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Abstract 

Background:  Hop is an economically important crop for the Pacific Northwest USA as well as other regions of the 
world. It is a perennial crop with rhizomatous or clonal propagation system for varietal distribution. A big concern for 
growers as well as brewers is variety purity and questions are regularly posed to public agencies concerning the avail-
ability of genotype testing. Current means for genotyping are based upon 25 microsatellites that provides relatively 
accurate genotyping but cannot always differentiate sister-lines. In addition, numerous PCR runs (25) are required to 
complete this process and only a few laboratories exist that perform this service. A genotyping protocol based upon 
SNPs would enable rapid accurate genotyping that can be assayed at any laboratory facility set up for SNP-based 
genotyping. The results of this study arose from a larger project designed for whole genome association studies upon 
the USDA-ARS hop germplasm collection consisting of approximately 116 distinct hop varieties and germplasm 
(female lines) from around the world.

Results:  The original dataset that arose from partial sequencing of 121 genotypes resulted in the identification of 
374,829 SNPs using TASSEL-UNEAK pipeline. After filtering out genotypes with more than 50 % missing data (5 geno-
types) and SNP markers with more than 20 % missing data, 32,206 highly filtered SNP markers across 116 genotypes 
were identified and considered for this study. Minor allele frequency (MAF) was calculated for each SNP and ranked 
according to the most informative to least informative. Only those markers without missing data across genotypes 
as well as 60 % or less heterozygous gamete calls were considered for further analysis. Genetic distances among indi-
viduals in the study were calculated using the marker with the highest MAF value, then by using a combination of the 
two markers with highest MAF values and so on. This process was reiterated until a set of markers was identified that 
allowed for all genotypes in the study to be genetically differentiated from each other. Next, we compared genetic 
matrices calculated from the minimal marker sets [(Table 2; 6-, 7-, 8-, 10- and 12-marker set matrices] and that of a 
matrix calculated from a set of markers with no missing data across all 116 samples (1006 SNP markers). The minimum 
number of markers required to meet both specifications was a set of 7-markers (Table 3). These seven SNPs were then 
aligned with a genome assembly, and DNA sequence both upstream and downstream were used to identify primer 
sequences that can be used to develop seven amplicons for high resolution melting curve PCR detection or other 
SNP-based PCR detection methods.

Conclusions:  This study identifies a set of 7 SNP markers that may prove useful for the identification and validation 
of hop varieties and accessions. Variety validation of unknown samples assumes that the variety under question has 
been included a priori in a discovery panel. These results are based upon in silica studies and markers need to be 
validated using different SNP marker technology upon a differential set of hop genotypes. The marker sequence data 
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Background
Hop is an important cash crop for the Pacific Northwest 
USA as well as several European countries, China, Aus-
tralia, South Africa and other minor production regions. 
It is primarily used as a flavoring and bittering additive in 
beer brewing but alternative uses have become increas-
ingly important [1, 2]. Hop is a dioecious perennial plant 
species propagated via rhizomatous cuttings. The female 
inflorescence (or hop “cone”) is the harvested product. 
While male hop plants are required for breeding pur-
poses female hop plants will produce cones without pol-
lination [3]. Male hop plants disperse pollen via air and 
if present near production hop yards, can pollinate and 
produce seed on female hop varieties. Seedlings from 
these crosses can supersede the previous genotype if 
they possess superior fitness. Furthermore, when new 
varieties are produced on yards previously producing 
a different variety, it is possible for escapes to continue 
production. Both of these scenario’s can be compounded 
over the life of a new hop variety planting with the result 
that a yard becomes contaminated. If rhizome cuttings 
are subsequently sold from this yard, the recipient grower 
could end up with either a partially or fully contaminated 
yard. Hop sales from this field are then rejected due to 
unexpected flavors or bittering capacity. In addition, 
farms located across the USA with historical importance 
have requested help in identifying feral hops growing on 
their property ([4]; Personal Observation). In these cases, 
the goal would be to eliminate the possibility that the 
unknown line is a currently available hop variety.

Regardless of the scenario, the hop industry does not 
currently have an efficient, accurate and widely avail-
able method for marker-based genotyping of hop acces-
sions. Current means used by the National Clean Plant 
Network for genotyping hop are based upon 25 micros-
atellites that provides relatively accurate genotyping but 
cannot always differentiate sister-lines (Dr. Ken Eastwell, 
Personal Communication 2015). Patzak and Matoušek 
[5] reported on the use of expressed sequence tagged, 
simple sequence repeat (EST-SSR) markers as a means 
of differentiating hop varieties. The reported PCR-based 
method utilized 30 EST-SSR markers to differentiate 11 
different hop genotypes representing a wide genetic pool. 
Unfortunately, no broad-based evaluation of related and 
unrelated genotypes was reported. In addition, a signifi-
cant number of PCR steps (30) are required to utilize this 

method. Koelling et  al. [6] reported on the identifica-
tion of a 952 new SSR markers identified from expressed 
sequence tagged data sets deposited with National Center 
for Biotechnology Information (NCBI: http://www.ncbi.
nlm.nih.gov/). These 952 markers were tested across 8 
different cultivars to determine differentiation power of 
the markers. The combination of all 952 markers was suc-
cessful in differentiating among the 8 cultivars. Again, 
no minimal number of SSR markers was identified in 
this study. Howard et al. [7] reported on the genotyping 
capabilities of diversity array technology markers (DArT) 
in hop. While Howard et  al. [7] demonstrated DArT 
markers as having sufficient capability to resolve closely 
related hop genotypes, its cost and dependence upon a 
single service provider (Diversity Array Technology Inc.; 
http://www.diversityarrays.com/) limit availability. What 
is needed is a simple, widely available methodology that 
utilizes a minimal number of markers to differentiate 
between both related and unrelated hop genotypes.

Single nucleotide polymorphic (SNP) markers repre-
sent the most abundant source of variation that can be 
utilized to differentiate among genotypes especially as 
they are found in both coding [8] and non-coding regions 
[9]. Recent genome sequencing work (data not published) 
shows the presence of a SNP every 346 bp on average in 
hop. Matthews et al. [10] was the first group to identify 
and report on next generation sequencing derived SNP 
markers having identified 17,128 SNPs. This group uti-
lized SNP markers to genotype hop varieties and con-
cluded that a highly filtered group of 3068 SNP markers 
resulted in a dendrogram that did not significantly differ 
from dendrograms obtained using the lower stringency 
filtered set of 16,106 SNP markers. However, no mini-
mum number of markers required to differentiate among 
all genotypes were identified and reported.

The minimal number of markers chosen for DNA fin-
gerprinting cultivars has been examined in numerous 
crops (see [11] for review) and computer programs have 
been written to address this application [12] across any 
plant species. In essence, the primary means of identi-
fying the minimal number of markers consists of some 
means of ranking markers upon their effectiveness at 
describing population variation and reiteratively includ-
ing more and more markers until all genotypes in the 
population can be genetically differentiated. This process 
was utilized to identify a small set of SNP markers that 

and suggested primer sets provide potential means to fingerprint hop varieties in most genetic laboratories utilizing 
SNP-marker technology.
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could, upon validation, be utilized to differentiate among 
genetically diverse hop accessions and be widely adapt-
able and available to genetic laboratories worldwide.

Results and discussion
A total of 374,829 SNP markers were identified using 
the TASSEL-UNEAK Ver 3.0 pipeline [13] across a 
population of 121 individual varieties and germplasm 
accessions. Filtering of SNP sites, as well as filtering out 
individuals with poor sequencing results, was accom-
plished using TASSEL ver 4.3.4 [14] resulting in a set 
of 32,206 high quality SNP markers across 116 geno-
types (Table  1). SNP marker filtration settings were set 
to require presence in 80  % of all genotypes for accept-
ance into the data set. Presence of greater than 50 % of 
all 32,206 SNP markers was set as cut-off for inclusion of 
a variety into the final data set. Some genetic lines with 
higher than 50  % missing gamete calls were kept in the 
study due to their importance in hop production (Haller-
tau Mittelfrueh, Wye Zenith, etc., Table 1). Cut-off speci-
fications did not differ significantly from those utilized by 
Matthews et al. [10].

Genotype summaries using all 32,206 SNP mark-
ers were obtained using TASSEL. Included in TASSEL’s 
genotype summary were estimations of the minor allele 
frequency (MAF). MAF-values are important statistics 
utilized to filter out markers with high error potential 
(MAF <0.05) or provide the best discrimination power 
between genotypes [15]. Ranking of MAF-values from 
highest to lowest identified numerous markers with MAF 
<0.5. SNP markers that were heterozygous across all gen-
otypes were discarded from consideration. Using a reiter-
ative process of additive inclusion of a single marker with 
highest MAF values we identified a set of six (6) SNPs 
that were capable of differentiating among all 116 geno-
types in the study.

The dendrogram resulting from the use of these six 
SNP markers did not match up well with dendrograms 
developed from the use of a complete set of SNP mark-
ers (data not shown). As a result, we continued to include 
additional markers with high-MAF values to the minimal 
set of markers and then compared the resulting genetic 
diversity matrices to a matrix calculated from a complete 
set of 1006 markers (no missing markers from data set) 
(Table 2). It was determined that the seven SNP markers 
(Table 3; Fig. 1) with highest MAF-values were required 
to both differentiate all 116 genotypes and define statis-
tically similar dendrograms (approximate Mantel T test; 
t = −15.7471, p = 0.00001) as compared to a complete 
set of 1006 SNP markers (Fig. 2).

PCR-based methodology to screen SNP markers var-
ies from simple (single strand conformational polymor-
phism, SSCP; [4] to resequencing using next generation 

sequencing. This study identified a set of SNP markers 
that could potentially be used to differentiate hop geno-
types. We propose the use of high-resolution melting 
(HRM) curve analyses as a simple and rapid means to 
perform genetic fingerprinting on hop genotypes. Uti-
lizing a draft hop genome, we aligned the raw reads for 
informative SNP markers to extend reads to a total length 
of 264-bp. Primer3 software identified optimum primer 
sequences that can be used to develop Amplicons for 
HRM analysis (Table 4).

Several of the accessions used in this study are thought 
to be clonal selections from other lines contained in this 
study. As an example, Savinja Golding is thought to be 
a clonal selection from Fuggle (see: “Slovenian Styrian 
Goldings: https://bsgcraftbrewing.com/slovenian-styr-
ian-goldings) as are Fuggle H and Fuggle N (A. Haunold, 
Personal Communication, 2014). In addition, Hers-
brucker 6 and 8 are thought to be clonal selections from 
the original German ‘Hersbrucker’ landrace (see: USDA 
ACCESSION No. 21514; http://www.ars.usda.gov/
SP2UserFiles/person/2450/hopcultivars/21514.html). 
All these “clonal selections” show sufficient phenotypic 
differences from the related lines as well as parent lines 
to suggest genetic differences between them, although 
differences are expected to be minor. The inclusion of 
clonal selections was to determine if a sufficiently robust 
method could be devised to differentiate among such 
lines.

Previous work in hop have focused upon the identifi-
cation of male plants from a population of offspring [16] 
or genetic diversity and DNA fingerprinting using older 
marker technology such as STS, SSR, AFLP, RAPD and 
DArT [7, 17–19]. In all publications, differentiation of 
accessions required the full compliment of markers used 
for defining genetic diversity in hop populations. In sev-
eral reports, a few hop varieties were not differentiated 
from one another and complete validation was not pos-
sible given the marker technology used. Furthermore, 
none of the published reports identified a subset of mark-
ers that could be used independently to fingerprint hop 
varieties.

In this study, use of the full compliment of 1006 SNP 
markers found in all cultivars (Fig. 2) and use of the mini-
mum number of markers (7 SNPs—Fig.  1) completely 
differentiated all female lines contained in this study. In 
this report, 7 SNPs were identified that effectively differ-
entiated all varieties and accessions present in the study. 
The hop lines chosen for this study represent a broad 
spectrum of hop lines from around the world. Some of 
the varieties evaluated in this study were not adequately 
differentiated using older marker technology such as 
AFLP or SSR’s. Thus, these older technologies have suffi-
cient limitations in their usefulness for variety validation 

https://bsgcraftbrewing.com/slovenian-styrian-goldings
https://bsgcraftbrewing.com/slovenian-styrian-goldings
http://www.ars.usda.gov/SP2UserFiles/person/2450/hopcultivars/21514.html
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Table 1  Summary genotypic information of the results of partial sequencing for 116 varieties and experimental lines

Taxa name Number of sites Proportion  
missing gametes

Proportion  
heterozygous gametes

19105x19058M 32,206 0.28507 0.18871

21397X19058M 32,206 0.18466 0.18729

21397x21381M 32,206 0.15677 0.17053

21521x64035M 32,206 0.18596 0.13964

21534x21088M 32,206 0.4392 0.10476

21534x64037M 32,206 0.52431 0.09608

61021x21618M 32,206 0.21002 0.21445

Ahil 32,206 0.03049 0.36273

Alliance 32,206 0.03732 0.21691

Alpha Aroma (AlphAroma) 32,206 0.39319 0.17024

Apolon 32,206 0.05154 0.28246

Aquila 32,206 0.1772 0.27239

Atlas 32,206 0.11662 0.28633

Aurora 32,206 0.14354 0.18298

Backa 32,206 0.02468 0.29732

Banner 32,206 0.1142 0.32253

Bianca 32,206 0.14423 0.22318

Blisk 32,206 0.08713 0.36031

Bobek 32,206 0.17009 0.16915

Brewers Gold (BrewGold) 32,206 0.28507 0.26866

Buket 32,206 0.05192 0.21582

Bullion10A 32,206 0.40048 0.22913

Canadian Red Vine (CanadRV) 32,206 0.27271 0.23507

Canterbury Golding (CantGold) 32,206 0.14643 0.15526

Cascade 32,206 0.3255 0.22064

Cekin 32,206 0.18571 0.17781

Celeia 32,206 0.05766 0.26788

Centennial 32,206 0.17133 0.24194

Cerera 32,206 0.13302 0.22355

Chinook 32,206 0.1383 0.26647

Columbia 32,206 0.33441 0.15395

Comet 32,206 0.18922 0.25911

Crystal 32,206 0.10868 0.30513

Dunav 32,206 0.23157 0.13835

Early Prolific (E_Prolific) 32,206 0.06421 0.21249

Early Promise (E_Promise) 32,206 0.03006 0.21634

East Kent Golding (EKentGold) 32,206 0.06483 0.21535

Eastern Gold (EastGold) 32,206 0.22095 0.18928

Eastern Green (E_Green) 32,206 0.16379 0.17467

Eastwell Golding (EastGolding) 32,206 0.29116 0.11792

English Inter. 30 (EnglishInt30) 32,206 0.3341 0.0996

Eroica 32,206 0.11917 0.26562

FirstChoice 32,206 0.14323 0.22448

FuggleH 32,206 0.12516 0.18949

FuggleN 32,206 0.0857 0.2075

FuranoAce 32,206 0.12808 0.21036

Galena 32,206 0.38692 0.26569

Hallertau Gold (Hgold) 32,206 0.33096 0.11496

Hallertau Magnum (Hmagnum) 32,206 0.25899 0.17465
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Table 1  continued

Taxa name Number of sites Proportion  
missing gametes

Proportion  
heterozygous gametes

Hallertau Mittelfrueh (Mittelfrueh) 32,206 0.67742 0.0463

Hallertau Tradition (Htradition) 32,206 0.17407 0.14282

Hersbrucker Alpha (HersbrAlpha) 32,206 0.48696 0.07656

Hersbrucker Pure (HersbPure) 32,206 0.29786 0.12347

Hersbrucker Red Stem(HersbrRedSt) 32,206 0.06629 0.2267

Hersbrucker6 32,206 0.12982 0.17527

Hersbrucker8 32,206 0.04707 0.24249

Horizon 32,206 0.29004 0.1965

Hueller Bitter (HuelBitter) 32,206 0.03521 0.37111

Hybrid_2 32,206 0.39747 0.14934

Keyworths Early (KeywEarly) 32,206 0.17602 0.18427

Keyworths Midseason (KeyMidseas) 32,206 0.50528 0.15967

KirinC-601 32,206 0.25194 0.21036

KirinII 32,206 0.22378 0.26565

Kitamidori 32,206 0.18096 0.21097

Liberty 32,206 0.16286 0.16932

Lublin 32,206 0.60681 0.0597

Magnumx21267M 32,206 0.20984 0.21381

Mt.Rainier 32,206 0.12457 0.24576

Nadwislanka 32,206 0.08095 0.22092

Neoplanta 32,206 0.21996 0.15608

New Zealand Hallertau (NZHaller) 32,206 0.15227 0.23691

Newport 32,206 0.09275 0.24251

Northern Brewer (N_Brewer) 32,206 0.21956 0.15174

Nugget 32,206 0.27486 0.15633

Olympic 32,206 0.13122 0.29321

Omega 32,206 0.03704 0.22652

Orion 32,206 0.10194 0.18165

Perle 32,206 0.07421 0.20046

Pride of Kent (Pride_Kent) 32,206 0.26327 0.19063

Pride of Ringwood (PrideRing) 32,206 0.37487 0.15845

Saazer clone (Osvald72Y) 32,206 0.05564 0.26113

Saazer38 32,206 0.13563 0.18299

Santiam 32,206 0.06334 0.35109

Savinja Golding (SavGolding) 32,206 0.2352 0.13686

Saxon 32,206 0.07893 0.21433

Scarlet 32,206 0.19711 0.21966

Shinshuwase 32,206 0.19844 0.30134

SorachiAce 32,206 0.1492 0.20448

Southern Brewer (S_Brewer) 32,206 0.07319 0.25495

Spalter Select (SpaltSelect) 32,206 0.19931 0.1367

Sterling 32,206 0.14547 0.17772

Stricklebract (Strickle) 32,206 0.17292 0.2563

Styrian 32,206 0.26334 0.13467

Sunbeam 32,206 0.23052 0.20951

Sunshine 32,206 0.03322 0.23503

SuperAlpha 32,206 0.0866 0.31166

Talisman 32,206 0.28066 0.23918

Tardif de Bourgogne (Tardif ) 32,206 0.11808 0.18833
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or identification. Partial sequencing through next genera-
tion sequencing technology allows for the identification 
of thousands of SNP markers from across the genome. 
These markers are not limited to clustered regions such 
as SSRs and DArT markers [16, 20] and are therefore 
more representative of the genome. Because of their dis-
tribution throughout the genome, SNP markers offer a 
greater likelihood of differentiating among accessions.

The 7 SNPs identified in this study were the minimum 
number of markers required to differentiate all the hop 

accessions in this study. They have not yet been tested 
using high resolution melting (HRM) or other SNP detec-
tion methods. Furthermore, the use of these 7 SNPs as 
a discriminating tool for samples consisting of mixtures 
of different cultivars has not been tested but may have 
limited applicability given the small number of mark-
ers used. The primers for use in HRM are reported for 
implementation by other projects (Table 3). If one or two 
of these SNPs prove to be insufficient for use in HRM or 
other PCR techniques, there are additional SNP markers 
that can be utilized (Supplementary Data).

Conclusions
This note reports on the identification of a minimal num-
ber of markers (7 SNPs) required to differentiate among 
116 widely divergent hop accessions including clonal 
selections and sister hop lines. As such, it is the first 
publication outlining a simple widely available protocol 
for the identification of, and discrimination among, hop 
varieties. The SNPs and associated primer sequences for 
HRM analysis are provided and supplementary data pro-
vided to aid genetic.

Laboratories ensure their own set of markers that can 
be used for differentiation among hop lines.

Methods
Plant material consisted of 121 genotypes (varieties and 
experimental germplasm) contained in the USDA-ARS 

Table 1  continued

Taxa name Number of sites Proportion  
missing gametes

Proportion  
heterozygous gametes

Teamaker 32,206 0.31466 0.20682

Teamakerx19046M (Teax19046M) 32,206 0.34202 0.17163

Teamakerx21119M (Teax21119M) 32,206 0.25222 0.22697

Tettnanger 32,206 0.29926 0.12606

Tolhurst 32,206 0.07222 0.20669

Toyomidori 32,206 0.16177 0.22822

Ultra 32,206 0.17248 0.1974

USDA21734 32,206 0.17264 0.25824

Vojvodina (Vojvod) 32,206 0.02742 0.28998

Whitsbred Golding (WhitGold) 32,206 0.05415 0.22438

Willamette 32,206 0.43871 0.18969

Wuerttenburger (Wuertt) 32,206 0.29178 0.12613

Wye Challenger 32,206 0.27296 0.12466

Wye Target 32,206 0.23701 0.19757

Wye Viking 32,206 0.09039 0.19696

Wye Yeoman 32,206 0.25638 0.14648

Wye Zenith 32,206 0.411 0.06146

Yugoslavia Golding (YugoGold) 32,206 0.15783 0.17273

Labels for lines present in dendrogram (Figs. 1, 2) are defined in the first column (Taxa Name)

Table 2  3-way Mantel’s t test [23] for cophenetic compari-
sons among genetic distance matrices comparing genetic 
distances calculated via  6-, 7-, 8-, 10-, and  12-markers 
(X-matrix, no missing markers) to  that of  a matrix calcu-
lated with  1006 SNP markers (Y-matrix, no missing mark-
ers) using a Z-matrix calculated from 32,217 markers (20 % 
missing marker data allowed)

This test uses residuals of regression of X on Z and of Y on Z

#Markers Mantel’s

r t test p

6 −0.0010 −0.1125 0.4552

7 −0.2190 −15.7471 0.0000

8 −0.2217 −15.9771 0.0000

10 −0.2105 −13.0887 0.0000

12 −0.2199 −13.5649 0.0000
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hop genetics and breeding program located at Cor-
vallis, OR. Due to poor DNA quality of a few of the 
lines, the final sample number used was 116. DNA 
was extracted using DNAeasy Kits (Qiagen Inc) with 
the exception that the amount of RNase A was dou-
bled and the QIAshredder spin column was not used. 
Library preparation, sequencing and were as reported 
by Elshire [21]. Because hop does not currently have 
a reference genome, SNP identification and produc-
tion of hapmap files were accomplished using the 
TASSEL-UNEAK pipeline (http://www.maizegenetics.
net/tassel/docs/TasselPipelineUNEAK.pdf ). Resulting 
hapmap was analyzed by TASSEL 5.2.1 [14]. Marker 
and genotype summaries were exported as csv-format 

files which were imported into Microsoft® Excel® for 
Mac 2011. Minor allele frequency (MAF) were calcu-
lated in TASSEL and subsequently sorted from high-
est to lowest values. Initially, the top two markers with 
the highest MAF values were chosen for data analysis. 
These two markers with the highest MAF values were 
filtered into a separate data file in TASSEL v 5.0 using 
the “filter sites” option and genetic diversity values 
estimated from this filtered data. The resulting genetic 
diversity matrix was scanned for presence of genetic 
diversity estimates equal to zero. If present, the pro-
cess was repeated adding the next marker with highest 
MAF value. These steps were reiterated until all genetic 
diversity estimates were greater than zero (matrix with 

Table 3  List of seven SNP sequences (SNP shown in parentheses) differentiating all 116 hop accessions

>TP137094

agaaaattcatatttgggaatgtatatgaatgattacatargagggaacccacatttggattttaacatgttgtctccac
 aattttgtgggcatgatcagcagccttactcgactgctacttcaatattggaaatggatggtgcaattgtaactact(a/g)ct
 taaatgccacaattcccatcatcgtcatcatcatgtgctgctatgaaaagtaatggtgcaatgggacatatcgattatca
 taacacataatgcatacatgaaat

>TP15403

tcaggacaagtgcttatagatggtgttgatttgaagaatttgcagctcaaatggataagggagaagattggactagttag
 ccaagaacctgttctgtttgcagc(a/c)actttaagagaaaatatagcttatgggaaggaaaatgcaacagatgaggagatta
 aaacagccattgagcttgctaatgctgctaaattcattaacaaacttcctcaggtaaacacagaaaaaacccatctcttt
 gtttcaagttatgtacttttcttc

>TP245055

agagttctgtggttgcacacgtagaggattcccttcttgctgttttgaggatcatttgttttccaatgggtgcctccttt
 gaccgttaagtcaacgccagctgcaatgcc(c/t)agaggggttcctatctggaaaggaaggaaccccactgagattcgaaata
 tggctagaatgactcccaagggaagccataggaacatgacaagagtcgcagccggtgtgggcaagaaggctagtctccca
 tcatggaaaataagtggtttgggg

>TP295074

aaacgacccctaaactttaagcacccgtgcaccatcgagtaccctccactgtcacggcccaaactaagctcttgaatcac
 tttagacggggttgggtcggctgccac(a/g)tgagcttgcaagttcggaatagaaaggagtgttggagtggatatggctgcca
 agggcatcagctgctttattttcaaggccaggtcggtacacaatgtaaaaatcgtagcccaataacttggtgagccattt
 ttgatgtttt

>TP400349

ccaaaatcatcaagcaactcgactcacccgccgccagagaacaagccatgcgcaccatcatattccagtccgacgcacgc
 gccgcccaccctgttggtggctgctacca(c/t)atcatccaagaactcctgcgcaagattgaagctaccaaagctgaactcga
 cctcgttaatcaagatctcgccgtctaccgtgctgccgccgcggccgctgcagtgccaccacaacctcagggtgtctctt
 ctcatcatcatgtggatgatcatc

>TP411590

agcgacaaatttctgaacatcatccctcattcctgaccaatgcaaatctcttgcaagtcgctgaaatgttttgaaaaccc
 ctgaatgaccctcaatgttgttgctatggtattcttggagtaacagtggaataaa(c/t)ggtgaagaagagggaataaccaaa
 cgaaccctaaactttaggcacccatgcaccatcgagtaccctccaccgtcaagacccaaactaagmttttgaatcacttt
 agacagggttggatcrgtggccac

>TP437202

gctctagaaggaacaagatgccatttcccttcaccatacttgtctatgcaatccctaagaagatcgtcttcttctctggt
 ccatgcgcctttcctcaccgctgct(g/c)tcccagacgaaccgccctcagtttgttccgttactagtactgtcaccatattaa
 tattgatattgctgcgcataatgtatttatatgaattatgtaaaatacgatatataatataatatgngaatactganaag
 ntaattaactagctttccagtcct

http://www.maizegenetics.net/tassel/docs/TasselPipelineUNEAK.pdf
http://www.maizegenetics.net/tassel/docs/TasselPipelineUNEAK.pdf
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six SNP markers having the highest MAF values). Addi-
tional high-MAF, SNP markers were added to this set 
of six SNPs to form additional genetic distance matri-
ces (genetic distance matrices formed from 7-, 8-, 10- 
and 12-markers) for comparison to a complete set of 
polymorphic markers with no missing data (1006 SNP 
markers). NTSYSpc V2.21c [22] was used to estimate 

correlations between genetic matrices for minimal 
marker sets (6-, 7-, 8-, 10-, 12-markers) and the com-
plete data set using 3-way Mantel’s t test [23] and a 
matrix calculated (constant or “Z-matrix”) from the 
original set of 32,206 SNP markers.

The 64-bp reads representing minimal marker data sets 
were aligned with a USDA-ARS/OSU draft hop genome 

Fig. 1  Dendrogram of the 116 hop varieties and germplasm resources as determined using the seven SNPs proposed as the minimal number of 
markers to genetically differentiate hop accessions
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(http://hopbase.cgrb.oregonstate.edu/app_dev.php/) to 
extend reads by 100-bp on either side of the 64-bp read 
using Geneious Pro ver 5.5.9 (http://www.geneious.
com, [24] (Table  3). As an aid to interested parties, we 
developed primer pairs (Table  4) that are appropriate 

for high-resolution melting curve analyses [25] using 
Primer3 [26]. Default settings were used and product 
size was limited to a range of 70- to 115-bp length. Other 
PCR-based SNP assays are available and can be designed 
using the information in Table 3.

Fig. 2  Dendrogram of hop 116 hop varieties and germplasm resources as determined by use of 1006 SNP markers with no missing data out of the 
pool of 32,206 SNPs utilized for this study

http://hopbase.cgrb.oregonstate.edu/app_dev.php/
http://www.geneious.com
http://www.geneious.com
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