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Abstract 

Objective: Human adenoviruses are small double stranded DNA viruses that provoke vast array of human diseases. 
Next generation sequencing techniques increase genomic data of HAdV rapidly, which increase their serotypes. The 
complete genome sequence of human adenovirus shows that it contains large amount of proteins with unknown 
cellular or biochemical function, known as hypothetical proteins. Hence, it is indispensable to functionally and struc-
turally annotate these proteins to get better understanding of the novel drug targets. The purpose was the charac-
terization of 38 randomly retrieved hypothetical proteins through determination of their physiochemical properties, 
subcellular localization, function, structure and ligand binding sites using various sequence and structure based 
bioinformatics tools.

Results: Function of six hypothetical proteins P03269, P03261, P03263, Q83127, Q1L4D7 and I6LEV1 were predicted 
confidently and then used further for structure analysis. We found that these proteins may act as DNA terminal pro-
tein, DNA polymerase, DNA binding protein, adenovirus E3 region protein CR1 and adenoviral protein L1. Functional 
and structural annotation leading to detection of binding sites by means of docking analysis can indicate potential 
target for therapeutics to defeat adenoviral infection.
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Introduction
Human adenoviruses are non-enveloped dsDNA viruses 
of almost 35 kb in size [1]. HAdV can infect a variety of 
tissues and cause a wide range of complications like gas-
troenteritis, hepatitis, myocarditis, keratoconjunctivitis 
and pneumonia [2, 3]. It is contagion in nature which 
occurs through direct contact or fomites and virus is 
also resistant to various physical and chemical agents. 
Children younger than the age of 5  years and immune 
compromised persons especially the pediatric patients 
are most susceptible to these viruses. Worldwide 5–7% 
respiratory tract infections are ascribed by HAdV in 

pediatric patients [4] and persons of all ages are suscepti-
ble to infections caused by these viruses [5].

Seven known Human adenoviruses species from HAdV-
A to HAdV-G are constitute of the genus Mastadenovirus 
in which all the human adenoviruses are categorized and 
further divided into different strains [6]. Now 67 types of 
HAdV have been reported [7]. Their number is rapidly 
increasing due to bioinformatics and genomic advances 
and availability of whole genome sequences [8, 9].

After an immense effort 50–60% genes have a known 
function in most of completely sequenced genomes. 
Number of genes having unknown functions called 
as hypothetical protein are present in each organism’s 
genome [10]. To understand the biology and genome of 
the organisms, it is important to discover the function 
of hypothetical proteins, despite HAdV has a small size 
genome but still it has a several hypothetical proteins. So, 
in order to treat infectious diseases such as those caused 
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by HAdV, functional annotation of these HPs might open 
avenues for prioritizing novel drug targets [4].

In-silico strategies to annotate the hypothetical proteins 
are cost effective and fast enough to explore their func-
tion. In this study, multiple algorithm based software’s 
have been used for the prediction of hypothetical pro-
tein function that may lead to the identification of novel 
pharmacological targets for screening, drug discovery and 
designing for the treatment of HAdV infections [11].

Main text
Methods
Sequence retrieval
Proteins having unknown function of Human adenovi-
rus were taken from UniProt [12, 13]. Random selection 
of 38 hypothetical proteins belonging to eight different 
types of HAdV was carried out (Additional file 1: Table 
S1). The sequence analysis was done by taking FASTA 
sequence of these proteins along with their UniProt ID. 
For characterization purposes, number of software based 
on different algorithms were used as shown in Fig. 1.

Physicochemical characterization
Analysis of physiochemical properties of all HPs was 
done by online server ExPASy’s Protparam tool [14]. This 
server executes theoretical evaluation of physiochemical 
properties like isoelectric point, molecular weight, ali-
phatic index, grand average of hydropathicity (GRAVY) 
and instability index [15].

Sub‑cellular localization
To predict the cellular function of a protein it is impor-
tant to get information about its sub-cellular localiza-
tion i.e. a protein can be present in outer membrane, 
inner membrane, periplasm, extracellular space or in 
cytoplasm [16]. Sub-cellular localization of viral proteins 
were predicted using Virus-PLoc [17] online server tool 
[18], TMHMM [19, 20] and HMMTOP [21, 22].

Sequence analogy
Most basic step in the function prediction of a protein is 
looking for its structural homologs in different available 
genomics and proteomics based databases. Popular bioin-
formatics tool BLASTp was used for this purposes [23, 24].

Function and disulfide bridges prediction
For precise function annotation, various tools like SVM-
port, ProtNet [25, 26], Pfam, Motif [27, 28], CDART [24, 
29], CATH [30, 31], SMART [32, 33], Superfamily [34, 
35] and InterProscan [27, 36] were used that classified all 
38 proteins of HAdV into families and subfamilies on the 
basis of their sequence, structure and function [16, 37]. 
DISULFIND [38] server was used to evaluate occurrence 
of disulfide bonds between cysteine residues [39].

Structure prediction and validation
For prediction and validation of three dimensional 
I-TASSAR (Iterative Threading Assembly Refinement) 
[40, 41] Ramachandran Plot were used [42, 43].

Fig. 1 Flowchart that shows all of the tools used for functional and structural annotation of hypothetical proteins
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Structure analysis
Functions of proteins based on structural analysis are 
considered more acceptable as compared to sequence 
based function annotation, because homologous pro-
teins show more conserved structures in evolution than 
sequences [44]. For this purpose, we have used ProFunc 
[27] and COACH [40, 45].

Results
Random selection of 38 hypothetical proteins belonging 
to eight different types of HAdV was carried out from 
UniProt (Additional file  1: Table S1). The amino acid 
length of 38 randomly selected proteins of eight differ-
ent types of Human Adenovirus ranges from 1198 amino 
acids for longest protein to 81 amino acids for shortest 
protein (Additional file 1: Table S1). Protparam tool has 
been used for the prediction of physiochemical proper-
ties of all hypothetical proteins (Additional file  2: Table 
S2). Subcellular localization and transmembrane helix 
prediction software predicated most of the HPs to be 
localized in the host cytoplasm and a few in-host cell 
membrane and nucleus (Additional file  3: Table S3). 
Multiple softwares were used for the function predic-
tion of 38 hypothetical proteins (Additional file 4: Table 
S4, Additional file 5: Table S5). Out of 38 proteins, 6 HP’s 
whose function was confidently predicted by ≥  6 soft-
ware’s were confidently selected (Table  1). Confidently 
function predicted HPs were further used for structure 
prediction, structure analysis and disulphide bridges 
prediction. The detailed results of structure prediction 
and analysis are shown in Additional file 6: Table S6 and 
Additional file  7: Table S7. DISULFIND was unable to 
find disulphide bonds in any of the HP’s and character-
ized them as thermally unstable proteins.

Discussion
In this study, we carried out structural and functional 
annotation of 38 HPs of human adenovirus that is 
responsible for variety of clinical diseases. Physiochemi-
cal properties prediction showed that Isoelectric point 

[46] of HPs ranges from 4.1 to 12.43. Isoelectric point 
is pH at which the net charge on the protein is zero and 
at this pH the protein become less soluble, compact and 
stable that leads to crystallization of protein. So, the puri-
fication and crystallization of protein can be carried out 
by developing a buffer system with the help of computed 
pI  [47, 48] (Additional file 2: Table S2).

The extinction coefficient of the HPs computed by Prot-
param tool ranges from 1490.0 to 179,580.0  M−1  cm−1 
at 280  nm. This computed extinction coefficient can be 
helpful for quantitatively studying protein–ligand and 
protein–protein interaction. It is forecasted that if the 
instability index is less than 40 then a protein will be sta-
ble and if greater than 40 then it will be unstable. The 
instability index of 38 hypothetical proteins ranges from 
20.1 to 106.56 and due to this only nine proteins are sta-
ble and rest is unstable. The GRAVY index of all proteins 
ranges from − 0.908 to 0.166 and out of 38 HPs, 32 HPs 
have negative GRAVY index which indicate that these 
proteins are non-polar in nature [49].

The detailed information about the functional and 
structural annotation for six hypothetical proteins is as 
follow:

P03269
P03269 is predicted as an adenoviral DNA terminal pro-
tein that performs function in the initiation of the viral 
DNA replication [50]. This protein is covalently bound 
to the viral DNA and acts as a primer for viral genomic 
replication by DNA strand displacement [51]. Seven soft-
ware confidently predicted the function of this protein 
and Virus-PLoc server also confirmed its function by 
predicting its location in host nucleus. Predicted three-
dimensional structure highest C-score − 2.25 (Additional 
file  8: Figure S1) was selected and structure verification 
through RAMACHANDRAN PLOT showed 76.9% resi-
dues are in most favored region and 18.8% residue are in 
additional allowed region (Additional file  9: Figure S2). 
For pharmaceutical and docking analysis, COACH has 
been used, out of many ligand binding sites, best ligand 

Table 1 Proteins whose function is predicted confidently along with their corresponding genomes and subcellular loca-
tion

Sr no Uniprot ID HAdV Function Confidence level Virus-PLoc

01 P03269 HAdV-2 DNA terminal protein 7/9 Host nucleus

02 P03261 HAdV-2 DNA polymerase 8/9 Host nucleus

03 P03263 HAdV-2 DNA binding protein 6/9 Host cytoplasm

04 Q83127 HAdV-7 Adenovirus E3 region protein CR1 6/9 Host cell membrane

05 Q1L4D7 Human mastadenovirus B Adenoviral protein L1 7/9 Host cytoplasm and nucleus

06 I6LEV1 Human mastadenovirus B Adenoviral protein L1 6/9 Host cytoplasm and nucleus
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binding sites with maximum C-score were selected that 
can be used for further molecular docking analysis (Addi-
tional file 6: Table S6). Further structure based function 
analysis predicted adenoviral DNA terminal protein 
motif in HP P03269 and Ala159-Arg161, Gly558-Gly560, 
Leu406-Glu408, Gln241-Ala243 and Pro275-Arg277 
structure motifs are also predicted to be conserved in this 
HP that may have a similar function (Additional file  7: 
Table S7). Gene Ontology analysis shows that HP P03269 
may have role in the biological process of DNA replica-
tion, cellular process, cellular metabolic process, cellular 
biosynthetic process and biochemical function as DNA 
binding and nucleic acid binding.

P03261
P03261 belongs to Human adenovirus C serotype 2 and 
predicted to contain DNA polymerase type-B family cat-
alytic domain and sub-cellularly localized in host nucleus. 
DNA-directed DNA polymerases has both exonucleases 
and polymerase activity and play role in the process of 
recombination, repair and DNA replication [52]. Out of 
five 3D models predicted by I-TASSAR, structure with 
highest C-score (− 0.20) was selected (Additional file 10: 
Figure S3) and structure verification shows that 67.1% 
residues are in favored region and 25.7% residues are in 
additional allowed regions of RC-plot (Additional file 11: 
Figure S4). ProFunc server has predicted DNA polymer-
ase family B signature.

Gene ontology analysis showed that this HP may play 
its role in DNA replication and cellular process and bio-
chemically function in nucleotide binding, nucleic acid 
binding and DNA-directed DNA-polymerase activity. 
DNA polymerase type B, organellar and viral and DNA-
directed DNA-polymerase family B signature motifs in 
the HP these results have further validated the results of 
sequence based function prediction. Five other structure 
motifs were also identified as Leu323-Asp326, His955-
Leu957, Ser926-Pro928, Leu645-Pro647 and Lys850-
Asn853 (Additional file 7: Table S7).

P03263
P03263 is predicted as an adenoviral protein L1 52/55-
kDa and that perform multiple functions in DNA pack-
aging by facilitating stable interactions between empty 
capsid and viral DNA through its expression both in the 
early and late stages of infection cycle [46] (Additional 
file 12: Figure S5).

Model with highest C-score −  3.74 was selected and 
structure validation shows that 69.6% residues are in 
favored regions and 23.2% resides are present in the addi-
tional allowed regions of RC-plot (Additional file 13: Fig-
ure S6). Functional analysis server has verified the results 
of sequence based function prediction by predicting 

adenoviral protein L1 52/55-kDa motif in HP P03263 
along with three conserved structure motifs Ala105-
Ala107, Glu7-Asp9 and Asp4-Glu6 (Additional file  7: 
Table S7). According to gene ontology results HP P03263, 
HPQ83127, HP I6LEV1 are involved in the biological 
process of virion assembly, anatomical structure forma-
tion, anatomical structure formation involved in mor-
phogenesis and cellular component assembly involved in 
morphogenesis.

Q83127
Q83127 is annotated as Adeno E3 region protein CR1 
that is responsible for controlling the viral interactions 
with host [53]. The virus-PLoc also confirmed that this 
protein is a transmembrane and HMMTOP predicts 2 
helices in a membrane. Three-dimensional structure with 
highest C-score − 4.78 (Additional file 14: Figure S7) was 
selected and structure verification using SAVES shows 
that 42.9% residues are in favored region and 44.1% resi-
dues are in additional allowed regions (Additional file 15: 
Figure S8). HP contains Adenovirus E3 region protein 
CR2 and Adenovirus E3 region protein CR1 motifs along 
with one conserved structural motif Gln171-Pro173 
(Additional file 7: Table S7).

Q1L4D7
Q1L4D7 is predicted as adenoviral protein L1 and confi-
dence level for this HP is seven out of nine respectively. 
This protein expresses in both early and late stage of viral 
life cycle and plays multiple roles in DNA packaging 
[46]. We have modeled its three-dimensional structure 
and out of five models with C-score −  4.53 (Additional 
file 16: Figure S9) was selected. RC-plot shows that 34.7% 
residues are in favored region and 46.0% are present in 
the additional allowed regions (Additional file 17: Figure 
S10) and contains two structure motifs Glu65-Ala67 and 
Val115-Gly117 (Additional file 7: Table S7).

I6LEV1
I6LEV1 is also predicted as adenoviral protein L1 like HP 
Q1L4D7. Structure verification of model with C-score 
− 4.56 (Additional file 18: Figure S11) shows that 36.0% 
residues are in favored regions and 43.2% residues are in 
additional allowed regions of RC-plot (Additional file 19: 
Figure S12). Sequence based function prediction veri-
fied by structural analysis and predicted three structural 
motifs Leu22-Leu24, Val98-Glu100 and Arg126-His128 
(Additional file 7: Table S7).

To summarize, this study helped to search functionality 
in the hypothetical proteins of human adenovirus whose 
exact role in the infectious cycle was still unknown. 
Finally, we may emphasize that quantitative computa-
tional analysis that is carried out in the present study, 
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may help us in better understanding of the biology of 
adenovirus as a whole and identify potential therapeutic 
leads to molecular level and may facilitate better under-
standing of the human biology.

Limitations
As our study is based on less sample size, increase sample 
size can provide more information about the function of 
HPs proteins and for identifying novel drug targets and 
this study is totally based on in silico analysis but through 
side by side wet lab analysis these proteins can be used 
for drug targeting analysis on experimental basis.
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