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Abstract 

Background:  Mortality rates of pancreatic cancer remain high, which is mainly due to advanced disease and metas‑
tasis. We hypothesized that genomic copy number alterations are enriched in metastatic cells compared to autolo‑
gous primary tumors, which may inform on cancer-related pathways possibly serving as potential targets for specific 
therapies. We investigated 18 pancreatic ductal adenocarcinomas, including 39 lymph node and 5 distant metastases 
after surgical resection. Analysis was performed with array-based comparative genomic hybridization (aCGH).

Results:  Metastases acquire a higher frequency of copy number alterations with the highest in distant metastasis 
(median = 42, lymph node metastases: median = 23, primary tumors: median = 17). In lymph node metastases, 
gains were prevalent on chromosome bands 8q11.23-q24.3, 12q14.1, 17p12.1, 21q22.12, and losses on 3p21.31, 4p14, 
8p23.3-p11.21,17p12-11.2. Genes on amplified regions are involved in cancer-related pathways such as WNT-signaling, 
also involved in metastasis.

Conclusions:  Pancreatic cancers show a high degree of intratumor heterogeneity, which could lead to resistance of 
chemotherapy and worse outcome. ACGH analysis reveals regions preferentially gained or lost in synchronous metas‑
tases encoding for genes involved in cancer-related pathways, which could lead to novel therapeutic opportunities.
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Background
Pancreatic cancer is characterized by a poor progno-
sis making it the fourth leading cause for cancer related 
death in the US today [1]. Every year, about 46,000 
patients in the US develop pancreatic cancer with ductal 
adenocarcinoma (PDAC) as the most common histologi-
cal type. The 5-year survival rate of this disease is still sig-
nificantly below 10% [1], which could not be improved 

during the last decades despite novel therapeutic strat-
egies [1]. Surgery still remains the only curative option, 
although 5-year-survival in potentially resectable patients 
does not exceed 20% [2]. This poor prognosis could make 
PDAC the second leading cancer death before 2030 [3]. 
One reason for this poor prognosis is the lack of early 
specific symptoms; many patients therefore present at 
stages in which metastases have already occurred, which 
are highly resistant to conventional chemotherapy [4].

The overall pattern of genetic alterations in pancreatic 
cancer is well studied: long-known are specific altera-
tions in primary lesions that are acquired through a 
well-defined time course to invasive carcinomas and 
are maintained in cell lines [5, 6]. Studies using whole 
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genome sequencing have confirmed frequent mutations 
in prominent cancer associated genes, including KRAS, 
TP53, SMAD4 and CKDN2A [7–10]. In addition to these 
common targets, there exists a landscape of heterogene-
ous alterations of low frequency that may contain drug-
gable targets [11]. Those studies showed a high degree 
of intratumor heterogeneity (ITH), which translates to a 
significant diversity in molecular mechanisms involved 
in tumor progression. However, ITH between samples 
from primary tumors and their corresponding metasta-
ses of the same patient has only been studied recently: 
Yachida [12] and Campbell [13], using sequencing tech-
niques showed a high grade of ITH between metastases 
and the primary tumor obtained from the same patient. 
One important mechanism underlying the heterogene-
ity in PDAC is thought to be telomere dysfunction [14], 
resulting in breakage-fusion-bridge cycles, leading to 
amplification or deletion of specific regions. Hence, ITH 
is explained by the rearrangement of an instable genome. 
Moreover, centrosome amplifications were reported as 
a source of chromosomal instability and ITH [15]. The 
degree of chromosomal instability is also a clinical pre-
dictor of treatment response [16, 17].

In our study, we focused on differences in the genomic 
aberration profile of primary tumors and autologous 
and synchronous lymph node (LNM) or distant organ 
metastases (OM). We hypothesized that cells that spread 
from primary PDAC and infiltrate lymph nodes or dis-
tant organs require a certain aberration profile. Since 
the presence of lymph node metastases is a poor prog-
nostic factor in this disease [18], some of those features 
should also be present in loco-regional lymph node 
metastases. We expected that analysis of the genetic pro-
file of primary tumors and their autologous lymph node 
metastases might reveal differences in those samples and 
therefore provide a panel of candidate genes that could 
be involved in promoting cancer cell metastasis.

In order to address these questions, we performed 
array-based comparative genomic hybridization 
(aCGH) to compare copy number alterations (CNAs) 
of primary tumors and their autologous metastases 
on a whole-genome level. This technique has already 
been used in other types of cancer, such as breast [19–
24] or colorectal cancer [25–27] to study differences 
between lymph node metastases and primary tumors. 
The identification of CNAs that specifically appear in 
metastasized tumor cells might not only lead to a bet-
ter understanding of the genetic basis of PDAC metas-
tasis but also unmask potential therapeutic targets that 
could provide a better efficacy against advanced dis-
ease, with the hope of improving the survival rates of 
PDAC patients.

Methods
Clinical samples
All patients who underwent surgery with curative intent 
for histologically confirmed PDAC between 2002 and 
2009 at the Department for Surgery (A) at the University 
Hospital Duesseldorf were identified by medical chart 
review. The ethics committee of the Medical Faculty of 
the Heinrich-Heine-University Duesseldorf approved the 
investigation of FFPE material as performed in this inves-
tigation (vote Number 3821). Consent to participate was 
waived, since patient data were strictly pseudonymized 
and analysis had no detrimental effect on the partici-
pants. Inclusion criteria were: patients with microscopi-
cally confirmed metastases in more than one lymph node 
and PDAC at any localization within the pancreas, thus 
being classified at least as UICC stage IIb. All types of 
surgical resection were eligible. Exclusion criteria were 
as follows: other malignancies in the patient history, pan-
creatic tumors other than adenocarcinoma or adenocar-
cinoma of the Ampulla of Vater, neoadjuvant radio- or 
chemotherapy and very small lymph node metastases 
(< 0.3 cm). Resectability of the tumor in surgery was not 
considered in the selection of the cases, thus cases with 
R1-resection were also included in the study. Applying 
these selection criteria, a total number of 52 patients 
were eligible to be included into our study.

The primary tumor was localized in the pancreatic 
head in 16 cases, one tumor extended from the head to 
the body of the pancreas and one tumor involved the 
pancreatic tail. The pancreatic tail tumor was surgically 
treated by resection of the distal pancreas, spleen and 
transverse colon including the left colonic flexure. Ten 
patients underwent the classical Whipple procedure 
(Pancreaticoduodenectomy) and seven patients under-
went pylorus-preserving pancreaticoduodenectomy 
(PPPD). In all surgical procedures a lymph node dissec-
tion was performed resulting in a median number of 23 
lymph nodes (range 12–55). Pathological examination 
of resected lymph nodes revealed a median number of 7 
LNM (range 3–41). Tumor-free resection margins were 
achieved in 11 patients. After quality control, 18 patients 
were randomly selected from whom formalin-fixed and 
paraffin-embedded (FFPE) tissue specimen of the respec-
tive primary tumors (PT) and a total number of 39 lymph 
node metastases (LNM) were available for further anal-
ysis. The median age of our cohort was 64  years (range 
44–81  years) (Table  1). In 4 cases, a total number of 5 
liver metastases were found intraoperatively. In these 
cases, metastases had not been discovered preopera-
tively. Distant metastases were defined as organ metasta-
ses (OM) other than the pancreas and were also included 
in our analysis.
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DNA extraction
Genomic DNA was isolated from FFPE tissue speci-
mens of primary tumors, LNMs and OMs as recently 
described [52]. Therefore, hematoxylin and eosin (HE) 
stained sections of all specimens were reviewed by 
a pathologist (Baldus, SE) who marked representa-
tive tumor regions on the microscope slide (Fig.  1). 
Serial 10  µm thick sections were then processed from 
the respective FFPE blocks. Marked microscope slides 
served to localize the tumor region on the respective 

FFPE block. DNA extraction was performed using the 
Qiagen QIAmp DNA FFPE Tissue Kit (Qiagen, Hilden, 
Germany) according to manufacturer’s instructions. As 
reference DNA for aCGH analysis we extracted tissue 
from histologically confirmed normal lymph nodes of 
the corresponding patient to avoid copy number varia-
tions of non-pathological regions to interfere with our 
results. Purity and concentration of the DNA was meas-
ured spectrophotometrically and integrity tested on a 1% 
agarose gel.

Table 1  Clinical and pathological data of patients included in study

a  Lymph node metastases
b  Lymph nodes
c  Distant metastases

Patient (no.) Age at procedure LNMa (no.) LNb total (no.) OMc T N M Grad. R Stage Localization Procedure

2 54 10 18 1 4 1 1 2 0 IV Head Whipple

8 62 30 37 1 3 1 1 3 0 IV Head Whipple

19 76 7 35 0 3 1 0 3 0 IIb Head Whipple

24 44 7 19 1 3 1 1 3 1 IV Head PPPD

28 65 3 39 1 3 1 1 3 0 IV Head PPPD

33 67 6 27 1 3 1 1 3 1 IV Head PPPD

41 66 7 22 0 3 1 0 2 0 IIb Head Whipple

42 75 3 23 0 3 1 0 3 0 IIb Head, body Whipple

44 55 8 16 0 3 1 0 3 0 IIb Head PPPD

45 62 41 55 1 3 1 1 2 1 IV Head Whipple

47 81 7 12 0 3 1 0 3 1 IIb Head Whipple

48 64 9 32 0 4 1 0 3 1 III Head PPPD

49 79 17 50 1 3 1 1 3 1 IV Head Whipple

50 47 4 22 1 3 1 1 3 1 IV Head PPPD

51 59 4 24 1 3 1 0 3 0 IV Head PPPD

52 61 8 12 0 3 1 0 3 0 IIb Head Whipple

53 61 3 36 1 3 1 1 2 0 IV Tail Distal pancreatectomy

54 72 5 23 0 3 1 0 3 0 IIb Head Whipple

Fig. 1  H&E stained samples from PDAC. a Sample section from a primary tumor (case 33). b Sample section from one of the lymph node metastasis 
(case 33). c Sample section from a distant metastasis (lung) (case 33)
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Array comparative genomic hybridization
Before array CGH was performed, DNA was RNase 
(RNase, DNase free, Roche, USA) treated and purified a 
second time before labeling using Kreatech’s (Kreatech 
Diagnostics, Amsterdam, Netherlands) non-enzymatic 
Universal Linkage System (ULS) according to the manu-
facturers’ instructions. We used reversed labeling for our 
samples: ULS-Cy3 to label sample-DNA and ULS-Cy5 to 
label the reference DNA. After purification of the labeled 
DNA and quality control with spectrophotometry, the 
DNA was analyzed with aCGH using 8 ×  60  K arrays 
from Agilent’s SurePrint G3 Human CGH Microarray Kit 
(Agilent Technologies, Santa Clara, CA, USA). Hybrid-
ized slides were then washed and scanned by the Agi-
lent SureScan Microarray Scanner System. Normalized, 
quality filtered log10-ratios were obtained using Agilent 
Feature Extraction software. Initial data visualization was 
performed using Agilent Genomic Workbench (version 
6.5.0.18).

Data analysis
Further bioinformatic analysis was accomplished using 
an R-pipeline [53] composed by several R add-ons avail-
able from Bioconductor (bioconductor.org) [54] and 
CRAN (cran.r-project.org) projects. Prior to this analy-
sis, the log10 ratios from the Agilent Feature Extraction 
software were converted to log2 ratios. Improper oligo-
nucleotides were removed in quality control using the 
same flags as in the Agilent Feature Extraction tool: oli-
gonucleotides were removed if gIsSaturated =  1 or rIs-
Saturated = 1 to exclude over- or undersaturated spots, 
gIsFeatNonUnifOL = 1 or rIsFeatNonUnifOL = 1 or Log 
Ratio  =  0 to exclude spots that exhibited implausible 
information, meaning intensities of individual pixels on 
one spot were not homogeneous enough or log ratio was 
set to 0 if the background exceeded the signal intensity.

For breakpoint detection we used the “lawsglad”-algo-
rithm [55] from the GLAD-function [56]. We applied 
the default parameters, except median center = FALSE, 
since centering of the arrays is carried out before analyz-
ing the data in our pipeline. Only calls of aberrant regions 
spanning at least three oligos and with a minimum abso-
lute log2-ratio of 0.2 were considered for further analy-
sis. Hence, increases in sample to reference-ratio  >  1.2 
were defined as gains, decreases in sample to reference 
ratio < 0.8 were defined as losses. Since our main focus 
was the general differentiation of altered regions between 
tumor cells from different sites, no further distinction 
was made for high-level amplification or homozygous 
losses. Overviews of the genome were generated from 
this data with a modified plot-function of the aCGH-
database. Shared aberrations were defined as any region 
in two or more samples that was deleted or amplified. 

Private aberrations were defined as those only present in 
one sample. For visualization of the data we used a modi-
fied plot function of the “aCGH”-package from Biocon-
ductor project.

Statistical differences in the number of CNA were 
assessed using nonparametric testing (Mann–Whitney U 
test). A p < 0.05 was defined as statistical significance.

Enriched genetic alterations in metastatic cells were 
found by comparing the appearance of each CNA in pri-
mary tumors and corresponding lymph node metastases 
or distant metastases. Enrichment was defined as signifi-
cant differences in frequencies of CNA in aCGH-data of 
two corresponding samples. Significance was assessed 
with a standard Fishers exact test for 3 × 2 contingency 
tables (gain, loss, no change in two samples). Signifi-
cantly enriched (p ≤ 0.05) alterations present in > 25% of 
respective the samples were then analyzed with Panther 
classification system (www.pantherdb.org) [57].

For calculation of the genetic distance of the samples, 
aberrations were classified as shared (present in more 
than one sample) or private (distinct alterations in one 
sample). Asymmetric binary distance between the sam-
ples was then calculated and plotted in a matrix. The 
binary distance was calculated by dividing all private 
regions in two arrays through all segmented regions; this 
is represented as a non-dimensional number between 
0.0 and 1.0. Hence, higher values indicate a larger binary 
distance and therefore a higher level of heterogeneity 
between two distinct samples. The matrix of the binary 
distance data was used to calculate the mean distance 
between two samples of several subsets of samples. Dif-
ferences in mean distances were tested for statistical sig-
nificance using a Mann–Whitney-U test.

Results
CNAs of primary tumors and metastases
Profiles from the aCGH-data displayed copy number 
alterations (CNAs) in all primary tumors and metasta-
ses (Fig. 2a, b, see also Additional file 1: Figure S1A–C). 
However, one sample (case45_PT1) exhibited alterations 
with less than three oligonucleotides and was therefore 
excluded from further analysis.

CNAs were defined as gains (more than 1.2 in sample 
to reference ratio) or losses (less than 0.8 in sample to ref-
erence ratio). Although not statistically significant, dis-
tant organ metastases (OM, n = 5) displayed the highest 
number of CNAs (median CNAs: 42, 1–124), followed 
by lymph node metastases (LNM, n = 39; median CNAs: 
23, 1–104) and primary tumors (PT, n  =  18; median 
CNAs: 17, 0-66). In addition, we observed a tendency 
toward a higher frequency of gains in the primary tumors 
with a median of 13 gained regions (0-95) compared to a 
median of 9.5 losses (0–42) (p = 0.0709).

http://www.pantherdb.org


Page 5 of 9Rausch et al. BMC Res Notes  (2017) 10:560 

The regions most commonly gained in primary tumors 
mapped to chromosome bands 17q25.1 (44.4%), 7p22.3 
(38.9%), 8q24.3 (38.9%), 11p15.5 (38.9%), 16p13.3 (38.9%), 
17q24.3-q25.3 (38.9%), 19p13.3 (38.9%), 19q13.12-q13.2 
(38.9%). The most commonly lost regions were 18q12.3-
q22.3 (50%), 6p11.2–q13 (44.4%), 6q13-q22.31 (44.4%), 
18q12.1-q12.3 (44.4%), 18q22.3-q23 (44.4%).

Next, we compared differences in CNAs between 
primary tumors, LNM and OM that were enriched in 
more than 25% of the samples (Additional file  2: Table 
S1A–H), since enrichment of specific regions could 
point to selected cancer-related genes. When comparing 
enriched gains between primary tumors and lymph node 
metastases, specific gains for lymph node metastases 
became evident on chromosome bands 8q11.23-q24.3, 
12q14.1, 17p12.1 and 21q22.12. In addition, losses that 
could be observed only in lymph node metastases were 
on 3p21.31, 4p14, 8p23.3-p11.21 and 17p12-11.2 (Fig. 3). 
In contrast, distant metastases exhibited enriched gains 
on 1q32.1-q42.2 and 5q11.1, as well as enriched losses 
at 4q28.1-q32.3, 16q21, 17p11.2 and 20p13-q11.21 that 
could not be detected in matched primary tumors. 
Whereas enriched losses on chromosome 3p26.1-25.3 
and 18q21.1-23 were specific for LNM when compared 

with OM, losses on chromosome 1p13.1-12 and 1q32.1-
q41 and gains on chromosome 20p11.1-p11.21 were spe-
cifically present in OM. To get insight whether enriched 
genes in LNMs compared to PTs were involved in known 
cancer-related pathways, we performed gene ontology 
analysis on enriched regions using the Panther server 
(Additional file  2: Table S2). In total, 38 pathways were 
affected in enriched gains of LNM, 42 pathways were 
affected in enriched losses of LNM. Pathways most com-
monly affected with more than 2 genes in enriched losses 
of LNM were: FGF signaling, Apoptosis signaling, Angio-
genesis, p53 signaling, Wnt signaling, and Gonadotropin 
releasing hormone receptor signaling. Only the Wnt-
signaling pathway was affected with more than 2 genes in 
enriched gains of LNM.

Comparison between CNAs of primary tumors and their 
matched metastases
Since we noted differences in the number of aberrations 
and the aberration profiles between primary tumors and 
their metastases, we investigated samples for their shared 
genetic aberrations in order to better describe heteroge-
neity of the samples. To quantify heterogeneity, we meas-
ured the mean binary distance between different subsets 

Fig. 2  a Penetrance plot of genomic alterations depending on localization. b Total number of median gains and losses in primary tumors (PT), 
lymph node metastases (LNM) and distant metastases (OM)
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(PT vs. corresponding LNM, between LNM throughout 
cases) as described above: the mean binary distance (on a 
scale ranging from 0 to 1, whereas 1 = no shared altera-
tions, 0 = all alterations shared) between primary tumors 
and their corresponding lymph node metastases (Fig. 4) 
showed a significant higher (p =  0.0128) degree of het-
erogeneity (0.74, range 0.10–1.0) than between different 
lymph node metastases throughout all cases (0.87, range 
0.07–1.0). Mean heterogeneity between LNM and their 
corresponding OM was also high (binary distance 0.77, 
range 0.32–1).

In individual cases we could find both, examples for 
highly heterogeneous and only slightly heterogeneous 

tumors: e.g. binary distance could be shown to spread 
widely in case 49, distance between LNM and corre-
sponding OM ranged between 0.96 and 1.0, indicating a 
large heterogeneity between all samples from this case, 
whereas distance in case 24 ranged between 0.32 and 
0.35, indicating only a small grade of heterogeneity.

Discussion
Here we compared copy number gains and losses of pri-
mary PDAC tumors with their matched LNM and OM 
using aCGH. The overall CNA pattern of all samples was 
typical for PDAC [28–31]. However, while the aCGH 
data clearly showed that genetic heterogeneity between 
individual cases was higher than between different sam-
ples of an individual case, the CNA patterns of metasta-
ses diverged to some extent from their matched primary 
tumors. ITH, as indicated by heterogeneity between 
metastases and primary tumors from the same case is 
high in our cases, with a mean heterogeneity index of 
0.74. Among metastases, gains on chromosome bands 
8q24, 12q13, 16q12, 19q13, 21q22, 17q21 and losses 
at 18q and 6q13 were the most common aberrations. 
Most frequently enriched was gain of chromosome 8q 
(p  <  0.043), comprising important cancer related genes 
such as MYC or FZD6. These genes are associated with 
an upregulation of Wnt-signaling, which is known to be 
altered in PDAC [11]. In addition to its role as potent 
oncogenic driver, MYC [32–36] contributes to chromo-
somal instability [37], which again can drive ITH. Gain of 
chromosome 8q has moreover been described in other 

Fig. 3  Penetrance plots of primary tumors (PT), and lymph node metastases (LNM). Yellow lines show significant enriched alterations in LNM

Fig. 4  Mean binary distance and range of each primary tumor to 
their corresponding lymph node metastases
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cancers: in oral squamous cell cancer gain of 8q could be 
found to be associated with lymph-node metastasis [38], 
in colorectal cancer this alteration occurred significantly 
more frequent in corresponding brain metastases [39] 
and in breast cancer gain of MYC defines the transition 
from pre-invasive ductal carcinoma to invasive ductal 
carcinoma [40]. In view of these data, the involved gained 
8q genes might be interesting candidates for metastatic 
drivers in PDAC. Gene ontology analysis of involved 
pathways hinted that several pathways could possibly be 
affected by gained or lost regions in lymph node metas-
tases compared to primary tumors. Genes such as MYC 
play an important role in pathways relevant for cancer 
development such as cell-cycle control through Wnt-
signaling. However, gene ontology analysis does not 
allow to differentiate between ‘driver-‘and ‘passenger-
‘mutations and could therefore only be used to screen for 
candidates that could be studied in future studies.

Clearly, technical issues of the aCGH-methodology 
could also contribute to our observed differences. Despite 
our use of manual micro-dissection, the overall smaller 
number of alterations in primary tumors could result 
from the limitations of using bulk DNA for aCGH, lead-
ing to an average profile of the genetic alterations from 
several subclones. Moreover, only small regions of the 
primary tumor were extracted for aCGH analysis, hence 
not the entirety of clones is reflected with this method. 
Also, especially in PDAC with its strong desmoplastic 
stromal response, the amount of analyzed non-malignant 
cells can be significant.

Genetic heterogeneity between primary PDAC and 
their distant metastases as shown in our study could, 
however, also be observed on the sequence level using 
next generation sequencing (NGS): Yachida et  al. [12] 
analyzed somatic mutations after extracting samples 
from different metastatic locations in seven PDAC 
patients and could detect the majority (mean 64%) of 
mutations in all samples from a patient. However, in two 
patients they collected samples from multiple sites of 
the sectioned primary tumor and found that subclones 
present in the primary tumor already reflected hetero-
geneity that was observed in the metastases, suggesting 
tumor spread to occur late in the course of the disease. 
In contrast, the study by Campbell et  al. [13] who also 
sequenced samples from primary tumors and metasta-
ses of pancreatic cancer observed alterations, including 
driver mutations, that were exclusive in metastases, sug-
gesting an earlier time point of dissemination followed 
by parallel clonal evolution of metastatic clones. These 
findings were possibly corroborated by data from experi-
ments with a transgenic PDAC mouse model demon-
strating that dissemination of cancer cells can be an early 

event [41], even occurring at the stage of pre-neoplastic 
lesions. In our study, we observed cases in which metas-
tases were genetically close to their primary tumors but 
also more distant examples. Most probably, both scenar-
ios can occur in PDAC patients explaining the observed 
different CNA patterns between primary tumors and 
their metastases: (a) cancer cells that leave the primary 
tumor (early) undergo additional changes due to clonal 
selection and adaptation at the metastatic site and (b) 
small subpopulations evolved within the primary tumor 
with the propensity to metastasize become the dominant 
metastatic clone. However, similarities between tumor 
samples from the same case might also be explained to 
some extent by other mechanisms, such as self-seeding. 
The hypothesis of self-seeding describes a mechanism in 
which metastases, once they infiltrated a distant organ, 
could seed themselves and re-enter their primary tumor 
[42].

Interestingly, ITH as a result of adaption processes can 
also be observed when sampling the same tumor over 
time [43–47]. Such genetic ITH enables more effective 
adaption to new microenvironments [48], e.g., at dis-
tant sites, and facilitates the development of therapeutic 
resistance [43, 49, 50]. In this context it is notable that 
increased levels of ITH are correlated to higher aggres-
siveness reflected by shorter survival in some cancer 
types [51]. It would be therefore highly interesting for 
future studies, to investigate, whether ITH in PDAC is a 
biomarker for aggressiveness and therapeutic resistance.

Conclusions
Our comparative study of matched primary and meta-
static PDAC tissue showed different levels of ITH and 
revealed CNAs that were enriched in metastatic lesions. 
These organ specific alterations might facilitate the 
identification of metastatic drivers in subsequent future 
studies, which might be amenable for future therapeutic 
interventions.

Additional files

Additional file 1: Figure S1. ACGH-Profiles of each sample. The 
log-2-ratio is displayed in the y-axis, the localization on the genome is 
displayed on the x-axis. Called gains are marked orange, called losses are 
marked blue.

Additional file 2: Table S1. Enriched Gains and Losses (percentage of 
altered samples, range and involved Genes). A: Enriched Gains in LNM 
vs. PT. B: Enriched Losses in LNM vs. PT. C: Enriched Gains in OM vs. PT. 
D: Enriched Losses in PT vs. OM. E: Enriched Losses in LNM vs. OM. F: 
Enriched Gains in OM vs. LNM. G: Enriched Losses in OM vs. LNM. Table 
S2. Involved pathways, genes and respective protein class in enriched 
alterations. A: Altered pathways in enriched Gains (LNM vs PT). B: Altered 
pathways in enriched Losses (LNM vs PT).

https://doi.org/10.1186/s13104-017-2886-0
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