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TECHNICAL NOTE

PanFP: pangenome‑based functional 
profiles for microbial communities
Se‑Ran Jun1,2, Michael S. Robeson3,4, Loren J. Hauser1, Christopher W. Schadt3,5 and Andrey A. Gorin6*

Abstract 

Background:  For decades there has been increasing interest in understanding the relationships between microbial 
communities and ecosystem functions. Current DNA sequencing technologies allows for the exploration of microbial 
communities in two principle ways: targeted rRNA gene surveys and shotgun metagenomics. For large study designs, 
it is often still prohibitively expensive to sequence metagenomes at both the breadth and depth necessary to statisti‑
cally capture the true functional diversity of a community. Although rRNA gene surveys provide no direct evidence 
of function, they do provide a reasonable estimation of microbial diversity, while being a very cost-effective way to 
screen samples of interest for later shotgun metagenomic analyses. However, there is a great deal of 16S rRNA gene 
survey data currently available from diverse environments, and thus a need for tools to infer functional composition of 
environmental samples based on 16S rRNA gene survey data.

Results:  We present a computational method called pangenome-based functional profiles (PanFP), which infers 
functional profiles of microbial communities from 16S rRNA gene survey data for Bacteria and Archaea. PanFP is 
based on pangenome reconstruction of a 16S rRNA gene operational taxonomic unit (OTU) from known genes and 
genomes pooled from the OTU’s taxonomic lineage. From this lineage, we derive an OTU functional profile by weight‑
ing a pangenome’s functional profile with the OTUs abundance observed in a given sample. We validated our method 
by comparing PanFP to the functional profiles obtained from the direct shotgun metagenomic measurement of 65 
diverse communities via Spearman correlation coefficients. These correlations improved with increasing sequenc‑
ing depth, within the range of 0.8–0.9 for the most deeply sequenced Human Microbiome Project mock community 
samples. PanFP is very similar in performance to another recently released tool, PICRUSt, for almost all of survey data 
analysed here. But, our method is unique in that any OTU building method can be used, as opposed to being limited 
to closed-reference OTU picking strategies against specific reference sequence databases.

Conclusions:  We developed an automated computational method, which derives an inferred functional profile 
based on the 16S rRNA gene surveys of microbial communities. The inferred functional profile provides a cost effec‑
tive way to study complex ecosystems through predicted comparative functional metagenomes and metadata 
analysis. All PanFP source code and additional documentation are freely available online at GitHub (https://github.
com/srjun/PanFP).
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Background
The complexity of microbial communities has been well 
studied for decades, which reveals relationship between 
changes in microbial communities and ecosystem 

functions. Using DNA sequencing technologies, micro-
bial communities can be explored by sequencing the 
amplified fragments of phylogenetic marker genes (for 
example, 16S rRNA gene data) or all detectable DNA 
fragments extracted from the environmental samples 
(called metagenomes or shotgun metagenomes) [1, 2]. 
The 16S rRNA gene community data, a rapid and cost-
effective approach, is commonly used to assess bacterial 
abundance and diversity in communities because 16S 
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RNA occurs universally and is highly conserved among 
all species of Bacteria and Archaea [3]. Using exist-
ing technologies, these statistically robust data can be 
obtained for community studies over large numbers of 
samples, and thousands of 16S rRNA genes are obtained 
for each sample. However, the functional capabilities of 
these communities, for example the metabolic potential 
for nitrogen fixation, cannot be easily derived from 16S 
rRNA gene studies [4]. Metagenomics provides a direct 
view of the communities’ gene content and thus their 
functional capability. Such studies aim to understand 
how microbes interact, and perform complex functions 
in a variety of environments through answering ques-
tions such as, what species are present and abundant, 
as well as what functions are present or absent based 
on identification of a panel of microbial organisms, 
genes, variants, pathways, or metabolic functions [5, 6]. 
Although the generation of metagenomic data has sig-
nificantly increased as a result of on-going development 
of high-throughput sequencing technologies, obtaining 
enough sequencing data to describe the metagenome 
of a highly diverse sample, en toto, is still cost prohibi-
tive. Cost, computational time, and statistical robustness 
becomes even more intractable for large-scale studies 
[7]. However, several recent studies have indicated that 
the functional content of complex communities remains 
more constant than the phylogenetic composition of the 
community [8, 9].

Given the above, there is a need for the development of 
methods to better bridge the gap between 16S rRNA gene 
and metagenomics methods. Here we present a method 
for inferring the potential functional compliment of a 
microbial community based on the phylogenetic marker 
gene 16S rRNA. These predictive tools are a cost effective 
way to expand the utility of 16S rRNA gene-based studies 
and allow the development of functional hypotheses for 
such communities using automated methods.

Method
Here, we present a new computational method called 
pangenome-based functional profile (PanFP), which 
infers the functional profiles of microbial communi-
ties based on 16S rRNA gene survey data. Our method 
takes the measured abundance profile of detected opera-
tional taxonomic units (OTUs), and produces a func-
tional profile of controlled vocabulary terms with the 
expected abundance for the studied community. The 
taxonomic groupings of organisms are commonly rec-
ognized as the reflection of evolutionary relationship of 
organisms encoded by the shared functional content [10]. 
Our approach ultimately relies on the taxonomic line-
ages of OTUs. To reflect the underlying functional capa-
bilities of microbial communities through the standard 

representation of genes and gene product attributes, 
we utilize KEGG Orthology database [11] of controlled 
vocabulary of functional terms (called KO terms) for 
all predicted proteins and functional RNAs. However, 
our approach naturally extends to other gene annota-
tion databases including Gene Ontology [12], Pfam [13], 
TIGRFAMs [14] in a like manner. We validated PanFP in 
comparison with sequenced metagenomes and an exist-
ing method, PICRUSt [4] using 65 different environmen-
tal and mock community samples derived as part of the 
Human Metagenome Project (HMP) and other projects.

Algorithm details
A flow diagram for PanFP is depicted in Additional file 1: 
Figure S1
Prerequisite: prokaryote genomes with functional annotation
PanFP is not limited by the specific completion of a set 
of reference genomes, as taxonomically related genomes 
are merged into a pangenome in a straightforward way. 
This allows for the integration of all currently available 
functionally annotated genomes (complete and incom-
plete) into our analysis pipeline. For the purposes of this 
study, we only considered complete genomes of prokar-
yotes with their full taxonomic lineages [downloaded 
from the National Center for Biotechnology Informa-
tion (NCBI) through ftp://ftp.ncbi.nih.gov/genomes/
Bacteria on Oct, 2013]. We also considered only chro-
mosomally encoded sequences due to the dominant role 
of plasmids in horizontal gene transfer [15]. If an organ-
ism had multiple chromosomes, a single merged genome 
was assigned to the organism. We mapped KO terms to 
proteins using the cross-reference ID mapping between 
NCBI Refseq and UniProt provided by UniProt Knowl-
edgeBase (UniProtKB) database [16]. The proteins can 
have multiple functional roles, and thus be annotated 
with multiple functional terms. However, about 33 % of 
genes in Bacterial and Archaeal complete genomes in 
NCBI are annotated as “hypothetical”, and many genes 
are annotated with very little information, which results 
in many proteins without assigned functional terms [17]. 
The functional coverage is defined as the number of pro-
teins with functional annotations divided by the total 
number of proteins for a complete genome. The distri-
bution of functional coverage of organisms is shown in 
Additional file  1: Figure S2. Currently in our approach, 
only prokaryote genomes with at least 30  % of func-
tional coverage are accepted in the pipeline to avoid the 
underestimation of frequency of functional genes by 
poor annotations of genomes pooled for pangenome 
construction, which resulted in ~2400 organisms. With 
a 10  % coverage cutoff, we retained one more complete 
prokaryotes compared to a 30 % cutoff that we employed 
almost all annotated genomes of complete prokaryotes. 

ftp://ftp.ncbi.nih.gov/genomes/Bacteria
ftp://ftp.ncbi.nih.gov/genomes/Bacteria
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The 16S rRNA gene survey data (also called the OTU-
sample table or OTU table) can be made by clustering 
16S rRNA gene sequences at a user-defined similarity 
threshold through a variety of OTU picking strategies 
that are available via tools like QIIME [18]. QIIME pro-
vides three high-level protocols for OTU picking: de 
novo, closed-reference, and open-reference. The closed-
reference OTU picking protocol only retains OTUs that 
have a positive hit against a set of reference sequences 
(e.g. Greengenes) within a provided similarity threshold. 
Note that PanFP is not limited to a specific OTU-picking 
strategy since our method is based on the pangenome 
construction through OTUs’ taxonomic lineages.

STEP 1: trim OTU’s taxonomic lineage  At this step, 
we performed two tasks to fully employ our database of 
complete prokaryotes with functional annotation and 
taxonomy, which were extracted from NCBI. First, when 
discrepancies between OTUs’ taxonomic lineages gener-
ated by the user’s OTU processing pipeline and NCBI tax-
onomy are observed, the OTUs’ lineages are corrected as 
follows: For example, an OTU belongs to a genus group 
recognized by NCBI taxonomy, but to a family group that 
is not recognized on NCBI taxonomic hierarchy prob-
ably due to the taxonomic nomenclature updates. Then 
we modify the OTU’s taxonomic lineage to that above the 
genus level according to NCBI taxonomy. Second, we trim 
OTUs’ taxonomic lineages from the lowest level until at 
least one prokaryote genome belonging to the taxon is 
identified. For example, assume that a given OTU has the 
followinglineage: kingdom:Bacteria; phylum:Firmicutes; 
class:Bacilli; order:Bacillales; family:Planococcaceae; 
genus:Kurthia. Then, we trim the OTU’s lineage by aban-
doning a rank at the genus level since there are no organ-
isms of this genus in our database of prokaryotic genomes. 
The OTU’s newly trimmed taxonomic information con-
tributes to the inference of functional profiles. Thus, our 
method is not limited to a set of specifically completed 
prokaryote genomes, which allows the use of all available 
complete or incomplete genomes. Finally, we keep OTUs 
whose lineages contain at least a phylum level designa-
tion. The HMP mock community used in the study was 
composed of 158 OTUs with lineages up to species, 412 
OTUs with lineages up to genus, 67 OTUs with lineages 
up to family, 12 OTUs with lineages up to order, one OTU 
with lineage up to class, two OTUs with no taxonomic 
information. For this data, after modifying OTUs’ line-
ages in STEP 1, we ended up 68 OTUs with lineages up to 
species, 452 OTUs with lineages up to genus, 114 OTUs 
with lineages up to family, 15 OTUs with lineages up to 
order, one OTU with lineage up to class, indicating that 
information loss of the user’s chosen taxonomy against 
the NCBI taxonomy mostly occurred at the species level.

STEP 2: make a lineage‑function table  For each OTU, 
PanFP builds a pangenome by making a superset of all 
genes present in organisms pooled from the dataset of 
prokaryote genomes at the given OTU’s taxonomic line-
age. Therefore, the OTUs with the same taxonomic lin-
eages have the same pangenome. Then, PanFP derives 
a functional profile of the pangenome by accumulat-
ing functional compositions in the superset. In such 
a case that horizontal gene transfer events occur only 
within the OTU’s taxon that genes in genomes pooled 
at the OTU’s taxon are transferred to other genomes 
pooled at the OTU’s taxon, and no genes from genomes 
outside the OTU’s taxon are transferred to genomes 
pooled at the OTU’s taxon, our method is not affected 
by horizontal gene transfer since genes horizontally 
transferred within the OTU’s taxon are still found in a 
pangenome for the OTU. The functions shared by more 
organisms in the superset have higher occurrence. We 
assign the pangenome’s functional profile normalized 
by the number of pooled organisms to the OTU’s line-
age:

where pangenomei is the pangenome for the lineagei, 
and Oi is the number of organisms pooled at the line‑
agei. The number of organisms available for the OTUs’ 
taxonomic lineage, Oi, could vary dramatically across 
different lineages.

STEP 3: normalize OTU’s abundance  The OTU abun-
dance reflects 16S rRNA full number of occurrences 
(e.g. sequence count or relative abundance) of organisms 
assigned to a given OTU. To implement organismal abun-
dance, we divide the OTUs’ abundance by the putative 16S 
rRNA gene copy number, which is defined as the median 
of 16S rRNAs copy number of the organisms pooled at 
the OTU’s taxonomic lineage. Again, all OTU frequencies 
for a given sample are normalized by the sample size such 
that the resulting frequencies, fq (OTUi, samplej) could be 
directly comparable between different samples.

STEP 4: convert an OTU‑sample table into a lineage‑sam‑
ple table  An OTU-sample table is converted into a lin-
eage-sample table by summing the frequencies of OTUs 
with the same lineage in a sample, as follows:

STEP 5: convert a lineage‑sample table into  a func‑
tion‑sample table  We derive a function-sample table 
by combining functional profiles of lineages with weights 
corresponding to the lineage abundance in the sample:

fq(lineagei,KOj) =
1

Oi
occurrence(KOj in pangenomei)

fq(lineagei, samplej) =
∑

OTUk has lineage

fq(OTUk , samplej)
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STEP 6: assessing the uncertainty in function‑sample esti‑
mates  To assess the uncertainty in function-sample esti-
mates under the assumption that each OTU abundance 
profile contributes to functional terms’ profile indepen-
dently, we performed bootstrapping that we selected 
OTUs along with their abundance across samples (i.e., 
rows in the OTU-sample table) as many as the number of 
OTUs in the OTU-sample table (i.e., the number of rows 
in the OTU-sample table) randomly with replacement. 
Therefore, some OTUs in the OTU-sample table can be 
represented more than once and some not at all. We pro-
duce 100 bootstrap replicates of the OTU-sample table, 
and corresponding 100 function-sample tables through 
STEP 1–STEP 5. We examine whether the estimates of 
functional terms neither belong to the top 2.5 % nor the 
bottom 2.5 % (i.e., at a 95 % confidence interval). For all 
of test sets used in the study (see “Case study” section), 
all functional terms identified in STEP 5 had estimates 
within the 95 % confidence interval. Note that a software, 
PanFP does not include a step for assessing the uncer-
tainty in function-sample estimates by bootstrapping.

Case study
We applied PanFP to diverse communities, which include 
39 mammal gut samples, 14 soil samples, ten hypersa-
line microbial mats, and two synthetic mock communi-
ties from the HMP where both 16S rRNA gene data and 
metagenome data have been derived from the same sam-
ples. This is the same dataset used in a recently developed 
method, PICRUSt [4, 19]. To evaluate our method, we 
compared functional profiles inferred by PanFP to the 
sequenced metagenomes for 65 samples where PICRUSt 
annotated whole genome sequencing reads to KO terms 
using HUMAnN [20]. The number of KO terms present 
in the 65 sequenced metagenomes is described in Addi-
tional file 1: Table S1. The hypersaline metagenomes have 
the range of 263 ± 131 different KO terms, mammal gut 
metagenome of 1190 ± 640 KO terms, soil metagenomes 
of 4328 ± 402 KO terms, and the metagenomes of HMP 
mock communities of 6051 ±  85 KO terms where, for 
example, 263 ± 131 means an average of 263 KO terms 
and a standard deviation of 131 KO terms. The number 
of KO terms present in sequenced metagenomes can 
be affected by sequencing depth. Therefore, the small 
number of KO terms identified in a sequenced metage-
nome may lead to erroneous estimates of community 
functional diversity, which makes it difficult to validate 
metagenome prediction tools. For the comparison of 

fq(KOi, samplej) =
∑

lineagek

fq(lineagek , samplej)

× fq(lineagek ,KOi)

PanFP–PICRUSt, we used PICRUSt-compatible closed 
OTU-tables (97  % identity via uclust [21]). PICRUSt 
makes use of a 16S rRNA gene phylogeny of all OTUs 
available in a reference database (Greengenes [22]), along 
with the functional composition of reference genomes 
assigned to these OTUs (IMG [23]). From this combined 
information, PICRUSt infers function content at the 
ancestral nodes based on the 16S rRNA gene phylogeny. 
Therefore, the PICRUSt-compatible OTU-tables can only 
be constructed from the closed-reference OTU picking 
protocol. We note that Nelson et  al. [24] reported that 
the closed-reference OTU picking protocol introduces 
biases since a large number of reads (on average 35  % 
with large variance across different samples) which fail to 
be assigned to reference OTUs are discarded. Based on 
a PICRUSt-compatible OTU-sample table, we inferred a 
functional profile for each sample. Note that it took much 
less than one minute for functional profiles to be gener-
ated via PanFP for the HMP mock community samples 
on a laptop 2.6 GHz CPU. Figure 1 shows the Spearman 
rank correlation between our inferred functional profiles 
and sequenced metagenomic functional profiles. Note 
that we considered only KO terms with non-zero esti-
mates in both functional profiles being compared when 
calculating Spearman correlation in the study since func-
tional profiles were represented by different sets of KO 
terms by different approaches. The Spearman rank cor-
relation between the predicted PanFP and actual metage-
nome functional profiles improved with the increase 
in the number of KO terms identified in sequenced 
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Fig. 1  Spearman correlation between functional profiles inferred 
by PanFP and sequenced metagenomic functional profiles for 65 
samples
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metagenomes, which corresponds to an increase of 
sequencing depth. This can be directly observed in our 
comparison of the two HMP mock communities, which 
showed the deepest sequencing depth among the stud-
ied samples, with correlations of ≃0.9. For all 65 samples, 
correlations and the number of KO terms common in 
both profiles are summarized in Additional file  1: Table 
S1. As expected, the hypersaline mat samples, which 
were shallowly sequenced, showed artificially low corre-
lations with our inferred functional profiles.

Also, we compared our inferred functional profiles to 
those produced from PICRUSt. Figure 2 is a scatter plot 
of the two Spearman correlations for 65 samples where 
X-axis represents correlation between functional pro-
files inferred by PanFP and sequenced metagenomic 
functional profiles, and Y-axis represents correlations 
between functional profiles inferred by PICRUSt and 
sequenced metagenomic functional profiles. Both of 
metagenome prediction methods essentially show iden-
tical performance (with p value of 0.98 by Welch two 
sample t test) for almost all samples. PanFP and PICRUSt 
build very similar functional profiles whose Spearman 
rank correlations considering KO terms common to both 
profiles are shown in Additional file  1: Figure S3 where 
correlations have an average of 0.85. A sample labeled 
as Squirrel from mammal showed a much higher cor-
relation with PICRUSt than PanFP. The two KO terms 
with the highest abundance in the squirrel metagenome 
were K07024 (whose definition is not described) and 

K02029 (whose definition is polar amino acid transport 
system permease protein). The abundance of those two 
KO terms showed better agreement with inferred func-
tional profile by PICRUSt than by PanFP. For samples 
from HMP mock communities and soil which have better 
sequencing depth in terms of the number of KO terms 
identified compare to other test samples in our study, 
PanFP showed slightly better correlation with metagen-
omic functional profiles than PICRUSt.

Scripts
PanFP includes a database of prokaryotes genomes with 
functional annotation by KEGG Orthology, and several 
Perl scripts. We provide a single easy to use script, which 
implements the entire PanFP pipeline from start to fin-
ish, as wells as several intermediate scripts for advanced 
users, so that they may tailor PanFP to their needs. For a 
given OTU profile, scripts perform each step with a neg-
ligible computational time as described in the “Algorithm 
details” section.

Conclusions
We presented a new pipeline called PanFP for inferring 
the functional composition of microbial communities 
from 16S rRNA gene survey data. These inferred profiles 
are based on the construction of a pangenome through 
the OTUs’ taxonomic lineages PanFP can be extended 
to other phylogenetic marker genes in a similar man-
ner. While PanFP and PICRUSt share many similarities 
in approach and results, there are several differences: (1) 
PanFP is not limited to a specific OTU-picking protocol, 
(2) PanFP is not confined to specific reference genomes/
complete genomes, and (3) PanFP should be less sensitive 
to horizontal gene transfer within an OTU’s pangenome. 
The accuracy of our method is primarily affected by exter-
nal factors, such as the taxonomic resolution of OTUs, and 
the availability and diversity of microbial organisms with 
robust functional annotation. PanFP will become increas-
ingly more robust as the depth and breadth of microbial 
databases continue to grow. Note that these issues would 
also apply to the performance of any other metagenome 
prediction tools based on 16S rRNA community data.

PanFP showed a remarkable accuracy for HMP mock 
communities with deeply sequenced metagenomes such 
that PanFP would provide a cost-effective new way to 
study complex ecosystems through comparative func-
tional metagenomics and metadata analysis. Within the 
limitations described above, these comparisons should 
provide a statistically robust framework for highlighting 
the most over or under represented biological functions. 
Also, PanFP can serve as a first step in large metagenom-
ics projects to identify potential samples of interest for 
direct metagenome sequencing.
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Project home page: https://github.com/srjun/PanFP
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License: GNU
Any restrictions to use by non-academics: None.

Availability of supporting data
The data sets supporting the results of this article are 
included within the article and its additional files.
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