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Abstract 

Objectives: Transcription of eukaryotic protein-coding genes by RNA polymerase II (pol II) is a highly regulated 
process. Most human genes have multiple poly(A) sites, which define different possible mRNA ends, suggesting the 
existence of mechanisms that regulate which poly(A) site is used. Poly(A) site selection may be mediated by cleavage 
factor I (CFIm), which is part of the cleavage and polyadenylation (CPA) complex. CFIm comprises CFIm25, CFIm59 
and CFim68 subunits. It has been documented that the CPA complex also regulates pol II transcription at the start 
of genes. We therefore investigated whether CFIm, in addition to its role in poly(A) site selection, is involved in the 
regulation of pol II transcription.

Data description: We provide genome-wide data of the effect of reducing by 90% expression of the CFIm25 con-
stituent of CFIm, which is involved in pre-mRNA cleavage and polyadenylation, on pol II transcription in human cells. 
We performed pol II ChIP-seq in the presence or absence of CFIm25 and with or without an inhibitor of the cyclin-
dependent kinase (CDK)9, which regulates the entry of pol II into productive elongation.
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Objective
The production of a eukaryotic protein-coding mRNA 
requires the recognition of a specific poly(A) site 
sequence at the end of the gene. More than half of all 
human genes contain more than one poly(A) site with 
evidence of widespread regulation of gene expression 
through alternative polyadenylation [1]. Poly(A) site rec-
ognition is essential for pre-mRNA cleavage and poly-
adenylation and requires around 85 proteins [2]. Four 
multi-subunits complexes are essential for pre-mRNA 
cleavage: cleavage and polyadenylation specificity factor 
(CPSF), cleavage stimulation factor (CstF), and cleavage 
factors I (CFIm) and II (CFIIm) [3]. The role of CFIm in 
cleavage is still unclear but this complex binds 40–50 nt 
upstream of the poly(A) site [4]. CFIm comprises two 
CFIm25 subunits, which binds RNA, and two larger sub-
units, CFIm59 and CFIm68 [5, 6].

Previous studies have shown that depletion of CFIm25 
or CFIm68 promotes proximal poly(A) site usage and 
thus a shortening of the 3′untranslated region (3′UTR) 
of many mRNAs [7–9]. This suggests that CFIm normally 
promotes recognition of the distal poly(A) site. Misreg-
ulation of CFIm has been linked to both tumorigenic-
ity of glioblastoma and some neuropsychiatric diseases 
through changes to mRNAs 3′UTR length [10, 11]. Pro-
teins involved in pre-mRNA cleavage, such as the CPSF 
complex, regulate pol II activity at the beginning and end 
of the transcription cycle [12]. To determine if deple-
tion of CFIm25 also affects pol II transcription, we used 
a CRISPR/Cas9 approach to reduce the expression of 
CFIm25 and performed pol II ChIP-seq in the absence or 
presence of a CDK9 inhibitor, which is the kinase regulat-
ing pol II entry into productive elongation [13]. Under-
standing the function of CFIm in pol II transcription 
could provide insights into transcriptional changes when 
CFIm is misregulated. Our data should be of interest to 
the scientific community working on pol II transcription 
and co-transcriptional processes.
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Data description
HEK293 cells were cultured in Dulbecco’s Modified 
Eagle’s Medium (DMEM, Sigma) supplemented with 
10% fetal bovine serum (FBS, Gibco) and 100  units/ml 
penicillin + 100 µg/ml streptomycin (Gibco). Two of the 
three copies of the CPSF5 gene that encodes CFIm25 
were knocked out using CRISPR/Cas9 gene editing and 
confirmed by sequencing of the edited CPSF5 locus and 
by western blotting with an antibody against CFIm25 
(NUDT21 10322-1-AP, rabbit polyclonal, ProteinTech), 
which indicated an approximately 90% reduction in 
CFIm25 expression in the CFIm25KO cells. HEK293 and 
CFIm25KO cells were treated prior to ChIP-seq with 
DMSO or 100 µM DRB (Sigma) for 30 min (Table 1).

ChIP was performed as previously described [14]. 
Briefly, 293 and CFIm25KO cells were crosslinked at 
room temperature with 1% formaldehyde and quenched 
with 125  mM glycine for 5  min. Nuclear extracts were 
sonicated twice for 15  min at high amplitude, 30  s 
ON/30  s OFF using a Bioruptor (Diagenode). 80  μg of 
chromatin was incubated overnight at 4  °C with 2  μg 
of an antibody against IgG (sc-2027, Santa Cruz) as 
an IP negative control or against pol II (sc-899X, Santa 
Cruz). After recovery of immune complexes with BSA-
saturated protein G Dynabeads and extensive washes, 
crosslinks were reversed by incubation at 65  °C for 5 h. 
After ethanol precipitation and proteinase K treatment, 
DNA was purified using a PCR Purification Kit (Qiagen). 
ChIP samples were analysed by deep sequencing using 
Illumina HiSeq 4000 75 bp paired-end reads (Wellcome 
Trust Centre for Human Genetics, University of Oxford).

To analyse data, adapters were trimmed with Cuta-
dapt v. 1.9.1 [15] with the following constant parameters: 
--minimum-length 10 –q 15, 10–-max-n 1. Obtained 

sequences were mapped to the human hg19 reference 
sequence with Bowtie2 v. 2.2.5 [16]. Unmapped reads 
were removed with SAMtools v. 1.3.1 [17]. Mapped 
reads were then de-duplicated using Picard to remove 
PCR duplicates. Bam files were sorted and indexed with 
SAMtools. The total number of mapped reads was com-
prised between 33 and 59 million paired end reads. Big-
wig files were created after data normalization to Reads 
Per Genomic Content (RPGC) by employing deepTools2 
v. 2.2.4 [18] bamCoverage tool with the following param-
eters: -bs 10-normalizeTo1× 2451960000-e–p max.

Limitations
The effect of CFIm25 KD on pol II transcription is not 
as strong as the effect observed with knock-down of 
CFIm68, another member of the CFIm complex [8]. The 
knockdown efficiency of CFIm25 was about 90%, which 
may not be sufficient to completely abrogate the role of 
CFIm25 in regulation of pol II transcription. The ChIP-
seq was also performed only once and in only one cell 
line; HEK293.

Abbreviations
Pol II: RNA polymerase II; DRB: 5,6-dichlorobenzimidazone-1-β-d-
ribofuranoside; ChIP: chromatin immunoprecipitation; RPGC: reads per 
genomic content; DMEM: Dulbecco’s Modified Eagle’s Medium; FBS: fetal 
bovine serum; 3′UTR : 3′ untranslated region; CDK9: cyclin-dependent kinase 9; 
CPA: cleavage and polyadenylation complex; CFIm: cleavage factor I.
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Table 1 Overview of data files

Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or accession number)

Data file 1 293 DMSO Input Fastq.gz (raw files), bigwig (processed files) ENA accession number (fastq.gz): PRJNA 49009 3
GEO accession number (bigwig): GSE11 9712

Data file 2 293 DMSO Pol II Fastq.gz (raw files), bigwig (processed files) ENA accession number (fastq.gz): PRJNA 49009 3
GEO accession number (bigwig): GSE11 9712

Data file 3 293 DRB Input Fastq.gz (raw files), bigwig (processed files) ENA accession number (fastq.gz): PRJNA 49009 3
GEO accession number (bigwig): GSE11 9712

Data file 4 293 DRB Pol II Fastq.gz (raw files), bigwig (processed files) ENA accession number (fastq.gz): PRJNA 49009 3
GEO accession number (bigwig): GSE11 9712

Data file 5 CFIm25KO DMSO Input Fastq.gz (raw files), bigwig (processed files) ENA accession number (fastq.gz): PRJNA 49009 3
GEO accession number (bigwig): GSE11 9712

Data file 6 CFIm25KO DMSO Pol II Fastq.gz (raw files), bigwig (processed files) ENA accession number (fastq.gz): PRJNA 49009 3
GEO accession number (bigwig): GSE11 9712

Data file 7 CFIm25KO DRB Input Fastq.gz (raw files), bigwig (processed files) ENA accession number (fastq.gz): PRJNA 49009 3
GEO accession number (bigwig): GSE11 9712

Data file 8 CFIm25KO DRB Pol II Fastq.gz (raw files), bigwig (processed files) ENA accession number (fastq.gz): PRJNA 49009 3
GEO accession number (bigwig): GSE11 9712

https://www.ebi.ac.uk/ena/data/view/PRJNA490093
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119712
https://www.ebi.ac.uk/ena/data/view/PRJNA490093
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119712
https://www.ebi.ac.uk/ena/data/view/PRJNA490093
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119712
https://www.ebi.ac.uk/ena/data/view/PRJNA490093
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119712
https://www.ebi.ac.uk/ena/data/view/PRJNA490093
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119712
https://www.ebi.ac.uk/ena/data/view/PRJNA490093
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119712
https://www.ebi.ac.uk/ena/data/view/PRJNA490093
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119712
https://www.ebi.ac.uk/ena/data/view/PRJNA490093
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE119712
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