verified in the HEBC and validated in a
separate birth cohort, RICHS. RICHS is an ongoing,
population-based birth cohort established at Women
and Infants’ Hospital of Rhode Island and independ-
ently funded (R01 MH094609) [53, 54]. A total of
500 ng of genomic DNA was bisulfite converted using the
Zymo EZ-96 DNA methylation kit (Zymo Research).
For each region of interest, PCR was performed

using a primer set without CG dinucleotides in their
sequences specific for the converted DNA. These
primers surrounded at least three CG dinucleotides
and enabled us to amplify both methylated and
unmethylated templates. Optimized primers were or-
dered from EpigenDx (EpigenDx, Hopkinton, MA;
design described in Additional file 1: Table S13). Amp-
lification products were sequenced on our PyroMark Q24
pyrosequencer (Qiagen). Another bisulfite conversion
check was performed by adding cytosine site in the se-
quence to assess incomplete conversion of the DNA
strands. Percent methylation was estimated by the propor-
tion C/(C + T) at each CG site within the amplified region.
RNA isolation
Using the mirVANA RNA Isolation Kit (Ambion Inc.,
Austin, TX), RNA was isolated according to the manu-
facturer’s protocol.

Affymetrix gene expression arrays
Gene expression was assessed using the Human Tran-
scriptome Array 2.0 (Affymetrix). The array is designed
with a median of approximately 21 unique probes per
transcript, enabling analysis of expression at the gene
level and investigation of alternative splicing variants.
The probes on the array cover a total of >30,000 cod-
ing transcripts, including alternative splice variants,
and >11,000 lincRNA. Transcript coverage and gene
count correspond to RefSeq from February, 2012. A
total of 50 ng of high-quality RNA (260/280 = 1.8–2.0;
RIN > 6.0) was used to generate sense-strand cDNA
with the Ambion® WT Expression Kit (Life Technologies).
The Affymetrix gene expression arrays were performed at
the Center for Personalized Genetic Medicine, a re-
search core facility of the Partners Health Care System
in Cambridge, MA. Expression arrays were performed
on 55 case-control samples plus quality controls.

Real-time qRT-PCR
The expression levels of three genes that differed signifi-
cantly among GDM cases and controls were chosen for
verification in the HEBC and validation in RICHS.
cDNA was synthesized using 500 ng of RNA with the
High Capacity cDNA Reverse Transcription Kit (Applied
Biosystems, Foster City, USA). Predesigned PrimeTime
qPCR Assays from Integrated DNA Technologies (IDT)
were used for HLA-C, HLA-B, and GPR174. The qRT-
PCR reaction was performed with TaqMan Gene Expres-
sion Master Mix (Applied Biosystems) according to
the manufacturer’s instructions on a Life Technologies
7900HT qPCR machine at the Harvard Medical School
ICCB Screening Facility with reverse transcription con-
trols. The qRT-PCR cycling conditions were as follows:
50 °C for 2 min, 95 °C for 10 min, 40 cycles of 95 °C for
15 s, and 60 °C for 60 s. All qRT-PCR data was normal-
ized using the PrimeTime GAPDH Assay (IDT). Delta
Ct (ΔCt) was defined as the expression difference between
the target gene and GAPDH: ΔCt = CtGene of Interest –
CtGAPDH. All samples were analyzed in triplicate.
Additional file 1: Table S14 lists primer information.

Statistical analysis
Methylation data was processed prior to analysis in ac-
cordance with best practices to reduce the influence of
technical artifacts [55]. Color bias adjustment and quan-
tile normalization (QN) was performed on signal inten-
sities to decrease technical variation, specifically array
position effects [56]. The fluorescence intensities from
methylated (M) and unmethylated (U) alleles were then
converted to methylation level, ranging from 0 to 1,
given by β =M/(M +U + 100). Adjustment for probe-
type bias was performed on the β values using beta-
mixture quantile normalization (BMIQ) [57, 58]. We re-
stricted further analysis to autosomal loci that did not
have a SNP at the target locus or have a probe that
cross-hybridized to the X chromosome, which could in-
duce gender bias due to X inactivation [59]. Even after
between-array normalization, batch effects may contrib-
ute bias in site-specific analyses [60]. Independent surro-
gate variable analysis (ISVA) was utilized to estimate this
technical confounding based on our surrogates for batch
(chip, chip row, chip column), as well as biological
confounders assumed to be measured with error (self-

http://epigenome.usc.edu/
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reported ethnicity) [61]. Estimated independent surro-
gate variables (ISVs) associated with these confounders
were incorporated into subsequent multivariable models.
Site-specific methylation was modeled as a function of
GDM status, adjusting for maternal age (years), pre-
pregnancy BMI (kg/m2), infant sex, maternal smoking
(yes/no), and our ISVs. To account for possible hetero-
scedasticity due to the intrinsic association between
methylation level and variability, we used robust stand-
ard errors in Wald tests for our indicator of GDM
status. Regional changes were identified using a “bump
hunting” approach, using the T statistic from our ad-
justed models to identify differentially methylated re-
gions among contiguous loci within 500 bp that exceed
the 99th percentile of genome-wide changes, summariz-
ing these regions based on the effect size [62]. Candi-
dates were selected after removing probes with a SNP or
non-specific binding to other autosomal sites, which,
while potentially true signals, would increase the diffi-
culty of primer design. Associations with GDM across
pyrosequenced loci were modeled using linear mixed
models with a random intercept for sample, adjusting
for maternal age, pre-pregnancy BMI, infant sex, ma-
ternal smoking, and self-reported ethnicity. Site-
specific analyses were also performed for the locus in
closest proximity to the candidate on the array. Pos-
sible effect modification by maternal ethnicity (white/
non-white), maternal age (dichotomized by median age in
HEBC), and pre-pregnancy BMI (dichotomized by median
BMI in HEBC) was assessed among the pyrosequenced re-
gions by a Wald test of the interaction term.
CEL files containing the measured expression intensities

were processed using the Affymetrix Expression Console
Software (Affymetrix). Background correction was per-
formed using the Robust Multichip Analysis (RMA) algo-
rithm, to minimize the variance seen across arrays [63].
These probe values were then quantile normalized and
summarized into one gene-level expression measure using
median polish [63, 64]. ISVs significantly associated with
our surrogates for batch (plate row, plate column) and
maternal ethnicity in the expression matrix were incorpo-
rated into subsequent models. Associations between
GDM and expression were then adjusted for the covari-
ates included in our methylation models, using robust SEs
in our Wald tests. For ease of interpretation, only associa-
tions with coding RefSeq genes were reported. To identify
coordinated regulation between methylation and expres-
sion, as well as co-expression networks in the MHC
region (chr6: 28477797–33448354), we estimated the
Spearman correlation between each CpG within 10 kb of
the MHC region and the expression of each gene in this
region, as well as between the expression of each gene in
this region. The significance of each pairwise comparison
was estimated by 10,000 permutations, imputing 1e−6 for
p = 0. We applied the Benjamini-Hochberg (false discovery
rate) method to correct the two-sided p values for mul-
tiple testing across the MHC region.
Biological process gene ontology (GO) enrichment was

assessed among changes in methylation and expression
associated with GDM. We restricted analysis to ontol-
ogies associated with between 20 and 1500 genes and
used the information content of these terms to identify
potential redundancy. The Jiang and Conrath method
was used to calculate the pairwise similarity between
terms, using a scaled (0–1) cutoff of 0.7 to define a clus-
tering of “highly similar terms.” GO analysis was then
restricted to the GO associated with the largest number
of genes among highly similar terms, resulting in a final
subset of 402 biological processes. Enrichment of these
terms was assessed among the genes in proximity to the
648 CpG loci associated with GDM in our adjusted
models at α level =0.001. The non-random design of the
methylation array precluded standard significance test-
ing of this enrichment. Certain genes are represented by
more probes on the array, potentially due to CpG island
proximity or scientific interest, increasing the likelihood
of detecting enrichment among terms associated with
these genes. To account for this design bias, a resam-
pling approach was used. For each GO analyzed, 648
CpG loci were randomly selected from the array and
assigned to the closest gene. This random sampling was
repeated 10,000 times to approximate the null odds
ratio distribution of each term on the array and calcu-
late the significance of observed methylation enrich-
ment. Biological process enrichment among expression
changes associated with GDM (p < 0.01; 171 genes) was
assessed using hypergeometric tests. The significance of
methylation and expression GO enrichment was then
corrected for the false discovery rate, estimating associ-
ated q values [66].

Additional files

Additional file 1: Table S1. Characteristics of placenta samples selected
from the HEBC cohort that were assessed on the Illumina Infinium array.
Table S2. Most significant changes in methylation associated with GDM
in adjusted model. Table S3. Largest regional changes in methylation
associated with GDM. Table S4. Characteristics of placenta samples
selected from the RICHS cohort that were used to validate methylation
changes observed in HEBC. Table S5. Assessing effect modification of
the association between GDM and placenta methylation level estimated
by pyrosequencing by maternal age, ethnicity, and pre-pregnancy BMI in
our validation cohort (RICHS) and verification set (HEBC). Table S6.
Among maternal blood HEBC samples, associations between GDM and
methylation of candidate regions assayed by pyrosequencing. Table S7.
Assessing effect modification of the association between GDM and
maternal blood methylation level estimated by pyrosequencing by
maternal age, ethnicity, and pre-pregnancy BMI in HEBC. Table S8.
Most significant changes in gene-level expression associated with
GDM in adjusted model, restricting to top 20 unique coding RefSeq
genes. Table S9. Spearman correlation between methylation of loci
chosen for validation and expression of genes in MHC region (chr6:

http://www.clinicalepigeneticsjournal.com/content/supplementary/s13148-015-0116-y-s1.docx
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28477797–33448354), restricting to pairwise comparisons with p < 0.05.
Table S10. Association between GDM and expression of genes estimated
by qRT-PCR in adjusted models in our validation cohort (RICHS) and
verification set (HEBC). Table S11. Biological pathway enrichment
among genes in proximity to methylation changes associated with
GDM. Table S12. Biological pathway enrichment among genes with
differential expression associated with GDM. Table S13. Pyrosequencing
assay information. Table S14. qRT-PCR primer information.

Additional file 2: Figure S1. Distribution of maternal characteristics in
HEBC and validation cohort (RICHS). Figure S2. Plotting the first two
principle components for methylation and expression in the MHC region
(chr6: 28477797–33448354) for GDM cases (blue) and matched controls
(red). Figure S3. The subset of 20 genes driving the first two principle
component loadings for expression (|rotation| > 0.1) in the MHC
region (chr6: 28477797–33448354) for GDM cases (blue) and matched
controls (red).
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