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Abstract 

Objectives  High-quality species-specific transposable element (TE) libraries are required for studies to elucidate 
the evolutionary dynamics of TEs and gain an understanding of their impacts on host genomes. Such high-quality TE 
resources are severely lacking for species in the fungal kingdom. To facilitate future studies on the putative role of TEs 
in rapid adaptation observed in the fungal wheat pathogen Zymoseptoria tritici, we produced a manually curated 
TE library. This was generated by detecting TEs in 19 reference genome assemblies representing the global diversity 
of the species supplemented by multiple sister species genomes. Improvements over previous TE libraries have been 
made on TE boundary resolution, detection of ORFs, TE domains, terminal inverted repeats, and class-specific motifs.

Data description  A TE consensus library for Z. tritici formatted for use with RepeatMasker. This data is relevant 
to other researchers investigating TE-host evolutionary dynamics in Z. tritici or who are interested in comparative 
studies of the fungal kingdom. Further, this TE library can be used to improve gene annotation. Finally, this TE library 
increases the number of manually curated TE datasets, providing resources to further our understanding of TE 
diversity.
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Objective
Transposable elements (TEs) are autonomous DNA 
sequences that can move within the genome. TEs have 
been implicated in host genome evolution through pro-
cesses including chromosomal rearrangements, exon 
shuffling, and donation of coding sequences [1–4]. TEs 
are highly diverse among eukaryotes and current levels 
of sampling are insufficient to gain a deep understanding 
of the evolutionary dynamics of TEs. Compounding this, 
databases are inundated with putative TE sequences, 
however only a small fraction of these are curated. For 

example, in Dfam release 3.7, only 19,730 families (0.57%) 
are curated out of a total 3,437,876 families [5, 6].

To facilitate evolutionary studies, species-specific TE 
libraries are needed as TE content can vary significantly, 
even within a single genus [7]. Thus, TE libraries for even 
closely related species are not sufficient to accurately 
characterize the TE content of a genome. Further, TE 
resources for Fungi are lacking and this impedes studies 
focusing on genome evolution in this extremely diverse 
kingdom. Zymoseptoria tritici is a fungal wheat patho-
gen with extensive standing genetic variation within 
and among distinct populations across the globe [8, 
9]. Consequently, parallel evolution across geographic 
regions has enabled the pathogen to rapidly overcome 
host resistance and tolerate fungicides in extremely short 
timeframes [10]. This rapid adaptation, combined with 
variable TE loads within and among populations [8], 
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makes Z. tritici a fascinating system for investigations 
into TE-host evolutionary dynamics.

To enable studies on evolutionary dynamics of TEs in 
Z. tritici, we present an improved manually curated TE 
consensus library constructed from a 19-genome refer-
ence panel and the sister species of Z. tritici. Improve-
ments have been made on TE boundary resolution, 
detection of ORFs, TE domains, terminal inverted 
repeats, and class-specific motifs. We have also reduced 
redundancy in the library.

Data description
Putative TE consensus sequences were first obtained by 
annotating all 23 reference-quality genome assemblies 
[11–25] with Earl Grey (v3.0; https://​github.​com/​TobyB​
aril/​EarlG​rey) [26, 27]. Consensus sequences gener-
ated from each reference genome were clustered using 
CD-Hit-Est (v4.8.1) [28, 29] to group sequences with 
90% similarity across 80% of the longer sequence length 
to reduce redundancy whilst preventing the collapsing 
of chimeric sequences. Each consensus sequence was 
then subject to manual curation as described by Gou-
bert et  al. (2022) [30]. Briefly, genomic copies of each 
TE were obtained using a “BLAST, Extract, Align, Trim” 
process to recover genomic copies from each of the 23 
reference genome assemblies with 1000 flanking bases at 
either end [30, 31]. For families with > 100 BLASTN hits, 
the 25 longest hits were selected, along with 75 random 
hits. Multiple alignments were generated for each puta-
tive TE family using MAFFT (v7.505) with the –auto flag 
[32]. Columns composed of >  = 80% gaps were removed 
with T-COFFEE (v13.45.0.4846264) [33]. Subsequently, 
all sequence alignments were manually curated to define 
TE boundaries and remove regions of low conservation 
and rare insertions. Following manual curation, new 
majority-rule consensus sequences were generated with 
EMBOSS (v6.6.0.0) cons [34]. TE-Aid (https://​github.​
com/​clemg​oub/​TE-​Aid/) was used to aid visual inspec-
tion and to identify diagnostic features for classification 
of extended consensus sequences. Following this, TIRs 
were recorded (if present), and nhmmscan (HMMER 
v3.3.2) [35] was used to identify homology to known 
curated elements in Dfam (v3.7). Combining this infor-
mation, each TE consensus sequence was manually clas-
sified using available information following the naming 

convention ‘ > ZymTri_2023_family_[n]#[Classification]/
[Family]’ for compatibility with RepeatMasker [36]. Con-
sensus sequences classified with low confidence have a 
‘?’ added to the name, as well as the string ‘_LowConf ’. 
To reduce redundancy in the final TE library, sequences 
were clustered to the family-level using the ‘80–80-80 
rule’ (i.e. ≥ 80% identity, ≥ 80% length, ≥ 80  bp) [30, 37] 
implemented in CD-hit-est. The representative sequence 
for each cluster was manually selected to retrieve the 
sequence with the highest classification confidence, 
also defined as the ‘most intact consensus’. Chimeric 
sequences erroneously clustered were manually sepa-
rated to retain sequences for the chimeric TE and the 
individual elements that generated the chimera.

In total, we curated 331 distinct consensus sequences 
for the final TE library (Table  1). Of these, 199 could 
be confidently classified and 105 consensus sequences 
remain putative TEs labelled in the library as ‘Unclassi-
fied’. The 27 remaining TE consensus sequences are clas-
sified with low confidence. TE families from all major 
classifications are present: 92 DNA transposons, 22 long 
interspersed nuclear elements (LINEs), 65 long terminal 
repeat retrotransposons (LTRs), 31 miniature inverted 
terminal repeat elements (MITEs), 11 rolling circles (also 
known as helitrons), 1 short interspersed nuclear element 
(SINE), 1 terminal-repeat retrotransposon in miniature 
(TRIM), and 105 unclassified elements. The TE con-
sensus library in FASTA format is supplied in data set 1 
(Table 1) and a Tar archive containing the annotation of 
the 19 reference genomes in GFF format is supplied in 
data set 2 (Table 1).

Limitations
Whilst we made use of large public databases and an 
extensive set of genomes, 105 TE consensus remain 
unclassified and an additional 27 are classified with low 
confidence. Further manual curation efforts following 
sampling of more genome assemblies might aid in the 
classification of these by providing additional diagnostic 
features.

Limited knowledge on the diversity of TEs across the 
fungal kingdom may have impacted our ability to classify 
sequences to family-level. We anticipate this limitation 
will become less significant as genomic sampling and TE 
curation across the kingdom expands.

Table 1  Overview of data files/data sets

Label Name of data file/data set File types
(file extension)

Data repository and identifier (DOI or accession number)

Data set 1 ZymTri_2023.manCurTE.v1_0.fasta FASTA (.fasta) Zenodo (https://​doi.​org/​10.​5281/​zenodo.​83799​81) [38]

Data set 2 *.TE_2023.gff General Feature Format (GFF) Zenodo (https://​doi.​org/​10.​5281/​zenodo.​83904​61) [39]

https://github.com/TobyBaril/EarlGrey
https://github.com/TobyBaril/EarlGrey
https://github.com/clemgoub/TE-Aid/
https://github.com/clemgoub/TE-Aid/
https://doi.org/10.5281/zenodo.8379981
https://doi.org/10.5281/zenodo.8390461
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The integration of nearly two dozen reference-quality 
genomes significantly improved our ability to identify 
even low-copy TEs in the species. However, the dynamic 
nature of TE activation and repression within the species 
[8, 40] poses a significant challenge to capture the full TE 
content of the species. Hence, some recently reactivated 
TEs or very low-copy number TEs might have evaded 
detection, and so be missing from the final library.

Abbreviations
TEs	� Transposable elements
LINE	� Long Interspersed Nuclear Element
LTR	� Long Terminal Repeat
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