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Bacillus subtilis RarA forms damage‑inducible 
foci that scan the entire cell
Rogelio Hernández‑Tamayo1,2 and Peter L. Graumann1,2* 

Abstract 

Objectives:  Little is known about the activity and dynamics of ATPase RarA in B. subtilis, proposed to act at stalled 
DNA replication forks due to DNA damage. We performed fluorescence microscopy time lapse experiments with a 
functional RarA-mVenus fusion to visualize the dynamics of RarA during conditions that generate DNA damage.

Data description:  In exponentially growing cells, we observed that 15% of the cells contained single RarA-mV (mVe‑
nus fluorescent fusion) foci moving throughout the entire cell between 3 min intervals. This percentage remained 
constant at different time points, indicating that focus formation during unperturbed growth is maintained at about 
a constant rate. When cells were exposed to stress conditions, the population of cells containing RarA-mV foci tripled 
after 60 min. Cells exposed to two DNA-damaging drugs, to 5 mM MMS or to 0.5 mM H2O2, showed a similar type of 
response, with RarA-mVenus foci moving more slowly than during unperturbed growth. It is likely that RarA-mV con‑
tributes to the repair of H2O2-induced lesions, and to a minor extent to MMS-induced lesions. The presence of foci in 
growing cells suggests that RarA also plays a role during the cell cycle, at least in a fraction of cells, possibly contribut‑
ing to heterogeneity of response to DNA damage.
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Objective
The bacterial  replication-associated  recombination 
protein A, RarA, belongs to a highly conserved fam-
ily of ATPases, including the yeast Mgs1 and mammal 
WRNIP1 proteins [1]. The B. subtilis rarA gene, which is 
monocistronic, is constitutively expressed, but its expres-
sion is markedly enhanced by stressors such as diamide, 
ethanol, high salt or H2O2 [2]. RarA protein plays an 
important, but poorly understood role in genome main-
tenance [3]. Although several studies agreed with the 
idea that RarA acts in both replication and recombina-
tion processes, the concrete function is still unknown. E. 
coli RarA, which is co-expressed with FtsK, co-localizes/
interacts with SeqA, RecQ [4], UvrD [5] or RecA [6] and 
may act at blocked forks in certain replication mutants 
[5, 6]. In  vitro, E. coli RarA interacts with single strand 
binding (SSB) protein and shows helicase activity that 

preferentially unwinds 3′-ends from dsDNA ends or 
ssDNA gaps, suggesting that RarA could act at stalled 
replication forks [1, 7]. One common point of RarA stud-
ies is the complex scenario required to produce a clear 
phenotype that explains all observations.

Data description
A C-terminal fusion of the fluorescent protein mVenus 
to RarA was generated by cloning the 3′-end 500  bp of 
rarA (excluding the stop codon) into plasmid pSG1164 
[8], which was integrated into the rarA gene locus on the 
B. subtilis chromosome by homologous recombination. 
We have used epifluorescence microscopy time-lapse to 
monitor foci formation and dynamics of RarA before and 
after stress conditions at 30 °C (OD600 = ~ 0.3). Cells were 
either treated with 0.5  mM H2O2, or with 5  mM MMS 
(both obtained from Sigma Aldrich) or were not treated. 
For fluorescence microscopy, B. subtilis cells were grown 
in S750 minimal medium [9] at 30 °C under shaking con-
ditions until exponential growth. Three microliters of 
cells were transferred on an agarose slide—a glass slide 
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(microscope slides standard, Roth) coated with an aga-
rose layer (S750 minimal medium, 1% v/v agarose) and 
covered with a cover slip (Roth). Fluorescence micros-
copy was performed using a Zeiss Observer Z1 (Carl 
Zeiss) with an oil immersion objective (100× magnifi-
cation, NA 1.45 alpha Plan-FLUAR) and a CCD camera 
(CoolSNAP EZ, Photometrics), or with a BX51 micro-
scope (Olympus) with a Cool Snap EZ camera (Photo-
metrics) and a xenon light source (Olympus). Electronic 
data were processed using Metamorph 7.5.5.0 software 
(Molecular Devices, Sunnyvale, CA, USA), which also 
allows the calibration of the fluorescence intensity and 
pixel size to determine the cell length, time-lapse epifluo-
rescence microscopy of RarA-mV were collected every 
3 min.

In epifluorescence, an accumulation of fluorescent 
molecules is needed for detection, so it is reasonable to 
say that in exponentially growing cells, and to a higher 
extent in response to drugs that produce DNA dam-
age, RarA is recruited to mobile assemblies within the 
cell. In case of induced DNA damage, RarA is assembled 
into foci in twice to three times as many cells than under 
exponential growth conditions (Table 1). The intensity of 
the response, considered as the increase of the percent-
age of cells containing RarA-mV foci, was 100% higher 
after MMS (from 15 to 30%, n = 125), and H2O2 addition 
produced an increase in the population of cells contain-
ing foci to about 40% of all cells imaged (n = 120). Mov-
ies 1 to 3 [10–12] show that RarA-mVenus foci moved 
throughout the cells with no apparent spatial specific-
ity (Table 1, data file 1–3). As under exponential growth 
conditions [13], RarA-mVenus foci in hydrogen perox-
ide-stressed cells moved continuously with stochastic 
halts, and moved through the entire space of the cell. In 
about 10% of the cells containing foci, these appeared at 
some time point of the experiment or disappeared; in the 
remaining cells, foci were continuously present. Visually, 
movement of RarA could not be distinguished between 
stressed and non-stressed cells, merely the number of 
cells containing foci increased in cells repairing induced 
damage. However, automated tracking of focus move-
ment and Gaussian mixture model (GMM) analyses 
(Data set 1) [14] showed two Gaussian distributions, 

corresponding to a slower/static and a faster/mobile frac-
tion of RarA-mV assemblies, with diffusion constants 
of Dstatic = 3.12  µm2  min−1 or Dmobile = 31.8  µm2  min−1, 
under different growth conditions. Analyses of dynamics 
of single particles and determination of static and mobile 
fractions were performed using the Matlab-based graphi-
cal user interphase program SMTracker [15]. Compared 
to unperturbed growth, movement of RarA-mV became 
considerably slower after addition of MMS or H2O2: in 
contrast to 78% dynamic and 22% slow/static foci dur-
ing exponential growth, MMS-treated cells showed 34% 
dynamic and 66% static foci, and H2O2-treated cells 
36% dynamic and 64% static foci. RarA molecules never 
arrested for many minutes but continued scanning the 
cell, and were much longer-lived than e.g. RecN foci [16].

Limitations
This study extends observation of RarA-mVenus foci 
during unperturbed growth [13]. The study reveals the 
movement of an assembly of RarA molecules in a sub-
set of a cell population; it does not describe the dynam-
ics of freely diffusing molecules. Although clearly, foci 
are only present in a minority of cells, even after stress 
induction, very small assemblies may be present in more 
cells, but may be undetectable through epifluorescence 
microscopy.

Abbreviations
Mgs1: maintenance of genome stability 1; WRNIP1: Werner [WRN] Interact‑
ing Protein 1; MMS: methyl methane sulfonate; H2O2: peroxide water; GMM: 
Gaussian mixture model.
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Table 1  Overview of data files/data sets

Label Name of data file/data set File types (file 
extension)

Data repository and identifier (DOI 
or accession number)

Data file 1 [10] RarA-mV WT Time lapse AVI https​://doi.org/10.6084/m9.figsh​are.74615​87.v3

Data file 2 [11] RarA-mV MMS Time lapse AVI https​://doi.org/10.6084/m9.figsh​are.74616​92.v2

Data file 3 [12] RarA-mV H2O2 Time lapse AVI https​://doi.org/10.6084/m9.figsh​are.74616​98.v2

Data set 1 [14] Gaussian mixture model (GMM) RarA-mV Image tif https​://doi.org/10.6084/m9.figsh​are.74669​87.v3
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