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and the development of cortical auditory 
evoked potentials of preterm infants 
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Abstract 

Objective:  Preterm infants are exposed earlier than their term counterparts to unattenuated sounds from the exter-
nal environment during the sensitive period of the organization of the auditory cortical circuitry. In the current study, 
we investigate the effect of preterm birth on the course of development of auditory cortical areas by evaluating how 
gestational age (GA) correlates with the latency of the P1 component of the cortical auditory evoked potential (CAEP) 
of two experimental groups measured at 1 or 3 months of age.

Results:  Our sample consisted of 23 infants delivered at GA ranging from 31.28 to 41.42 weeks and separated into 
two groups evaluated transversally at 1 or 3 months of corrected age (CA). In the group evaluated at 1-month CA, the 
latency of the component P1 was similar in both terms and infants classified as late-preterm (GA > 32 weeks). How-
ever, in the group evaluated at 3 months CA, P1 latency was significantly smaller in preterms. These preliminary results 
suggest an acceleration of the development of auditory cortical pathways in preterms, probably due to their early 
exposure to socially relevant auditory stimuli from the external environment.
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Introduction
The remarkable adaptability of the human brain results 
from the interplay of both evolutionary and developmen-
tal mechanisms. Genetically determined developmental 
programs set up the stage upon which cortical circuits 
are sculpted by experience and learning, particularly 
during the sensitive periods of synaptic plasticity [1–3]. 
The primary auditory cortex is structurally mature as 
early as 28  weeks of gestation [4] and already responds 

electrically to sounds in the low-frequency range associ-
ated with speech [5, 6]. This could explain why newborns 
can discriminate their mothers’ voice immediately after 
birth [7, 8].

While our understanding of the prenatal emergence of 
the cortical organization has traditionally depended on 
animal-based research, due to ethical concerns, preterm 
birth offers a unique opportunity to investigate this issue 
in human subjects as well. The extra period of sensory 
stimulation afforded by preterms allows the earlier matu-
ration of binocular vision and thalamocortical connectiv-
ity to the primary somatosensory cortex [9, 10].

Preterm birth is characterized by delivery before 
37  weeks of GA [11, 12] and the following sub-catego-
ries of preterms are proposed, based on GA: extremely 
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preterm (< 28  weeks), very preterm (28 to < 32  weeks), 
and moderate to late preterm (32 to < 37  weeks) [13]. 
Most preterm births (> 70%) are considered late-preterm 
(34 to < 37 weeks) [14] and they account for about 85 of 
all births [15]. Since late-preterm births occur during 
the period when cortical volume increases by 50% (34–
40 weeks), there is a pressing need to understand the pos-
sible effects of premature exposure to the extrauterine 
environment in this population [15, 16].

The cortical auditory evoked potential (CAEP) is char-
acterized by waveforms with positive and negative deflec-
tions occurring between 0 and 300 ms after sound onset 
in adults. The earliest components are called P1 and N1 
and are already present in newborns [17, 18]. The latency 
of the P1 component shows a steady decrease until it sta-
bilizes in adulthood [19–22] and has been proposed as 
a biomarker for the maturation of cortical sensory path-
ways [17, 21, 23]. In the present study, we evaluate the 
development of the cortical auditory pathway of late pre-
terms in the first 3 months of life.

Main text
Methods
Subjects
This study was approved by the Research Ethics Com-
mittee of the Federal University of Rio Grande do Norte 
(#340.110) and written informed parental consent was 
obtained on behalf of all participants. The participants 
were 23 newborns (GA: 31.28–41.42  weeks) recruited 
at the Maternity School of the Federal University of 
Rio Grande do Norte according to the following inclu-
sion criteria: no signs of hearing problems during rou-
tine maternity screening, normal Auditory Brainstem 
Responses (ABR) with a click and normal threshold for 
ABR tone burst at 500 Hz, 1000 Hz and 4000 Hz in both 
ears, normal Distortion Product Otoacoustic Emissions 
(DPOAE) and tympanometry result with curve type A in 
both ears. Table 1 shows the demographic characteristics 
and birth outcomes of mothers and infants.

Procedure and stimuli
The design of the study was cross-sectional and the sub-
jects were evaluated at 1 or 3  months after birth and 
were divided into two groups according to their GA: pre-
term or term. For the CAEP recordings, subjects were 
accommodated either on a car seat or in the caregivers’ 
lap within a sound-attenuated room. All tests were per-
formed while infants were in stage 4 of the Neonatal 
Behavioral Assessment Scale [24]: alert, awake state.

We used ER-3A insert phones (Etymotic Research, 
Inc.) for sound delivery to the right ear and the CAEP 
recordings were performed with a Smart EP USB Jr sys-
tem with two channels (Intelligent Hearing Systems, 

Inc.). The CAEP was recorded on channel A, while chan-
nel B was used to register eye movements for off-line 
artifact removal and to determine the rejection level for 
each session. Disposable surface electrodes were used 
for the recording procedures. The CAEP was recorded at 
the midline (Cz) and referenced to the right mastoid. The 
ground electrode was placed at the left mastoid. All elec-
trode impedances were less than 3  kΩ. A minimum of 
150 stimuli was presented and the resulting signal, within 
an analysis window of − 100 ms pre-stimulus and 500 ms 
post-stimulus, was averaged at both 70 dB NA and 0 dB 
NA after band-pass filtering from 1 to 30 Hz. The gain in 
both channels was 100,000. The rate of the stimulus was 
1.9 s.

Auditory responses were recorded in response to a/da/
speech stimulus with an intensity of 70 dB HL and with 
an interstimulus interval of 526.00 ms. The/da/sound was 
recorded with the software praat (https​://www.praat​.org) 
using a unidirectional microphone in an acoustically iso-
lated room [25]. The latency of component P1 was deter-
mined as the first positive peak after 50 ms, following a 
negative decline. The latency of the P1 component was 
confirmed independently by two experienced judges.

Statistical analysis
Only 2-sided tests and nonparametric statistical tests 
were used due to the non-normal distribution of vari-
ables and/or sample size. Sample characteristics were 
compared using Pearson’s Chi square test or Fisher’s 
exact test. Results are expressed as mean ± standard devi-
ation. Samples’ comparison at 1- and 3-months CA were 
performed with a two-tailed Mann–Whitney rank sum 
U test. The relationship between GA and p1 latency was 
assessed with the Spearman correlation (r). The signifi-
cance level was set at 0.05.

Results
P1 latency is not correlated with GA at both 1 (rs = 0.44, 
p = 0.183) and 3 (rs = 0.49, p = 0.109) months CA. We 
computed linear regression lines to fit the P1 latency data 
(Fig.  1a) and though the slopes of regression lines were 
not significantly different (p = 0.63) (see Additional file 1: 
Table S1), their elevations are significantly different from 
each other (p < 0.001) (Fig. 1).

According to Table  1, the demographic characteris-
tics and birth outcomes of terms and preterms are sim-
ilar, except for birth weight, which is lower in preterms 
(p < 0.05). Our sample is composed mostly of moderate 
to late preterms (GA 32 to < 37 weeks), which represent 
about 10% of all births [26]. Their prematurity ranged 
from 0.15 to 5.72 weeks (average 2.78 ± 1.58 weeks).

For the infants evaluated at 1-month, the aver-
age latency of the P1 component was not significantly 

https://www.praat.org
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Table 1  Demographic characteristics and birth outcomes

a  11 missing values
b  y.o.: years old
c  5 missing values
d  31.28 weeks
e  3 missing values
f  8 missing values
g  3 missing values
h  Brazil Economic Classification Criteria (https​://www.abep.org/crite​rio-brasi​l)
i  9 missing values; jAll infants stayed in NICU for 2 days

Total sample, N = 23 Preterm, n = 12 Term, n = 11 p value
n (%)

Maternal agea

 < 34 (y. o.)b 8 (66.67) 2 (66.67) 6 (66.67) > 0.05

 > 35 (y. o.) 4 (33.33) 1 (33.33) 3 (33.33)

Education

 Less than middle-school 17 (94.44) 8 (100.00) 9 (90.00) > 0.05

 More than middle-schoolc 1 (5.56) 0 (0.00) 1 (10.00)

Sex of child

 Male 10 (43.48) 6 (46.16) 4 (40.00) > 0.05

 Female 13 (56.52) 7 (53.84) 6 (60.00)

Gestational age

 31 to < 37 weeks 13 (56.52) 13 (100.0) 0 (0.00) < 0.05

 > 37 weeks 10 (43.48) 0 (0.00) 10 (100.0)

Birth weighte

 < 2500 g 10 (50.00) 10 (83.33) 0 (0.00) < 0.05

 > 2500 g 10 (50.00) 2 (16.67) 8 (100.00)

Family income (in minimum wages)f

 < 1 8 (50.00) 3 (42.85) 5 (55.55) > 0.05

 1 to 5 8 (50.00) 4 (57.15) 4 (44.45)

Socioeconomic statusg,h

 A, B, and C 6 (30.00) 1 (9.10) 5 (55.55) < 0.05

 D and E 14 (70.00) 10 (90.90) 4 (44.45)

NICU admissioni

 No 6 (42.85) 3 (50.00) 3 (37.50) > 0.05

 Yesj 8 (57.15) 3 (50.00) 5 (62.50)

Fig. 1  a P1 latencies recorded at 1- and 3-months CA as a function of GA. Linear regression lines are superimposed on the raw data for the CAEP 
recordings at 1- or 3-months CA, respectively. b Latency of the P1 component of the CAEP of preterm (GA < 37 weeks) and term (GA ≥ 37 weeks) 
infants recorded at 1- or 3-months CA. Lines represent the median. *p < 0.05

https://www.abep.org/criterio-brasil
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different between terms (309.40 ± 78.32  ms) and pre-
terms (295.30 ± 47.66  ms) (U = 10, p = 0.4242) (Fig.  1b). 
However, for the group evaluated at 3-months, aver-
age P1 latency was 240.80 ± 57.67  ms for terms and 
171.1 ± 26.44  ms for preterms, respectively (Fig.  1b), 

and significantly lower for the latter (U = 5, p < 0.05). 
The grand average CAEP waveforms at 1- and 3-months 
are shown in Fig.  2a, b, respectively. The latency of 
the P1 component at 3-months is smaller than at 
1-month for the preterm group (176.00 ± 29.16  ms 

Fig. 2  Grand average waveforms of the CAEP of the term and preterm groups recorded at 1- (a) and 3-months (b) CA. The arrows indicate the P1 
component
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vs 295 ± 47.65  ms; U = 1, p = 0.005), but not the term 
group (247.00 ± 64,64  ms vs. 309.40 ± 78.31  ms; U = 17, 
p = 0.1111).

Discussion
The maturation of cortical circuits is coordinated by 
genetic and experience-dependent mechanisms [27]. The 
susceptibility of developing cortical circuits to environ-
mental factors begins in the womb [28] and this is under-
scored the capacity of human newborns to immediately 
interact with their caregivers [7, 29, 30].

The last trimester of gestation is marked by rapid corti-
cal growth [31, 32]. While the premature exposure to the 
extrauterine environment during this period may inter-
fere with the maturation of association areas and increase 
the risk of neurodevelopmental impairment [33], the rate 
of cortical maturation is not synchronous across corti-
cal regions [4, 34]. In the primary auditory cortex, for 
instance, developmental changes in cortical microstruc-
ture have largely occurred by 28  weeks of gestation [4]. 
This differential pattern of cortical maturation might 
explain why non-primary areas are more vulnerable to 
disruption due to premature exposure to the extrauterine 
environment [35, 36] while primary areas may experience 
an acceleration in maturation [9, 10]. According to our 
findings (see Fig.  1b), the earlier exposure to extrauter-
ine sound stimulation in late-preterm infants probably 
speeds up the maturation of auditory cortical circuits and 
improves the efficiency of auditory input processing in 
this population during the first months of postnatal life 
[37].

An earlier study [38] had already reported that P1 
latency was similar in 1-month-old terms and preterms. 
However, our study is the first to show that P1 latency in 
a group of 3 months old infants is shorter in moderate-
to-late preterms (see Fig. 1b). Previous works had shown 
that P1 latency steadily decreases from around 250 ms in 
1-month-old infants towards 100  ms in adults [39, 40]. 
The smaller P1 latency of preterms in the 3-month CA 
group probably reflects the accelerating maturational 
effects of early exposure to the extrauterine environment, 
which usually includes speech stimulation [41].

Other studies had already investigated the effect of pre-
term birth on the maturation of auditory cortical path-
ways in pre-schoolers using P1 as a biomarker [42–45]. 
However, the preterms in those studies were classified as 
extreme/very-preterm and the poor results they observed 
in comparison to controls may have been influenced by 
concurrent clinical conditions associated with extreme 
prematurity [45].

The neural mechanisms associated with the accelerat-
ing effects of preterm birth on the maturation of corti-
cal pathways remain to be determined. One possibility 

is an increase in the effectiveness of thalamocortical 
connectivity with the primary auditory cortex [1] due 
to precocious exposure to the external social environ-
ment. A similar effect was reported previously in the 
primary somatosensory cortex of very preterm infants 
(GA < 33  weeks) following the premature exposure to 
activities such as breastfeeding and bottle-feeding [10].

A previous study [46] had shown that the latencies of 
components N1 and P2 are shorter in term than in pre-
term infants at 3 months of GA. While this result is the 
opposite we observed in the present work, we suppose 
this difference stems from the choice of auditory stimuli 
and the biomarker for physiological maturation. In that 
study [46], the stimulus was a click while we used speech 
stimuli (the phoneme/da/). Also, we used the latency of 
the P1 component as a biomarker, the gold standard for 
evaluating the maturation of cortical auditory pathways 
[17, 21, 23, 47, 48].

Our results are corroborated by other studies that show 
the advantages of prematurity in auditory recognition 
memory [49], binocular vision [9], and language compre-
hension [50]. Thus, even though preterm birth is asso-
ciated with many neurodevelopmental risks, especially 
in small for gestational age (SGA) infants [32], the early 
exposure to socially relevant stimuli can enhance the 
maturation of sensory pathways [51]. Though our results 
differ from studies using visual evoked potentials (VEP) 
that show that preterm birth negatively affects the devel-
opment of visual pathways [52, 53], the preterm group 
in those studies was composed of very preterm infants, 
which may have been SGA at birth.

Conclusion
The present results reinforce the notion that early expo-
sure to socially relevant environments contributes to the 
adaptive maturation of sensory pathways. This under-
standing is of practical importance since preterm birth 
is on the rise worldwide. Many preterms need to remain 
hospitalized in neonatal intensive care units (NICU), 
isolated from their parents, and subject to continuous 
loud noises or visual deprivation [54]. These conditions 
can be further detrimental to the maturation of cortical 
sensory circuits due to their effect on the levels of stress 
hormones. Fortunately, the young brain is remarkably 
resilient and can overcome early insults when provided 
access to appropriate care, stimulation, and follow-up 
measures [55].

Limitations
The main limitations of the present work are (1) the small 
sample number, (2) the need to  use a cross-sectional, 
instead of a longitudinal experimental design, and (3) the 
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fact that we only considered the role of extrinsic variables 
(environmental exposure), while it is known that cortical 
maturation is influenced by intrinsic variables as well.

Supplementary information
Supplementary information accompanies this paper at https​://doi.
org/10.1186/s1310​4-020-05129​-8.
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latencies.
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