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Abstract 

Background:  Total kidney volume (TKV) is an important marker for the presence or progression of chronic kidney 
disease, however, routine ultrasonography underestimates renal volume to a high and varying degree.

Objective:  The aim of this work was to adapt and evaluate a semi-automatic unimodal thresholding method for 
volumetric analysis of the kidney in native T2-weighted magnetic resonance (MR) images.

Methods:  In a group of healthy volunteers (n = 24; 48 kidneys), we defined a region of interest (ROI) by manu-
ally tracing the outline of the kidney in every MR image. An automatic unimodal thresholding algorithm with visual 
feedback was applied to the probability distribution function of voxel intensities in the ROI to remove intrarenal 
non-parenchyma volume. For comparison, reference volumes were created by manual segmentation. Intra- and inter-
observer reliability was evaluated.

Results:  There was a small, significant mean difference of 1.5 ml between semi-automatically and manually seg-
mented TKV (p = 0.009, 95% CI [0.4, 2.7]). While intra-observer reliability was good (mean difference 2.9 ml, p < 0.01, 
95% CI [1.5, 4.2]) there was a small but significant mean difference of 4.8 ml (p < 0.01, 95% CI [3.6, 5.9]) between the 
TKV results of different observers. Reference volume correlations were excellent (r = 0.97–0.98). Semi-automated 
segmentation was significantly faster than manual segmentation; mean difference = 234 s [91–483 s]; p < 0.05. 
Automatic unimodal thresholding removed a considerable mean volume of 18.7 ml (13.1%) from the coarse manual 
pre-segmentations.

Conclusions:  Unimodal thresholding of native MR images is a robust and sufficiently reliable method for kid-
ney segmentation and volumetric analysis. The manual pre-segmentation can be done by non-experts with little 
introduction.
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Background
Chronic kidney disease (CKD) is a public health prob-
lem with a growing incidence in aging populations [1, 
2]. A change in kidney volume is a potential marker for 
the presence or progression of CKD. Kidney volume also 
helps to determine therapy and invasive diagnostics, 

e.g. kidney biopsy [3]. In ultrasonography, TKV is usu-
ally calculated by a variation of the ellipsoid formula. 
Unfortunately, this approximation significantly underes-
timates the kidney volume and suffers from poor repeat-
ability [3, 4]. Therefore more accurate, reproducible 
and fast alternatives for determining TKV are desirable. 
Magnetic resonance imaging (MRI) uses a tomographic 
method, is non-invasive and does not expose patients to 
ionizing radiation, contrary to computed tomography. It 
should be acknowledged that MRI-based examinations 
are limited by the relatively high costs, the partly limited 
access to scanners (e.g., compared to ultrasound), some 
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contraindications (e.g., subjects with some types of metal 
implants or pacemakers), and the potentially reduced 
convenience and tolerability for patients (e.g., claus-
trophobia). Due to the fact that the acquisition of MR 
images takes longer than the acquisition of CT images 
motion artifacts may occur, especially when imaging 
breath-dependent organs such as the kidney.

Manual slice by slice segmentation of the kidney paren-
chyma, excluding e.g. intrarenal vessels, calyces, cysts, 
is time intensive and user-dependent. There are vari-
ous approaches that fully or partly automate the process 
[5]. Fully automatic segmentation of the kidney in MR 
images is a challenging problem, owing to noise, low con-
trast, artifacts and the highly variable shape of the organ. 
Examples for state of the art approaches include methods 
based on the generation of probability maps [6] and neu-
ral networks [7]. Semiautomatic solutions often combine 
local adaptive algorithms, which detect edges and con-
tours in an image, with an interactive mouse tool. The 
user interactively ‘brushes’ the kidney with the tool and 
achieves faster segmentation. Local adaptive algorithms 
have parametric properties that need to be adjusted man-
ually by trial and visual feedback, depending on image 
quality, MR sequence and, most importantly, the shape 
and structure of the kidney itself. This leads to operator 
dependence in adjusting these properties and can be time 
intensive.

The aim of this work was to develop and evaluate a 
semi-automatic unimodal thresholding method for volu-
metric analysis of the kidney in native T2-weighted MR 
images. Unimodal thresholding has first been described 
by Rosin et al. [10] and works with any image that has a 
unimodal intensity distribution. Rosin et  al. [11] evalu-
ated images of various modalities with good results, 
including CT angiograms. There also exists an adapta-
tion for volumetric segmentation of 3D breast images 
acquired with cone-beam computed tomography. Our 
adaptation is based on the distribution of the voxel inten-
sities in a rough, manually pre-segmented region of inter-
est (ROI) of the kidney. To our knowledge, the proposed 
implementation is the first in the MRI domain.

Methods
Volunteers
In this study, 24 healthy subjects were chosen (11 
males, 13 females). The mean age was 26  years (range: 
21–41  years). The body mass index of all subjects was 
on average 21.8  kg/m2 (range: 18.9–24.8  kg/m2). The 
study recruitment process began in July 2015 and was 
conducted using an advertisement sent to our circle of 
acquaintances. The informed consent documents deline-
ated the MR exam and informed the volunteer that data 
collected during the exam could be used for research 

purposes. Informed consent forms were signed by every 
volunteer in the study. The study was executed accord-
ing to the Declaration of Helsinki and ‘good clinical prac-
tice’ (GCP) guidelines. The institutional review board of 
the University Hospital Erlangen/Germany approved the 
study.

MR examinations
In 19/24 MR examinations, we used a 1.5 Tesla MR Scan-
ner (Magnetom Avanto, Siemens, Erlangen, Germany). 
The remaining 5/24 examinations were acquired on a 3 
Tesla MR scanner (Magnetom Verio, Siemens, Erlangen, 
Germany). The volunteers were examined in supine posi-
tion with a standard abdominal phased array coil (Sie-
mens, Erlangen, Germany). For each subject, a volume 
containing both kidneys was scanned using a T2 turbo 
spin echo (TSE) sequence with prospective acquisition 
correction (PACE) in axial orientation and the following 
parameters: TR 4400 ms, TE 88 ms, bandwidth 260 Hz/
px, acquisition matrix 328  ×  288  px, slice thickness 
4.4 mm, in-plane resolution 1.0 × 1.0 mm.

Manual pre‑segmentation
For the manual pre-segmentation we used the Multi-
image Analysis GUI (Mango) image processing system.1 
Mango was selected because it is easy to use and employs 
the standard Neuroimaging Informatics Technology Ini-
tiative (NIfTI) file format for saving image volumes and 
ROI.

Unimodal thresholding
The unimodal thresholding algorithm was implemented 
by one of the authors (M.S.) as a custom script in Python, 
version 2.72 using the Scipy ecosystem, Numpy,3 nibabel4 
and scikit-image5 libraries. Spyder, a scientific develop-
ment environment,6 and part of the Anaconda software 
suite7 was selected for ease of use.

The script takes an abdominal MRI and a ROI around 
one kidney, both in NifTI-format, as input. From all voxel 
intensities within the ROI, a probability distribution 
function (PDF) is generated with a kernel-density esti-
mate using a Gaussian kernel8 and Scott’s method [8]. 

1  [http://ric.uthscsa.edu/mango] Mango. Accessed 10 June 2016.
2  [http://www.python.org] Python. Accessed 10 June 2016.
3  [http://docs.scipy.org/doc/] Numpy and Scipy Documentation. Accessed 
10 June 2016.
4  [http://nipy.org/nibabel/] Nibabel. Accessed 10 June 2016.
5  [http://scikit-image.org/]Scikit-image. Accessed 10 June 2016.
6  [https://pythonhosted.org/spyder/] Spyder. Accessed 10 June 2016.
7  [http://docs.continuum.io/anaconda/index] Anaconda. Accessed 10 June 
2016.
8  [http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_
kde.html] SciPy Kernel Density Estimate. Accessed 7 June 2016.

http://ric.uthscsa.edu/mango
http://www.python.org
http://docs.scipy.org/doc/
http://nipy.org/nibabel/
http://scikit-image.org/
https://pythonhosted.org/spyder/
http://docs.continuum.io/anaconda/index
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html
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The maxima of the PDF are detected automatically by a 
peak-seeking algorithm.9 If there is more than one maxi-
mum, the user has the choice to depart from the default, 
which is the global maximum of the PDF. Two points on 
the PDF with a distance of one standard deviation left 
and right of its maximum are calculated. Straight lines 
are drawn from the peak to these points. The area of a 
right triangle, its hypotenuse part of the respective line 
and its right vertex on the PDF, is maximized—this is 
equivalent to the maximum perpendicular distance 
between the PDF and the line. The upper and lower 
threshold is determined by the right vertices on the PDF 
(Fig.  1a). For visual feedback in all slices of the kidney 
volume the manual ROI and all voxels within the upper 
and lower threshold are shown as a colored line and 
colored area (Fig. 2).

The volume of all voxels within the threshold is auto-
matically calculated and exported into a SQLite database 
created with SQLite Manager.10,11

Reference volume
A manual segmentation was performed with Photoshop 
(Version CS6, Adobe Systems, San Jose, CA, USA). The 
entire kidney parenchyma was segmented from the sur-
rounding tissues manually on the T2-weighted MR 
images using knowledge about the shape, location and 
structure of the kidney. The contours of both kidneys 
were carefully drawn manually in each slice for each 

9  [https://github.com/demotu/BMC/blob/master/functions/detect_peaks.
py] DetectPeaks. Accessed 10 June 2016.
10  [https://www.sqlite.org/] SQLite. Accessed 10 June 2016.
11  [https://addons.mozilla.org/en-us/firefox/addon/sqlite-manager/] SQLite 
Manager. Accessed 10 June 2016.

volunteer. The manual segmentation was performed by a 
medical student. A board-certified radiologist [6 years of 
work experience (M.H.)] verified and corrected the seg-
mentation where necessary. These delineations were con-
sidered as the reference volume.

Statistical analysis
The statistics in the study were calculated using R, ver-
sion 3.2.1.12 For the inter-observer variation study, man-
ual segmentation of all 48 kidneys was performed by two 
independent observers, one medical postgraduate and 
one layperson. An intra-observer variation study was 
performed by comparing two segmentation groups of all 
48 kidneys by the same observer (medical postgraduate) 
with a 6 months minimum time difference. These results 
were compared to a reference volume, of all 48 kidneys, 
obtained by a purely manual segmentation (see above) by 
another independent observer. All observers were blind 
to the others results. Correlations were calculated using 
Pearson’s product-moment correlation coefficient. Statis-
tical differences between groups were compared with a 
paired t test where p  <  0.05 was considered significant. 
Comparisons were performed with a linear regression 
analysis and the Bland–Altman method [9].

Results
Voxel histogram and probability distribution function 
(PDF)
Except for two kidneys, the PDFs are unimodal which 
means that they have a single global maximum (Fig. 3). 

12  [https://www.r-project.org/] The R Project for Statistical Computing. 
Accessed 10 June 2016.

Fig. 1  a Intensity histogram for one kidney, fitted PDF and delineations of the unimodal thresholding algorithm, b bimodal intensity histogram 
fitted PDF and delineations of the unimodal thresholding algorithm with two maxima

https://github.com/demotu/BMC/blob/master/functions/detect_peaks.py
https://github.com/demotu/BMC/blob/master/functions/detect_peaks.py
https://www.sqlite.org/
https://addons.mozilla.org/en-us/firefox/addon/sqlite-manager/
https://www.r-project.org/
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Kidneys 016L and 023L have two local maxima 
(bimodal). The default method uses only the global max-
imum; local maxima are ignored. Choosing the maxima 
near the respective lines as their peak points (Fig.  1b) 
and comparing the result to the default we found a 
maximum volume difference of 1.2  ml for kidney 016L 
(observer 1) and of 0.4 ml for kidney 023L (observer 2). 
We consider these differences negligible. The results 
reported below are based on the automatic global maxi-
mum method.

Visual evaluation
Throughout the evaluation, the areas marked by the auto-
matic threshold corresponded well to anatomical features 
like vessels and calyxes (Fig. 2).

Numerical results
Using unimodal thresholding, the mean TKV was 
143.2 ± 29.0 ml; 146.3 ± 28.0 ml for the left kidney and 
140.1 ± 29.8 ml for the right kidney; 157.1 ± 26.2 ml for 
male and 131.4 ± 25.9 ml for female subjects; see Table 1.

Fig. 2  Kidney region of interest (axial slices). Red border represents the manual pre-segmentation. Blue hues depict voxels below the lower thresh-
old. Orange hues depict voxels above the upper threshold
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There was a small, significant mean difference of 1.5 ml 
between the volumes acquired by semi-automated seg-
mentation and the reference volume (95% CI [0.4, 2.7], 
N = 144, p < 0.01, paired t test). The mean absolute dif-
ference (MAD) was 5.5 ml.

Repeated measurements by the same observer (intra-
reader reliability) showed a small, significant variability; 
the mean difference was 2.9 ml (95% CI [1.5, 4.2], N = 48, 
p < 0.01, paired t test), the MAD was 4.3 ml.

To evaluate inter-reader reliability, both segmentation 
groups of observer 1 were compared to one segmentation 

group of observer 2. We found a small, significant mean 
difference of 4.8 ml (95% CI [3.6, 5.9], N = 96, p < 0.01, 
paired t test) and a MAD of 6.0 ml. A detailed summary 
is shown in Tables 2 and 3.

Comparing the results acquired by the same observer, 
we found excellent correlation (r  =  0.99, t  =  44.1, 
p  <  0.01, 95% CI [0.98, 0.99]) and excellent agreement 
(mean value of differences = 2.9 ± 4.5 ml, 95% CI [−6.1, 
11.8]) (see Fig. 4).

Comparing the results acquired by different observ-
ers, we also found excellent correlation (observer 1 (1)/

Fig. 3  Voxel histogram with fitted PDF for all 48 kidneys

Table 1  Comparison of  mean renal volume (ml) for  three unimodal segmentation groups and  one manual reference 
group

Mean total kidney volume (ml) ± SD

Total Left kidney Right kidney Male Female

Semiautomatic segmentation (unimodal thresholding) Observer 1 1 146.2 ± 29.8 150.2 ± 29.1 142.2 ± 30.5 160.9 ± 26.4 133.7 ± 27.0

2 143.3 ± 29.1 147.3 ± 28.0 139.4 ± 30.2 157.2 ± 26.4 131.6 ± 26.3

Observer 2 140.0 ± 28.3 141.4 ± 27.3 138.7 ± 29.9 153.2 ± 26.5 128.9 ± 25.2

Total 143.2 ± 29.0 146.3 ± 28.0 140.1 ± 29.8 157.1 ± 26.2 131.4 ± 25.9

Manual segmentation (reference volume) 141.7 ± 28.5 143.7 ± 27.5 139.6 ± 29.9 156.5 ± 24.4 129.1 ± 25.9
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observer 2: r  =  0.98, 95% CI [0.96, 0.99], p  <  0.001; 
observer 1 (2)/observer 2: r = 0.99, 95% CI [0.98, 0.99], 
p < 0.01) and good agreement (observer 1 (1)/observer 2: 
mean value of differences = 6.2 ± 6.5 ml, 95% CI [−6.6, 
19.0], observer 1 (2)/observer 2: mean value of differ-
ences = 3.3 ± 4.7 ml, 95% CI [-6.0, 12.6]), see Fig. 5.

Comparing the three unimodal thresholding TK vol-
umes to the reference volume, there was again excellent 
correlation (Table 3) and excellent agreement (Fig. 6). For 
the manual segmentation, the time required per kidney 
was 408 ± 105 s. The semi-automated segmentation took 
174 ± 38 s and, therefore, was significantly faster.

The mean automatically removed volume of all observ-
ers was 18.7 ml (13.1%), shown in Table 4.

Discussion
The aim of this work was to develop and evaluate a fast, 
robust, accurate and reliable method for volumetric 
analysis of the kidney in native T2-weighted MR images. 
We developed an automatic algorithm to partition the 
PDF of the voxel intensities within a rough and manually 
acquired kidney ROI. This thresholding method of essen-
tially unimodal distributions has been described and 

tested with images of various modalities [10]. It has also 
been successfully adapted for volumetric segmentation 
of 3D breast images acquired with cone-beam computed 
tomography [11].

It should be mentioned that the obtained thresholds 
are not fixed. They are case-dependent and vary with the 
peak location of the PDF derived from the ROI intensity 
histogram. This is an important advantage, because MR 
intensity is arbitrary and varies between subjects, scan-
ners and imaging sessions. Of note, MR intensity nor-
malization techniques are commonly based on the image 
histogram [12]. In our case the underlying assumptions 
are that the kidney parenchyma, consisting of a cortex 
and medulla, is the predominant tissue in the kidney ROI 
and has characteristic intensity values that are different 
from non-parenchyma tissue. This then shows as a peak 
in the intensity histogram of the ROI and the derived 
PDF. We used points on the PDF with a distance of one 
standard deviation left and right of its maximum rather 
than the left and right ends of the PDF. This empirical 
modification was necessary because, without it, right-
sided outliers (high intensity) would lead to markedly 
higher upper thresholds and a systematically too high 

Table 2  Accuracy and reliability of the semiautomatic segmentation

N Min 5th  
percen‑
tile

Mean 95th 
percen‑
tile

t Max SD p (2-tailed) MAD

Accuracy (difference to 
the reference volume)

Observer 1 (1) 48 −11.4 2.4 4.5 6.7 4.3 30.4 7.4 <0.01 6.6

Observer 1 (2) 48 −7.7 0.1 1.7 3.2 2.2 15.3 5.4 <0.05 5.4

Observer 2 48 −15.5 −3.6 −1.6 0.3 −1.7 11.2 6.7 0.095 4.4

Total 144 −15.5 0.4 1.5 2.7 2.6 30.4 7.0 <0.01 5.5

Inter-observer reliability Observer 1 (1)/observer 2 48 −13.9 4.3 6.2 8.1 6.5 24.8 6.5 <0.01 7.3

Observer 1 (2)/observer 2 48 −7.6 1.9 3.3 4.7 4.9 13.9 4.7 <0.01 4.4

Total 96 −13.9 3.6 4.8 5.9 7.9 24.8 5.9 <0.01 6.0

Intra-observer reliability Observer 1 (1)/observer 
1 (2)

48 −6.3 1.5 2.9 4.2 4.4 15.1 4.5 <0.01 4.3

Table 3  Correlation and absolute mean difference of three unimodal segmentation groups to the reference volume (ml)

Correlation to the reference volume Mean difference to the reference volume (ml) ± SD

95% CI t p (2-tailed) Total Left Right Male Female

Observer 1 1 0.97 [0.94, 0.98] 26.5 <2.2e−16 4.5 ± 7.4 6.5 ± 7.9 2.6 ± 6.4 4.4 ± 9.5 4.7 ± 5.1

2 0.98 [0.97, 0.99] 36.0 <2.2e−16 1.7 ± 5.4 3.5 ± 5.7 −0.2 ± 4.4 0.7 ± 6.1 2.5 ± 4.6

Observer 2 0.97 [0.95, 0.99] 28.0 <2.2e−16 −1.6 ± 6.7 −2.3 ± 6.9 −0.9 ± 6.4 −3.4 ± 7.2 −0.2 ± 5.9
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TKV. Also, the lower threshold would otherwise be influ-
enced by the location of the maximum of the PDF.

The method was tested on 24 scans of healthy volun-
teers (48 kidneys). It removed a considerable mean vol-
ume of 13.1% from the manually pre-segmented ROI. On 
visual inspection this volume consisted predominantly of 
non-parenchyma tissue such as blood vessels and calyxes. 
Renal volume, listed in Table  1, is in good accordance 
with values reported in the literature [4]. Intra- and inter-
observer reliability was good, and the results correlated 
well with a manually segmented reference volume.

The unimodal thresholding approach was proposed 
by Rosin et  al. more than 15  years ago [10]. Since then, 

numerous approaches were described in the domain of 
MR image segmentation [5–7]. Our proposed method 
requires a rough manual pre-segmentation of the kidney. 
However, it affords significant time savings compared to a 
fine manual segmentation and could be used for generat-
ing training data for segmentation approaches that employ 
machine learning techniques. The necessary coarse man-
ual pre-segmentation could be done by non-experts with 
little introduction. The end-results should be independent 
of the software used for this step. This could be advanta-
geous for the evaluation of large data sets. Kidney volume 
was determined automatically at completion of the uni-
modal thresholding algorithm and we did not make any 
corrections. Our study has some limitations. The unimodal 
thresholding only removes voxels that differ somewhat 
from the predominant intensity within the manually pre-
segmented ROI. If voxels with similar intensity (spleen, 
pelvis, vascular tissue, dull margins due to partial volume 
effects) are included in the pre-segmentation they will 
not be removed by the subsequent automatic unimodal 
thresholding. This leads to a false high TKV.

Additionally, if a lot of near isointense non-paren-
chyma voxels are included in the manual pre-segmenta-
tion the intensity distribution of the whole ROI could be 
altered in a way that leads to higher thresholds compared 
to a sufficiently accurate pre-segmentation, resulting in a 
systematic error towards a higher TKV. We did not see 
this error in our pre-segmentations (observer 2 is a lay-
person); therefore, we did not see this property having a 
considerable impact.

However, we saw small but significant systematic differ-
ences between observation groups (Table 2). We consider 
these to be mainly a manifestation of user dependability 
concerning the manual segmentation, which is the ten-
dency of the user to include or exclude disputable vol-
ume that may or may not be part of the kidney. These 
differences were more pronounced for left kidneys than 
for right kidneys (Table  3), which is most likely due to 
the proximity of iso-intense spleen tissue. These sys-
tematic errors were sufficiently small for us to consider 
acceptable.

For the evaluation of our semiautomatic segmentation 
approach, we used images of healthy volunteers. Further 
research is necessary to show how the algorithm works 
with data of patients that could have a worse image qual-
ity, different intensity distributions within the kidney or 
lower contrast between renal parenchyma and surround-
ing tissue.
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For the clinical setting a more interactive process 
would be desirable, such as unimodal thresholding exe-
cuted every time the user draws a kidney contour in an 
image slice. For diseased kidneys it could be beneficial if 
the user had the ability to manipulate thresholds along 
the pdf with instant feedback.

Lastly, all of the software used is open source for 
research purposes. It stands to reason that this thresh-
olding method is promising also for different tissues and 
different image modalities, as long as the intensity dis-
tribution of the voxels in the region of interest is nearly 
unimodal. The Python code for the implementation of 
the unimodal thresholding algorithm consists of a central 

script, several functions and sub functions. The Python 
code is available as additional material (Additional file 1).

Conclusions
Unimodal thresholding of native MR images is a robust 
and sufficiently reliable method for kidney segmentation 
and volumetric analysis. The manual pre-segmentation 
can be done by non-experts and with a brief introduc-
tion. Future research includes the evaluation of kidney 
voxel distributions at different magnetic field strengths, 
the evaluation of alternative MR protocols, embedding of 
unimodal thresholding in a more interactive protocol and 
the investigation of patient data as well as large data sets.
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Fig. 5  Inter-observer reliability: a Correlation of observer 1 (1) to observer 2, 48 kidneys. b Corresponding Bland–Altman plot. c Correlation of 
observer 1 (2) to observer 2, 48 kidneys. d Corresponding Bland–Altman plot
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Additional file

Additional file 1. unimodcode.zip: a zipped folder containing the 
following files: unimodscript.py: the central script for the unimodal 
thresholding approach, l03threshSTD.py: the monomodal threshold-
ing algorithm function, l02shrink.py: a function to remove most of 
the whitespace from a masked volume, detect_peaks.py: the peak 
detection function by Marcos Duarte, also available at https://github.com/
demotu/BMC/blob/master/functions/detect_peaks.py,  example.nii.
gz: an anonymized abdominal MRI in NIfTI format, example_left_kid-
ney_preseg.nii.gz: a manual pre-segmentation of the left kidney of the 
example MRI, done with the Multi-image Analysis GUI (MANGO), available 
at http://ric.uthscsa.edu/mango/, example_right_kidney_preseg.nii.
gz: a manual pre-segmentation of the right kidney of the example MRI, 
done with the Multi-image Analysis GUI (MANGO), available at http://ric.
uthscsa.edu/mango/, LICENSE.txt: the MIT license text, readme.txt: 
description of the included files, list of dependencies, instructions for 
installation and use.

Abbreviations
CKD: chronic kidney disease; GCP: good clinical practice; GUI: graphical user 
interface; MAD: mean absolute difference; MR: magnetic resonance; MRI: 
magnetic resonance imaging; NIfTI: Neuroimaging Informatics Technology Ini-
tiative; PACE: prospective acquisition correction; PDF: probability distribution 
function; ROI: region of interest; TKV: total kidney volume; TE: time to echo; TR: 
time to repeat; TSE: turbo spin echo.
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Table 4  Mean automatically removed volume for three unimodal segmentation groups (ml)

Mean automatically removed volume (ml) ± SD

Total Left Right Male Female

Observer 1 1 18.1 ± 4.9 15.8 ± 4.2 20.5 ± 4.5 19.2 ± 4.8 17.3 ± 4.9

2 19.3 ± 5.4 18.5 ± 5.9 20.0 ± 4.9 20.6 ± 5.3 18.1 ± 5.3

Observer 2 18.8 ± 5.9 16.2 ± 4.7 21.4 ± 5.9 20.0 ± 5.4 17.8 ± 6.2

Total 18.7 ± 5.4 16.8 ± 5.0 20.6 ± 5.1 19.9 ± 5.1 17.7 ± 5.5

http://dx.doi.org/10.1186/s13104-016-2292-z
https://github.com/demotu/BMC/blob/master/functions/detect_peaks.py
https://github.com/demotu/BMC/blob/master/functions/detect_peaks.py
http://ric.uthscsa.edu/mango/
http://ric.uthscsa.edu/mango/
http://ric.uthscsa.edu/mango/
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integrity of any part of the work are appropriately investigated and resolved. 
All authors read and approved the final manuscript.
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