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Background: Classification of pediatric tumors into biologically defined subtypes is challenging, and multifaceted
approaches are needed. For this aim, we developed a diagnostic classifier based on DNA methylation profiles.

Results: Methylation data generated by the lllumina Infinium HumanMethylation 450 BeadChip arrays were downloaded
from the Gene Expression Omnibus (n =472). Using the data, we built MethPed, which is a multiclass random forest
algorithm, based on DNA methylation profiles from nine subgroups of pediatric brain tumors. DNA from 18 regional
samples was used to validate MethPed. MethPed was additionally applied to a set of 28 publically available tumors with
the heterogeneous diagnosis PNET. MethPed could successfully separate individual histology tumor types at a very high
accuracy (k =0.98). Analysis of a regional cohort demonstrated the clinical benefit of MethPed, as confirmation of
diagnosis of tumors with clear histology but also identified possible differential diagnoses in tumors with

Conclusions: We demonstrate the utility of methylation profiling of pediatric brain tumors and offer MethPed as
an easy-to-use toolbox that allows researchers and clinical diagnosticians to test single samples as well as large
cohorts for subclass prediction of pediatric brain tumors. This will immediately aid clinical practice and importantly
increase our molecular knowledge of these tumors for further therapeutic development.
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Background

Tumors of the central nervous system (CNS) are the
most common solid malignancies in children, represent-
ing about 20 % of all childhood cancer cases [1]. Overall
survival of children with brain tumors is around 70 %
but varies highly depending on type and location of the
tumor.

Classification of pediatric tumors into biological relevant
entities is challenging and vitally important in determining
the appropriate treatment protocol for a specific patient
[2, 3]. Childhood cancer survivors often experience sub-
stantial long-term side effects from the treatment. Choosing
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the right treatment and avoiding unnecessary treatment
is therefore very important. An appropriate reprodu-
cible classifier is thus urgently needed to define good
and poor treatment response subgroups and for the
evaluation of results obtained from clinical trials in order
to validate the potency of new drugs specifically designed
to selectively affect molecular targets in the respective
subclasses.

The most common clinical diagnosis groups include
pilocytic astrocytoma, high-grade glioma/glioblastoma
(GBM), diffuse intrinsic pontine glioma (DIPG), ependy-
moma, and primitive neuroectodermal tumor of the
CNS (CNS-PNET), medulloblastoma (cerebellar PNET),
and supratentorial PNET (sPNET); however, there are
more than 100 different histological subtypes. Using
conventional parameters such as location and histology
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(WHO criteria) for diagnosis will not capture the full
picture of these tumors and thus lead to both under-
and overtreatment as well as hamper the identification
of prognostic factors and molecular biomarkers [4].

Previous studies have shown that methylation profiling
using the Illumina 450K methylation arrays can divide
several pediatric brain tumor diagnoses including the four
medulloblastoma subgroups; sonic hedgehog (MB_SHH),
WNT (MB_WNT), group 3 (MB_Gr3), and group 4
(MB_Gr4) [5-9]. However, a classification tool for diag-
nosing an unknown tumor is still lacking. In the current
study, we developed a classification tool, MethPed, which
can robustly identify brain tumor diagnoses and subgroups
using genome-wide DNA methylation array data, which
outperforms previous methods using for example gene ex-
pression data [10].

Results

In this study, publically available Illumina 450K methyla-
tion array data from 472 pediatric brain tumors, repre-
senting several diagnoses (DIPG, GBM, embryonal tumors
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with multilayered rosettes (ETMR), four medulloblastoma
subgroups, ependymoma, and pilocytic astrocytoma) were
used to build a diagnostic classifier.

Building the DNA methylation classifier MethPed

We used a large number of regression analyses to select
the 100 probes per tumor class that had the highest pre-
dictive power. Thereafter, a Random Forest algorithm
was fit to the data to develop the MethPed classifier. In-
dividual methylation profiles could successfully separate
distinct tumor types with high accuracy when one tumor
was compared with all others. All sites had AUC values
of more than 90 % and for most cases, offered almost
prefect classification (Fig. 1a). Based on the 900 methyla-
tion sites (Additional file 1: Table S1), the nine pediatric
brain tumor types could be accurately classified using the
multiclass classification algorithm MethPed; the overall
error rate was only 1.7 %. The tumor entities ETMR,
MB_Gr4, MB_SHH, and MB_WNT were perfectly classi-
fied (Fig. 1b). Cohen’s Kappa statistic (0.978, 95 % CI,
0.972-0.983) were in agreement with the overall accuracy
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Fig. 1 Accuracy of the MethPed classifier. a Classification accuracy of individual methylation probes in one vs all other logistic regression analyses.
The boxplots displays the classification accuracy as measured by the area under the curve (AUC values or c-statistics) for the 100 probes per tumor
subtype that provided the highest predictive power; b Confusion matrix showing an extremely high predictive capacity of MethPed, illustrated by
the high percentage of correct classification of randomly drawn pairs; and ¢ Decision boundaries for five tumor types exemplifying the
possibility to delimitate a certain tumor type from the rest based on the two probes that proved to be the best for each tumor in one vs
all other regression analyses
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rate, indicating that the overall error rate is a fair estimate
and is not a result of imbalances among the groups. For
some tumor entities, even a couple of methylation sites of-
fered very accurate classification. Figure 1¢ shows how the
most differentially methylated CpG sites can delimitate a
certain tumor type from the rest. For example, only two
CpG sites offer full separation of the Shh group of medul-
loblastomas to the rest of the tumors, as is the case also
for ETMR tumors. On the other hand, GBM tumors are
more heterogeneous as a group and hence require more
CpG sites for accurate separation.

Analysis of a regional cohort

To test the MethPed in a clinical setting, we analyzed a
consecutive set of 18 pediatric brain tumors obtained from
the Sahlgrenska University Hospital, Sweden, between
2013 and 2014. The analysis of the regional cohort dem-
onstrated the clinical benefit of MethPed, as it confirmed
tumors with a straightforward diagnosis but also identified
possible differential diagnoses in tumors with complicated
and mixed type morphology. Three children in the cohort

Table 1 MethPed classification of the regional cohort
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were diagnosed with glioblastoma according to the WHO
criteria which was verified with MethPed (strength of 91,
85, and 64 % respectively; Table 1). Tumors with the diag-
nosis pilocytic astrocytoma were all classified with high
probability as such. Two cases with the histopathological
diagnosis sSPNET (a diagnosis not included in MethPed)
were assigned to the glioblastoma subclass, whereas the
remaining one got an inclusive score. Among the four
medulloblastomas, three could be further subgrouped
into the relevant molecular medulloblastoma tumor
groups, but one case did not share the methylation pro-
file of any of the medulloblastoma groups (Table 1).
This case was not classified robustly to any of the diag-
nostic groups in the classifier, suggesting that it is in-
stead a rare tumor form.

To scrutinize the discrepancy between MethPed and the
histopathological diagnosis, these cases were reviewed by a
senior neuropathologist who re-evaluated the original par-
affin HE histology, the immunohistochemical staining of
neurons with the presynaptic marker synaptophysin (SYP),
astrocytic marker glial fibrillary acidic protein (GFAP), and

Patient  Histopathologic MethPed DIPG Ependymoma ETMR Glioblastoma MB_Gr3 MB_Gr4 MB_SHH MB_WNT Pilocytic
D diagnosis (WHO criteria) ~ classification astrocytoma
BPC-B2 Glioblastoma Glioblastoma 0.03 0.06 003 064 0.02 0.01 0.01 0.00 0.21
BPC-BO Glioblastoma Glioblastoma 0.01 0.03 000 0917 0.00 0.00 0.01 0.00 0.05
BPC-C3  Glioblastoma Glioblastoma 0.01 0.04 001 086 0.01 0.00 0.01 0.00 0.06
BPC-C8 Glioblastoma Glioblastoma 001 0.05 001 090 0.00 0.00 0.01 0.00 0.03
BPC-A6 Glioneural tumor WHO  Glioblastoma 0.02  0.09 002 061 0.01 0.02 0.01 0.00 0.22
grade IV
BPC-C5 Oligoastrocytoma WHO  Glioblastoma 0.05 0.05 001 075 0.01 0.01 0.01 0.01 0.10
grade Il
BPC-A4  Pilocytic Astrocytoma Pilocytic 001 003 000 0.9 0.00 0.00 0.00 0.00 077
astrocytoma
BPC-B6  Pilocytic Astrocytoma Pilocytic 0.02 0.05 001 028 0.00 0.00 0.00 0.00 0.63
astrocytoma
BPC-B8 Pilocytic Astrocytoma Pilocytic 001 0.05 000 021 0.00 0.01 0.00 0.00 0.72
astrocytoma
BPC-A8 Glioneuronal (pilocytic/  Pilocytic 002 003 002 024 0.01 0.00 0.00 0.00 0.68
pilomyxoid) astrocytoma
BPC-B5 PNET Glioblastoma 0.03 030 003 058 0.01 0.00 0.01 0.01 0.03
BPC-B7 PNET Glioblastoma 0.05 0.09 003 049 0.01 0.01 0.00 0.01 0.32
BPC-A7 PNET Glioblastoma 0.03 0.10 005 074 0.02 0.01 0.01 0.02 0.03
BPC-C1  Medulloblastoma Mixed 006 021 019 032 0.03 0.04 0.04 0.05 0.06
(large-cell)
BPC-C4 Medulloblastoma MB_SHH 001 007 002 009 0.02 0.01 0.74 0.03 0.02
(desmoplastic)
BPC-A Medulloblastoma MB_Gr4 0.01 002 000 002 0.14 0.78 0.01 0.02 0.00
BPC-B1  Medulloblastoma MB_Gr4 000 003 001 001 0.06 0.89 0.01 0.01 0.01
(classic)
BPC-A1  Medulloblastoma MB_Gr3 001 004 001 002 082 0.08 0.01 0.01 0.01

(classic)
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Fig. 2 Histopathological and molecular analyses of two patients in the regional cohort. a Four-year-old child (BPC A7) diagnosed with a PNET in
the right hemisphere. MethPed classification (upper panel). H&E shows polymorphic, anaplastic cells and regions with necrotic areas; synaptophysin
shows clonal positivity; GFAP mostly negative areas but also individual tumor cells with very strong expression and Ki-67 variable positivity (middle
section, original magnification of the objective in all cases x40). Magnetic resonance imaging (MRI) shows the location of the tumor, and Sanger
sequencing chromatogram shows a HISTTH3B Lys27Met mutation in the tumor. Red arrow indicates the site of the mutation (lower panel). b Twelve-year-old
child (BPC B5) diagnosed with a PNET in the brain stem. MethPed classification (upper panel). H&E shows cells variable in morphology with areas of rosette
formation similar to Homer-Wright type; synaptophysin areas with granular cytoplasmic pattern and other areas with diffuse positivity as
well as negative cells; GFAP positivity in a high number of cells indicates an unusual high incidence of astrocytic differentiation and high
positivity of Ki-67 (middle section, objective original magnification x40). Magnetic resonance imaging (MRI) shows the location of the tumor, and
Sanger sequencing chromatogram shows a H3F3A Lys27Met mutation in the tumor. red Arrow indicates the site of the mutation (lower panel)

the marker of proliferation, Ki-67 (MKI67) (Fig. 2a, b and
Fig. 3a, b). Furthermore, we performed mutation analysis
which confirmed histone mutations at Lys27Met at H3F3A
and H1H3b in both cases with the histopathological diag-
nosis sSPNET, assigned as GBMs by MethPed (Table 1 and
Fig. 2a, b). In addition, these tumors showed aggressive
clinical behavior with resistance to therapy.

Applying the MethPed algorithm to a heterogeneous
WHO diagnosis

The finding that the PNET samples in our regional co-
hort was classified as GBMs prompted us to analyze this
group of tumors more closely. For this aim, we used a
publically available data set composed of 28 PNET tu-
mors (GEO accession GSE52556) [11]. MethPed could,
with a high accuracy, classify many of these tumors as
GBM:s, ependymomas, or one of the medulloblastoma sub-
groups, demonstrating the benefit of using the MethPed
classifier for identifying more likely diagnoses (Table 2).

Discussion

Stratification of patients with pediatric tumors with dif-
fering biological behavior or responsiveness to specific
therapies is urgently needed. Molecular subgrouping has
been documented as a useful clinical tool. We therefore
built a robust classifier using DNA methylation profiles
that could successfully classify pediatric brain tumors
into clinically relevant subgroups. We included the most
common brain tumors in children in MethPed, as well
as the very rare tumor ETMR as the incidence of this
often misdiagnosed tumor is thought to be underesti-
mated. MethPed performed well both in internal and
external validation and is novel as it can classify different
diagnoses and is therefore not limited to subgroup classifi-
cation. The MethPed classification tool outperforms previ-
ously published classifiers using differentially expressed
genes as input and those that only handle medulloblas-
toma subgroups [10, 12].

The accuracy of the MethPed classifier was further
corroborated by classifying a new cohort of 18 pediatric
brain tumors and by matching the classification results
with the histopathological diagnoses according to WHO.
With the increased knowledge about specific brain tumor

subgroups and the development of targeted therapy for
different entities, it is now very important to accurately
determine the correct diagnosis for this group of patients.
Importantly, as pediatric brain tumors are rare and the ex-
perience in diagnosing them varies among hospitals and
countries, MethPed provides an independent tool.

Here, we included nine tumor types in MethPed, but
the method can be further developed to incorporate add-
itional tumor types. The applied Random Forests method
can be extended when additional data sets become avail-
able as it is efficient with large data sets and does not
overfit the data. Methylation profiles are considered stable,
and through logistic regression, a set of probes within
each class were identified which gave high accuracy in
prediction. Compared to hierarchical clustering methods,
MethPed enable classification of single samples as gener-
ated forests can be saved for future use on other data.

CNS-PNET is an embryonal neoplasm with medullo-
blastoma-like histology; the current WHO criterion does
not distinguish CNS-PNETs in the form of medulloblas-
toma in the cerebellum or in the form of a supratentorial
PNET. However, recent studies have shown that histologi-
cally defined CNS-PNETSs display heterogeneous methyla-
tion profiles and show relationships to other pediatric
brain tumor types [12]. Thus, a high frequency of PNETSs
might be misdiagnoses of other tumor forms, and new
criteria for diagnosing true CNS-PNET tumors are there-
fore needed, which is why we did not include the current
PNET diagnosis group in MethPed. To illustrate the het-
erogeneous profiles of PNETs, we ran a set of 28 CNS-
PNET tumors through MethPed. Many of the samples
could be accurately classified into one of the nine diagno-
ses/subgroups in MethPed, whereas some could not confi-
dently be classified into either of these, suggesting that
they are true PNETs or alternatively other rare tumors.
Pediatric GBMs have been reported to have a distinctive
molecular pathogenesis with high frequency of H3F3A
mutations; thus the histone mutations present in the two
regional PNET cases classified as GBM by MethPed sup-
port our results [4, 13]. We next re-examined the histo-
pathological material from these cases and found focal
areas of differentiated cells indicative of GBM. High-grade
gliomas such as GBM typically arise from astrocytic
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Fig. 3 Immunohistochemical analyses of two patients with challenging diagnoses. a Infant (case BPC C1) diagnosed according to the WHO criteria
with a large-cell medulloblastoma, located in the vermis. H&E shows predominantly large cells with a high frequency of apoptotic bodies, clonal
positivity of GFAP, and low positivity for synaptophysin and clonal areas with high Ki-67 positivity (objective original magnification x 40). b Four-year-old
child (BPC B7) diagnosed with an intra- and periventricular PNET tumor. H&E shows high frequency of necrosis and vessels, very strong, clonal positivity
of GFAP in tumor cells as well as positivity in reactive gliosis, high positivity for synaptophysin, and high Ki-67 positivity (objective original magnification x40) )

origins, while CNS-PNET is of predominantly neuronal ~PNET- like nodules may arise in a preexisting glioma,
origin, with medulloblastoma-like histology. Based on  most often a GBM [14]. Our reclassification results
genetic and histology data, Perry et al. suggested that identified diagnostic pitfalls and highlights that cells



Danielsson et al. Clinical Epigenetics (2015) 7:62

Table 2 MethPed classification of a set of PNET cases
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Case ID DIPG Ependymoma ETMR Glioblastoma MB_Gr3 MB_Gr4 MB_SHH MB_WNT Pilocytic astrocytoma
PNET 1 0.02 0.04 0.05 0.85 0.01 0.01 0.01 0.00 0.03
PNET 2 0.05 0.09 0.14 0.46 0.08 0.08 0.01 0.04 0.04
PNET 3 0.02 0.02 0.01 0.91 0.00 0.01 0.00 0.00 0.03
PNET 4 0.03 0.07 0.02 0.63 0.02 0.01 0.01 0.02 0.21
PNET 5 0.01 0.03 0.01 0.79 0.03 0.02 0.03 0.01 0.08
PNET 6 0.01 0.01 0.01 0.91 0.01 0.00 0.00 0.00 0.05
PNET 7 0.05 0.19 0.04 0.54 0.03 0.02 0.04 0.02 0.08
PNET 8 0.07 0.50 0.07 0.27 0.03 0.02 0.01 0.02 0.02
PNET 9 0.04 0.08 0.14 0.40 0.08 0.05 001 0.06 0.15
PNET 10 0.04 0.09 0.08 0.49 0.08 0.06 0.03 0.03 0.11
PNET 11 0.04 0.12 0.04 047 0.05 0.04 0.02 0.02 0.21
PNET 12 0.06 048 0.07 027 0.05 0.03 0.01 0.02 0.02
PNET 13 0.05 0.05 0.02 068 0.01 0.01 0.00 0.01 0.18
PNET 14 0.06 0.44 0.05 0.36 0.02 0.02 0.02 0.01 0.03
PNET 15 0.02 0.11 0.05 057 0.07 0.03 0.04 0.04 0.08
PNET 16 0.01 0.02 0.03 0.07 0.21 0.04 0.00 0.60 0.03
PNET 17 0.00 0.00 0.00 0.01 0.04 0.94 0.00 0.00 0.00
PNET 18 0.01 0.02 0.02 0.01 0.03 0.02 0.88 0.00 0.01
PNET 19 0.07 0.03 0.03 081 0.01 0.02 0.01 0.01 0.02
PNET 20 0.06 0.04 0.07 0.10 0.08 0.07 053 0.02 0.03
PNET 21 0.03 0.04 0.04 0.07 063 0.08 001 0.07 0.03
PNET 22 0.00 0.00 0.00 0.00 0.08 0.90 0.00 0.01 0.00
PNET 23 0.09 0.09 0.16 0.46 0.07 0.05 0.01 0.02 0.05
PNET 24 0.05 031 0.03 0.50 0.01 0.01 001 0.01 0.08
PNET 25 0.11 0.13 0.07 0.58 0.02 0.02 0.03 0.01 0.03
PNET 26 0.02 0.06 0.02 0.70 0.04 0.02 0.02 0.02 0.11
PNET 27 0.01 0.02 001 0.03 0.01 0.01 0.86 0.02 0.01
PNET 28 0.00 0.01 0.00 0.02 0.01 0.00 0.96 0.00 0.00

with DNA methylation pattern of glioblastoma features
may be seen in tumors of different histological types
from different anatomical sites. Importantly, the diag-
nosis GBM instead of a PNET would change the treat-
ment protocol for the patient. Additionally, it is
important to identify tumors with mixed cell popula-
tions when planning an optimal treatment regime for a
specific patient [15].

Conclusions

We have developed the MethPed classifier that predicts
brain tumor subtypes with a very high accuracy. The
present tool will clinically aid to efficiently categorize
the tumors of newly diagnosed patients, aid in choosing
patients for clinical trials of newly developed targeted

therapy, and aid to give insights into the underlying
biology of the specific groups.

Methods

Data sets

Methylation data generated by the Illumina Infinium
HumanMethylation 450 BeadChip arrays were down-
loaded from the Gene Expression Omnibus (GEO).
Four hundred seventy-two cases were available, repre-
senting several brain tumor diagnoses (DIPG, GBM,
ETMR, medulloblastoma, ependymoma, pilocytic astro-
cytoma) and their further subgroups (Table 3). The data
sets were merged, and probes that did not appear in all
data sets were filtered away. In addition, about 190,000
CpGs were removed due to SNPs, repeats, and multiple
mapping sites [16]. The final data set contained 206,823
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Table 3 Data sets used in the study

Diagnosis GEO accession Citation
DIPG GSE50022 [21]
Glioblastoma GSE55712, GSE36278 [22, 23]
ETMR GSE52556 [11]
Medulloblastoma GSE54880 [24]
Ependymoma GSE45353

Pilocytic astrocytoma GSE44684 [25]

unique probes. K—neighbor imputation was used to
deal with missing probe data [17].

Verification set

DNA from 16 fresh frozen tissues and 2 paraffin embed-
ded (FFPE) sample was used to validate MethPed. The
tumor samples were obtained after signed informed
consent from the parents of children who underwent
surgery at the Sahlgrenska University Hospital, and the
study was approved by the regional ethics committee
(Dnr 604-12). Using the EZ DNA methylation kit
(D5001, Zymo Research), 500 ng of DNA was bisulfite
converted and hybridized to the Infinium HumanMethy-
lation450 BeadChips (Illumina). The data generated by
the BeadStudio software was exported and further ana-
lyses were performed in the R software environment.
For this set of tumors, complete clinical information, in-
cluding the histologic assessment, tumor sections, and
frozen material, were available. In addition, 28 publically
available tumors (GEO accession GSE52556) were used
to specifically apply MethPed on tumors diagnosed as
PNET [11].

Computational analysis

The computational process proceeded in two stages.
The first stage commenced with a reduction of the
probe pool. A series of one vs all other logistic regres-
sion classifiers were run for each tumor type. The meas-
ure of interest was the classifiers predictive capacity as
summarized by the area under the curve (Fig. la). For
each tumor type, we ran 206,823 regression analyses.
This stage ended with the selection of 100 probes per
tumor class that had the highest predictive power.
Thereafter, a Random Forest (RF) algorithm was fit to
the data [18, 19]. Random Forest pools together many
noisy but approximatively unbiased models, hence, redu-
cing the predictions variance. The working model of the
Random Forest algorithm is a simple classification tree.
Random forest aggregates a predefined number of trees
(900 in our case). At first, a bootstrap sample is drawn
from the original data set, and a tree is trained on this
bootstrap sample using only a subset of randomly se-
lected predictors. The ideal number of predictors used
for tree training cannot be estimated from the data and
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acts as a tuning parameter. We used grid search to find
the ideal number of probes. Every tree assigns a class be-
longing to each tumor considered. The final classification
is simply the majority vote. The probability of belonging
to one or the other class is the number of votes each class
receives divided by the number of trees grown. Validation
proceeded with 10-fold cross-validation, repeated five
times. We used the Kappa statistics as accuracy measure-
ment which relates the observed accuracy to the accuracy
that would be generated by simple chance [20]. Accuracy
measurement was estimated on the out-of-bag samples
only. In addition to Random Forest, other classification
algorithms were tested as well, among other variations of
discriminant analysis and Stochastic Generalized Boosted
Models. However, these models either had lower or simi-
lar performance but at the price of substantially higher
computational burden. The MethPed classifier uses the
Random Forest algorithm to classify new tumors pediatric
brain tumor subtypes. The classification proceeds with the
selection of the methylation probes needed for the clas-
sification. Thereafter, based on the built algorithm, a
conditional probability of pediatric brain tumor sub-
types belonging is calculated. For the practicalities of
implementation, we refer the reader to the online sup-
plemental material.

Additional file

[ Additional file 1: Table S1. CpG sites in the MethPed classifier. ]
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