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Abstract 

Objective:  Predictions of the future bone mineral density and bone loss rate are important to tailor medicine for 
women with osteoporosis, because of the possible presence of personal risk factors affecting the severity of osteopo‑
rosis in the future. We investigated whether it was possible to predict bone mineral density and bone loss rate in the 
future using artificial neural networks.

Results:  A total of 135 women over 50 years old residing in T town of Wakayama Prefecture, Japan were analyzed 
to establish a statistical model. Artificial neural networks models were constructed using the two variables of bone 
mineral density and bone loss rate. The multiple correlation coefficients between the actual and measured values for 
lumbar and femoral bone mineral densities in 2003 showed R2 = 0.929 and R2 = 0.880, respectively, by linear regres‑
sion analyses, while the values for bone loss rates in lumbar and femoral bone mineral densities were R2 = 0.694 and 
R2 = 0.609, respectively. Statistical models by artificial neural networks were superior to those by multiple regression 
analyses. The prediction of future bone mineral density values estimated by artificial neural networks was consid‑
ered to be useful as a tool to tailor medicine for the early diagnosis of and intervention for women osteoporosis with 
women.

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Introduction
Fragility fractures of bones are one of the major problems 
in the field of postmenopausal osteoporosis. Especially, 
fractures of the proximal femur (femoral) often have a 
markedly negative impact on the quality of life of affected 
patients [1]. In addition, medical care for these patients is 
expensive [2]. Thus, the early diagnosis and prevention of 
osteoporosis are important medical issues in an advanced 
aging society. The diagnosis of osteoporosis is based on 
the presence of fragile bone fractures or low bone min-
eral densities (BMD), which are usually measured by dual 
energy X-ray absorptiometry (DXA). For the latter, val-
ues of no more than 70% YAM (young adult mean val-
ues), the same as a T-score (the bone density compared 
with what is normally expected in a healthy young adult 

of your sex in terms of standard deviations) ≤ − 2.5, were 
designated as cut-off values for the diagnosis of osteopo-
rosis [3].

Artificial neural networks (ANN) are artificial adap-
tive systems that simulate certain characteristics of the 
human brain [4]. They are particularly suited for solving 
nonlinear problems. The ability to learn in an adaptive 
way makes ANN models powerful tools for data analy-
sis. ANN has been shown to improve the predictive value 
of statistics in many areas of medicine [5]. In the field 
of bone metabolism, several studies reported about the 
efficacy of ANN. It was reported that the performance 
of ANN models for the prediction of BMD values using 
several parameters among postmenopausal women was 
superior to the conventional regression methods [6]. 
Also, ANN showed a better performance for predict-
ing morphometric vertebral fractures in postmenopau-
sal osteoporosis than logistic regression analysis [7]. 
However, no study has investigated the ability of ANN 
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to predict future BMD and bone loss rate (BLR) values 
among postmenopausal women.

Thus, the aim of the present study was to investigate 
whether ANN models are able to predict future BMD 
and BLR values from person to person at lumbar and 
femoral sites of postmenopausal women, respectively, in 
the future. This is expected to be useful in combination 
with the use of FRAX (fracture risk assessment tool), an 
additional tool for the future prediction of bone fractures 
[8].

Main text
We constructed the statistical model of ANN using the 
information on female participants in Taiji study, T town, 
Wakayama, Japan. The study was designed as a popu-
lation-based cohort, and it has been profiled in detail 
elsewhere [8, 9]. We have reported several studies on 
osteoporosis based on the data of Taiji study concerning 
BMD [8], risk factors affecting BMD [9] and determi-
nants of bone loss [10].

In the present study, we used the information of 135 
female participants with age ≥  50  years at the baseline. 
Profiles of the subjects in the present study were shown 
in Additional file 1: Table S1. Input variables consisted of 
eleven variables: age, weight, height, age at menopause, 
age at menarche, durations after menopause, body mass 
index (BMI), percent of body fat, fat mass, lean body 
mass, and lumbar (L2–L4) or femoral BMD values which 
were measured in 1993, respectively. BMD was meas-
ured by DXA (HologicQDR-1000). Percent fat mass val-
ues were obtained using a reported formula [11]: body 
fat percent = 1.20 × BMI + 0.23 × age (years old) − 5.4. 
Then, the fat and lean body masses were calculated using 
body weight values. Output variables consisted of two 
variables: BMD at lumbar site (L2–L4) (LBMD) or BMD 
at proximal femur site (FBMD) values measured in 2003 
and the BLR, respectively, calculated by the difference in 
BMD values from 1993 to 2003 divided by 10 (Additional 
file 2: Figure S1a, b). To increase the efficiency of ANN, 
we used values normalized by the transformations as fol-
lows except BMD and BLR values. First, we calculated 
(the difference between the measured and minimum val-
ues) divided by (the difference between the maximal and 
minimum values) for each input parameter. These maxi-
mal and minimal values were taken from the distribu-
tion of values from the entire study content. We obtained 
final values by taking each calculated value previously 
obtained and multiplying it by 0.8 (0.9–0.1) and then 
adding 0.1 to normalize the values from 0.1 to 0.9.

To predict BMD and BLR in 10  years at lumbar and 
femoral sites of postmenopausal women, ANN models 
were built. In detail, multilayer perceptrons were used 
with 11 neurons in the input layer, four neurons in one 

hidden layer, and two neurons in the output layer. After 
performing a number of trials (around 50–100 times), the 
most appropriate model was selected based on the better 
R2 value by the single and fivefold cross-validation meth-
ods. In addition, we also obtained predicted values for 
these parameters by multiple regression analyses (MRA).

To evaluate the predicted BMD and BLR values at lum-
bar and femoral sites, we used linear regression analyses. 
The statistical comparison of each statistical model was 
performed using Akaike’s information criterion (AIC), 
Schwartz’s Bayesian information criterion (BIC), and 
multiple correlation coefficients (R2) values corrected 
by degrees of freedom (R2 values), respectively. For the 
diagnosis of osteoporosis, we estimated the sensitivity, 
specificity, and c-index by receiver operating characteris-
tic (ROC) analyses to evaluate the methods of ANN and 
MRA. Data are shown as a mean with 95% confidential 
interval (CI) values. We used JMP 8.0 (SAS, Japan) for 
the analyses of ANN. For the other statistical analyses, we 
used JMP9.0 or Dr. SPSS II (SPSS), respectively. A P value 
of < 0.05 was considered significant.

The R2 values between the actual and predicted val-
ues of LBMD and FBMD in 2003 were revealed to be 
R2 = 0.929 and R2 = 0.880, respectively, by linear regres-
sion analyses (Fig. 1), while the values for BLR of LBMD 
(LBLR) and FBMD (FBLR) were 0.694 and 0.609, respec-
tively (Fig. 2). The sensitivity, specificity, and c-index for 
the predicted diagnosis of osteoporosis for the LBMD 
and FBMD in 10  years using this model were 80.0, 
90.5%, and 0.825 and 80.6, 93.3%, and 0.870, respectively 
(Table 1).  

We also compared the statistical models obtained by 
ANN with those by MRA for LBMD and FBMD values, 
respectively. For both sites of bone, AIC and BIC val-
ues for BMD by ANN were much lower than by MRA 
(Table 1), suggesting that the statistical models obtained 
by ANN were superior to those by MRA. Also, R2 values 
obtained by ANN for lumbar and femoral sites (0.929 
and 0.880, respectively) were much higher than those 
by MRA (0.803 and 0.687, respectively). In addition, R2 
values obtained by ANN for LBLR and FBLR (0.694 and 
0.609, respectively) were much higher than those by 
MRA (0.137 and 0.153, respectively). These data re-con-
firmed that the statistical method of ANN was superior 
to that of MRA (Table  1). Moreover, we further com-
pared the statistical models by ANN for LBLR and FBLR 
with those for LBMD and FBMD, respectively (Table 1). 
The R2 values for LBLR and FBLR were 0.694 and 0.609, 
respectively, being much lower than those for LBMD 
(0.929) and FBMD (0.880), suggesting that the statistical 
models for BLR were inferior to those for BMD (Table 1).

We showed that we could predict future BMD and BLR 
in 10 years on person-to -person basis using conventional 
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parameters. These parameters were the age, weight, 
height, age at menopause, age at menarche, durations 
after menopause, BMI, percent of body fat, fat mass, lean 
body mass, and lumbar (L2–L4) or femoral BMD val-
ues. Because they were easy to obtain on the first visit to 
osteoporosis clinics, the use of these findings may further 
reduce future bone fractures of post-menopausal women.

Reducing the bone fracture rate of women is one of the 
goals of therapy for osteoporosis. Since the bone mineral 
density is responsible for 70% of the bone strength and 
because the occurrence of bone fractures is thought to 
be associated with the bone strength [12], the discovery 
of a new tool in this study to predict future BMD values 

may be useful to reduce the bone fracture rate in post-
osteoporosis women. In addition, bone fractures of the 
proximal femur often impair the quality of life of affected 
patients, with increases in medical care and costs. Thus, 
the early diagnosis and prevention of osteoporosis are 
important medical issues in an advanced aging society. 
Because of the possible presence of different personal 
risks for the severity of osteoporosis in the future, our 
findings showing the ability to predict individual BMD 
in 10 years are thought to be useful as a tool of tailored 
medicine, which might contribute to some extent to the 
prevention of and decisions regarding early therapy for 
post-menopausal osteoporosis.
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Fig. 1  Correlations between the actual and predicted lumbar and femoral BMD values by artificial neural networks. The horizontal and vertical lines 
show the predicted and actual BMD values, respectively. R2 values were calculated by linear regression analyses
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Fig. 2  Correlations between the actual and predicted lumbar and femoral BLR values by artificial neural networks. The horizontal and vertical lines 
show the predicted and actual BLR values, respectively. R2 values were calculated by linear regression analyses
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FRAX is the only tool to predict future bone fracture 
in 10  years. FRAX is thought to be a tool reflecting all 
fractures derived from secondary osteoporosis, such as 
rheumatoid arthritis, steroid osteoporosis, type I diabetes 
mellitus, and hyperthyroidism [13]. On the other hand, 
our data were based on the only data for women with 
post-menopausal osteoporosis. Thus, the combined use 
of FRAX and the detailed analysis by using ANN models 
may lead to increased power for the future prediction of 
bone fractures due to post-menopausal osteoporosis.

ANN are artificial adaptive systems that emulate cer-
tain characteristics of the human brain [1]. The advan-
tages of ANN include their ability to extract hidden 
features from input information and their robustness 
against assumptions concerning the type of distribu-
tion of input data and against the influence of diagnostic 
noise. In many reports, ANN have been used to predict 
the present BMD based on risk factors for osteoporosis. 
Certain factors such as the age, a low body weight, and 
years since menopause have been suggested by most 
studies to be associated with a low bone mass [14, 15]. 
However, the prediction of a future BMD using ANN has 
not been reported. In this study, R2 values between the 
actual and predicted values for of LBMD and FBMD were 
0.929 and 0.880, respectively, based on linear regres-
sion analyses. In addition, the sensitivity, specificity, and 
c-index for the predicted diagnosis of osteoporosis of the 
LBMD in 10 years using this model were 80.0, 90.5%, and 
0.825 while the same values for FBMD were 80.6, 93.3%, 
and 0.870, respectively. We suggest that our method is 
applicable for clinical use for the prevention of and deci-
sions regarding early therapy for postmenopausal osteo-
porosis. To our knowledge, this is the first study to show 
the usefulness of ANN for the prediction of BMD at lum-
bar and femoral sites in the future.

We also showed in our study that ANN were superior 
to MRA for predicting future LBLR and FBLR values, 
respectively. These data are expected because it is very well 
known that the prediction capability of ANN is superior 
to MRA. However, this is the first investigation suggest-
ing that ANN are clearly superior to MRA for predicting 
LBLR and FBLR in future. We speculated that the supe-
riority of ANN might be derived from the fact that some 
of the biological findings might be non-linear in nature, 
although the actual reasons remain unknown.

It is concluded that the application of ANN to predict 
future BMD in advance of the first visit of a patient to 
an osteoporosis clinic may lead to early intervention to 
avoid possible fragile bone fractures due to severe post-
menopausal osteoporosis.

Limitations
Firstly, it is possible that the prediction in our study is 
only applicable to the BMD of women with osteoporo-
sis living in regions similar to T town, Wakayama, Japan. 
This is because of the nature of ANN, which processed 
the data so precisely that the results might only reflect 
the characteristics of the region where the study was 
conducted. Since T town is a rural region of Japan, it is 
possible that our data are not applicable to women with 
osteoporosis living in big cities with large populations in 
Japan.

Secondly, the presence of some problems due to the 
small sample size and the lack of the important input 
variables such as the daily physical activities, which are 
thought to have deep impacts on BMD and BLR values 
via the applied force to bone, need to be investigated by a 
large cohort from different countries in future.

Table 1  Comparison of statistical models

AIC BIC R2 Sensitivity (%) Specificity (%) c-index

Lumbar BMD

 ANN 551 558 0.929 80.0 90.5 0.825

 MRA 636 643 0.803 83.3 87.3 0.853

Femoral BMD

 ANN 538 545 0.880 80.6 93.3 0.870

 MRA 625 632 0.687 61.3 93.3 0.773

Lumbar BLR

 ANN 131 139 0.694

 MRA 228 325 0.137

Femoral BLR

 ANN 135 143 0.609

 MRA 206 213 0.153
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