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Objective In this paper, we develop a new root-finding algorithm to solve the given non-linear equations. The
proposed root-finding algorithm is based on the exponential method. This algorithm is derivative-free and converges

Results Several numerical examples are presented to illustrate and validation of the proposed methods. Microsoft
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Introduction

Finding an approximate root of non-linear equations
using iterative algorithms plays a significant role in the
computational and applied mathematics. The applica-
tions of non-linear equations of the type f(x) = 0 arise
in various branches of scientific computing fields. Solving
such non-linear equations is one of the most important
problems and frequently appearing in different scientific
fields that can be modeled through nonlinear equations.
In recent time, several researchers, engineers and scien-
tists focused on solving non-linear equations numerically
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as well as analytically. Iterative algorithms play a vital role
in finding the solution of such non-linear problems. In
general, the roots of non-linear or transcendental equa-
tions cannot be expressed in closed form or cannot be
computed analytically. The root-finding algorithms pro-
vide us to compute approximations to the roots; these
approximations are expressed either as small isolating
intervals or as floating point numbers. There are various
numerical algorithm/methods available in the literature,
see for example [1-20], for more details.

Many new modified/hybrid/multi-step iterative algo-
rithms are developed in the last few years, by employ-
ing various mathematical algorithms/techniques. Noor
et al. discussed the fifth-order second derivative-free
algorithm in 2007, see [21], by using the finite differ-
ence scheme. Grau-Sanchez et al. presented a fifth-order
Chebyshev-Halley type method in 2008, see [22]. Zhan-
lav et al. proposed a three- step fifth-order iterative
algorithm in 2010 [23]. Nazeer et al. introduced a novel
second derivative-free Householder’s method having
fifth-order convergence by using finite-difference scheme
[24] in 2016. Recently, in 2021, Amir et al. developed an
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efficient and derivative-free algorithm for determining an
approximate solution of the given non-linear scalar equa-
tions by applying forward- and finite-difference schemes
similar to Traub’s method, see [25]. In this paper, we pro-
pose a new root- finding algorithm, which is derivative-
free, using exponential method. To propose the algorithm
with derivative-free, we employ the forward difference
scheme and finite difference scheme. This gives computa-
tionally low cost. Microsoft Excel and Maple implemen-
tations of the proposed algorithm are presented. Maple
and Excel implementations with sample computations
for differential and transcendental equations are available
in the literature, see for example [18, 19, 26, 27] and there
are various techniques for different type of applications,
see [20, 28—-35], the references cited therein.

Preliminaries
In this paper, we consider the non-linear equation of the

type
fx) =0. (1)

Iterations techniques are a common approach widely
used in various numerical algorithms/methods. It is a
hope that an iteration in the general form of x,  ; =g(x,)
will eventually converge to the true solution a of the
problem (1) at the limit when #n— co0. The concern is
whether this iteration will converge, and, if so, the rate of
convergence. Specifically we use the following expression
to represent how quickly the error e,=a—x, converges
to zero. Lete,=a—x, and e, , =a—x, ., for n>0 be the
errors at n-th and (n+1)-th iterations respectively. If two
positive constants ¢ and p exist, and

lent1l _ loo — %p41] _

P =u, 2)

n—oo |e,|?

then the sequence is said to converge to a. Here p>1 is
called the order of convergence; the constant y is the rate
of convergence or asymptotic error constant. This expres-
sion may be better understood when it is interpreted as
le,.1|=#le,|” when n— co. Obviously, the larger p and
the smaller g4, the more quickly the sequence converges.

Theorem 1 [16, 36] Suppose that g € CPla,b) If
&Pw) =0, for k=0, 1, 2,..., p—1 and gP (x) # 0, then the
sequence {x,} is of order p.

This paper focuses on developing iterative algorithm
having fourth-order of convergence. The following sec-
tion presents the proposed algorithm using Newton—
Raphson method and exponential method without
computing the derivative.
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Main text (a new iterative algorithm)

We assume that « is an exact root of the Eq. (1) and let a
be an initial approximation (sufficiently close) to a. In the
exponential method, we can find first approximation root
using the following formula. See [5] for more details.

—f(a) )
af'(a) )’

If %, is the required root, then the exponential for-
mula can be expressed as, for n=0, 1, 2, 3,...,

Xn+1 = Xp €Xp (_f(xn)> (3)
Xuf (%)
which has more than second-order convergence.
Suppose y,=x,_,, where x,; is the Newton—Raphson
formula, is predictor and corrector, then Traub [37] cre-
ated a new two-step iterative algorithm as follows, n=0,
1,2 3,..,

x:aexp(

S Gn)
7o’

It is shown in [37] that the Traub’s method has fourth-
order convergence. Since Newton—Raphson formula
repeated twice, the Traub’s method includes four com-
putations to execute the algorithm. Amir et al. extended
the Traub’s method to derivative-free algorithm by apply-
ing forward- and finite-difference schemes on Traub’s
method.

In this paper, we propose a new two-step iterative algo-
rithm similar to that of Amir et al., and the proposed
algorithm has more than fourth-order convergence.
The proposed method is created using the exponential
method designed by Thota et al. [5]. Using exponential
method, one can obtain an approximate root of a given
non-linear equation using the formula (3). The order of
convergence of the exponentiation method is more than
two, see [5] for more details. Using exponential method
(3), the proposed algorithm consists of the following
steps:

Xn+l = Yn —

IWETS
Yn = Xy €Xp X (%) ’ “
% _ _f(yn) )
=IO om )

One can observe that, this is a two-step iteration
method to calculate roots of a given non-linear equa-
tions. Since there are two steps in the algorithm and it
required four evaluations for its execution. The biggest
disadvantage of the algorithm (4) is computational cost
of each iteration which is more. In order to reduce the
high computational cost, we replace the first derivative
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by approximation and this suggests a novel derivative-
free algorithm. Hence, it can be applied easily to the
given non- linear equations where the first derivative is
not defined in the domain. We use the forward difference
approximation in the predictor to approximate the first
derivative as follows, here f(x,) >0,

S @n +f (x0) — f (x0) _
S )

Now, we use finite difference approximation in the cor-
rector step (i.e., in step 2) as follows

S ) —f ()
Yn — Xn

f/(xn) =

g(xn). (5)

f/()/n) = = h(%n, yn)- 6)

Substituting the Egs. (5)—(6) in algorithm (4), we obtain
a new efficient and derivative-free iterative algorithm to
calculate the approximate solution of a given non-linear
equation as follows

Y = X €XP ( _f(xn) ),
X8 (xn) )
i1 = Y eXp (‘f(yn)>
ynh(xmyn)

where g(x,) and k(x, y,) are as given (5)—(6). This is a
new iterative algorithm to find a root of transcendental
equations in two-step without involvement of any deriva-
tive. One of the advantages of the proposed algorithm is
existence of root where the first derivative does not exist
at some particular points in the domain, and another big
advance is the computational complexity. This method
has more than fourth order convergence and its conver-
gence analysis is presented in the following section.

Analysis of convergence

In this section, we show in the following theorem that
the order of converges of the proposed algorithm is five.
Let ICR be an open interval. To prove this, we follow the
proofs of ([2], Theorem 5, Theorem 6) or ([16], Theo-
rem 2, Theorem 3, Theorem 4).

Theorem 2 Let f: [ - R. Suppose a €1 is a simple root of
(1) and 0 is a sufficiently small neighborhood of a. Then
the iterative formula (7) produces a sequence of iterations
{x,: n=1, 2,...} with order of convergence four.

Proof Let.

3 —f (%) _ AC)
y_xexp( pos ),andR(x)—yexp( i >,

where
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_fEHf@) —f @)
fx) '

Since «a is a root of f(x), hence f («) =0. One can compute
that

L _fO) —f)
-8,

R(a) = «a,
R'(a) =0,
R'(x) =0,
R"(a) =0,
RY(«) # 0.

Hence the Algorithm (7) has fourth-order convergence,
by Theorem 1.

One can also verify that the order of convergence of
the proposed algorithm as in the following example.

Example 1 Consider the following equation.

flx) =x%—1. (8)

It has a root a= —1. We show, as discussed in proof of
Theorem 2, that the proposed algorithm has fourth-order
convergence. Following Theorem 2, we have

@A @) = +f;’(2; AL N B

_f(x) F=D+1)
y=xexp | —— | = xext?-2-1,
x8

h _SO-f® _ x( — G=D@t) >’

e *@2-2x-1) 4 ]

y—x
—xtel —3x3et 4x2e—t 4 a2el —x3 el yxel et yx
R(x) = yexp <ﬂ> = xe — xz(x;:lel)(e;ff) - - ,
yh
where
_ @-Dkx+D
T2 —2x—-1)
Now
Ra) =—-1=aq,
R'(a) =0,
R'(a) =0,
RW(OZ) =0,

R™(q) =8 #£0.

Hence, by Theorem 2, the algorithm in (7) has fourth-
order convergence.
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Numerical examples

Example 2 Consider a transcendental equation
e* + cos(x) — 1 =0 with x_0 = —2. Now we can com-
pute a real of the given equation using the proposed algo-
rithm (7) as follows.

Suppose  f(x) =e* + cos(x) —1, then we have
glxg) = LTG0 — 05246013002,
%o =0 exp (£ ) = —0.5900190724,
h(x0, y0) = LU0 _ 1 181617637 and,

Yo—%o

_ o) ) _
x1 =0 exp (520 ) = —1.025295284.

Similarly, we have the values in iteration 2:

Zf(xl +f(x1) —f(x1)

(%1) = 1.222059474,

S 7o)

y1 = x1 exp <_f (xl)) — —0.9298264088,
x18(x1)

h(x1,y1) _fov s _ 1.205191949,
y1— X1

X2 = y1€exp (_f(yl)> — —0.9237026911.
y1h(x1,51)

Iteration 3:

S @ +f(x2)) — f(x2)

(x2) = = 1.194895070,

£ Fx)

o = %2 €Xp <_f (xZ)) — —0.9236326626,
x28 (x2)

h(xa, 2) _SO)—St) 1.194879228,
Y2 — X2

X3 = ypexp (_f(”)> — —0.9236326590.
y2h(x2,y2)

One can obtain the function value at x; = —0.9236326590
as f (—0.9236326590) = —5.3608 x 1071, Hence the
required root x = —0.9236326590 is obtained in 3 itera-
tions using the proposed algorithm.

Example 3 Consider a polynomial equation to find a
real root.

0.986x> — 5.18x2 + 9.064x — 5.287 = 0 (9)

with x,=0.6. Following Example 2 using the proposed
algorithm (7), we have Iteration 1:
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g(xp) = 11.24874333,
yo = 0.749437179,

h(xo0,y0) = 3.427685909,

x1 = 1.101280164383, f(x1) = —0.270349537.

Other iterations values are

x7 = 1.387799514358,
x3 = 1.568877491071,
x4 = 1.753077607303,
x5 = 1.883259728433,
x6 = 1.922476516171,
x7 = 1.929827783304,
xg = 1.929846242848,

F(x2) = —0.048898877,
f(x3) = —0.00884392,
f(x4) = —0.004242231,
f(x5) = —0.00298145,
f(x6) = —0.000608725,
f(x7) = —1.59531E — 06,
f(xg) = —2.30926E — 14.

Hence, the required approximate root of the given equa-
tion (9) is x = 1.9298462428438.

Implementation of the proposed algorithm
Implementation in MS Excel

The proposed method can be computed in Excel eas-
ily as follows. The number of iterations n, initial guess
xn:f(xn)»g(xn)»yn;f(yn)rh(xn; yn)’xn+l and f (%441)

are placed in Excel cells, for example, in A5, B5,
C5, D5, E5, F5, G5, H5 and I5 respectively. Enter the
respective values in 6th row, i.e, n = 0, x, “=f(B6)’,
“=(f(B6+ C6) — C6)/C6", “=B6*EXP((—C6)/(B6*D6))’,
“=f(E6), “=(F6—-C6)/(E6—B6), “=E6*EXP((—F6)/
(E6*@G6))” and “=f(H6)” respectively in A6-16. For sec-
ond iteration, we need to replace x, by x,,; in B7 using
the command “=H6". The last columns, C6-16, are drag
down to get next iteration value. Finally, drag down the
entire 8th row, A7-17, until the required number of
iterations, see Fig. 1. Sample computations using MS
Excel are presented in the following section.

Example 4 Consider the Eq. (9) presented in Example
3 for sample computations using MS Excel.

f(x) = 0.986x° — 5.181x% + 9.067x — 5.289

with x,=0.6. Following the procedure in Section, we have
the results as in Fig. 1.
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A B C D E F G H |

1
2 f(x) = 0.986x"3 - 5.18x2 + 9.064 x - 5.287, x0=0.6
4
S n xn Jfixn) g(xn) n Jon) Ii(xn,yn) xn+l Slxn+l)
6 0 0.6 -1.500984 11.24874333 0.749437179 -0.988760286 3.427685909 1.101280164383 -0.270349537
7 1 1.10128016 | -0.27034954 1.835110097 1.25890895 -0.118337969 0.964364262 1.387799514358 -0.048898877
8 2 1.38779951 | -0.04889888 0.438659824 1.503872154 -0.017316046 0.272095391 1.568877491071 -0.00884392
9 3 1.56887749 | -0.00884392 0.095898506 1.663863536 -0.004225489 0.048622206 1.753077607303 -0.004242231
10 | 4 1.75307761 | -0.00424223 | -0.007626466 1.276437611 -0.106331922 0.214186163 1.883259728433 -0.00298145
11 5 1.88325973 | -0.00298145 0.042551232 1.954646796 0.002483039 0.076547328 1822476516171 -0.000608725
12 6 192247652 | -0.00060873 0.078510277 1.930245617 3.46028E-05 0.082805971 1.929827783304 -1.59531E-06
13 7 1.92982778 | -1.5953E-06 0.086411605 1.929846245 2.02968E-10 0.086422185 1.929846242848 -2.30926E-14
14 8 192984624 | -2.3093E-14 0 #DIV/0! #DIV/0! #DIV/0! #DIV/0! #DIV/0!

Fig. 1 Proposed algorithm in Excel

Implementation in Maple

EXPEXP := proc (a, Eq, eps, n)
local al, £, xn, g, y, h, i;

0;

evalf (a);

i
al :=

f := unapply(lhs(Eq), x);

do
g := (f(al+f(al))-f(al))/£f(al);
y := al*exp(-f(al)/(al*qg)):
h := (f(y)-£f(al))/(y-al);
xn := y*exp(-f(y)/(y*h));

i = i+1;
if £(xn) = 0 or f(y) =
return xn
else al := xn
end if;
printf ("Iteration %g : x =
end do

end proc

%g \n", i, =xn)

0 or xn-al < eps or i = n then

Example 5 Consider the equation e*+ cos(x) — 1 =0 given in Example 2 for sample computations in Maple.
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> EXPEXP (-2, exp(x)+cos(x)-1 = 0, 10.0%(-10), 5)
ITteration 1 : x = -1.0253
ITteration 2 : x = -0.923703

-0.9236326590

Conclusion

In this paper, we proposed a new root-finding algo-
rithm to solve the nonlinear equations. The main idea of
this algorithm is based on the exponential method. The
proposed algorithm doesnt have any derivative even
though exponential method is involved, and moreover
it converges fast. Numerical examples are presented to
illustrate and validation of the proposed methods. Imple-
mentation of the proposed algorithm in Excel and Maple
is discussed with sample computations.

Limitations

In this paper, we focused on MS Excel and Maple imple-
mentation. However, the proposed algorithms can be
implemented in many mathematical software tools such
as Mathematica, SCILab, Matlab, etc.

Abbreviation
MS Excel  Microsoft Excel
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