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Abstract 

Background:  Genotype imputation is an important procedure in current genomic analysis such as genome-wide 
association studies, meta-analyses and fine mapping. Although high quality tools are available that perform the steps 
of this process, considerable effort and expertise is required to set up and run a best practice imputation pipeline, 
particularly for larger genotype datasets, where imputation has to scale out in parallel on computer clusters.

Results:  Here we present MOLGENIS-impute, an ‘imputation in a box’ solution that seamlessly and transparently 
automates the set up and running of all the steps of the imputation process. These steps include genome build 
liftover (liftovering), genotype phasing with SHAPEIT2, quality control, sample and chromosomal chunking/merging, 
and imputation with IMPUTE2. MOLGENIS-impute builds on MOLGENIS-compute, a simple pipeline management 
platform for submission and monitoring of bioinformatics tasks in High Performance Computing (HPC) environments 
like local/cloud servers, clusters and grids. All the required tools, data and scripts are downloaded and installed in a 
single step. Researchers with diverse backgrounds and expertise have tested MOLGENIS-impute on different loca-
tions and imputed over 30,000 samples so far using the 1,000 Genomes Project and new Genome of the Netherlands 
data as the imputation reference. The tests have been performed on PBS/SGE clusters, cloud VMs and in a grid HPC 
environment.

Conclusions:  MOLGENIS-impute gives priority to the ease of setting up, configuring and running an imputation. It 
has minimal dependencies and wraps the pipeline in a simple command line interface, without sacrificing flexibility 
to adapt or limiting the options of underlying imputation tools. It does not require knowledge of a workflow system 
or programming, and is targeted at researchers who just want to apply best practices in imputation via simple com-
mands. It is built on the MOLGENIS compute workflow framework to enable customization with additional computa-
tional steps or it can be included in other bioinformatics pipelines. It is available as open source from: https://github.
com/molgenis/molgenis-imputation.
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Background
Genotype imputation uses densely typed reference hap-
lotypes to infer untyped genotypes [1]. The resulting 
imputed datasets are commonly used in meta-analyses 
to gain statistical power or for the fine-mapping of asso-
ciation signals [2]. Modern imputation methods enable 
inference of many types of genetic variation, including 

single nucleotide polymorphisms (SNPs), insertions and 
deletions [3].

Imputation has been widely adopted as it has led to 
the identification of additional associations [4] and has 
allowed combination studies from different genotyp-
ing platforms [5, 6] contributing to a meta-analysis [7]. 
Another benefit is the fine mapping of association sig-
nals: since detected regions are not usually located in 
a functional region but due to linkage disequilibrium 
(LD) they are highly associated with the true causal vari-
ant that might not have been assayed at all. Finally, it 
has been suggested [8] that by using imputation we can 
enrich rare variants with large effect that contribute 
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significantly to the ‘missing heritability’ of complex traits 
such as lipid profiles.

Today, there are high quality tools that perform 
imputation, including Minimac [9], BEAGLE [5] and 
IMPUTE2 [2]. Many studies have evaluated their perfor-
mance regarding parameters such as the genotype plat-
form of the imputed study, the number of SNPs, ethnicity 
of the samples, reference panels, LD structure, allele fre-
quency of variants, improvement of statistical power in 
genome-wide association studies (GWAS), and enhance-
ment in the identification of causal variants [10–14].

The general consensus from these comparisons is that 
these three imputation tools exhibit a similar perfor-
mance in terms of the estimated correlation between the 
imputed and true genotypes. Although all the tools could 
be easily added, we decided to include IMPUTE2 because 
of previous experience in our team, reported marginal 
benefits in terms of unrelated reference panels [14], and 
execution times when using prephased data [15]. The 
phasing software that we selected was SHAPEIT [16], 
mainly because it integrates nicely with IMPUTE2 and 
is highly recommended by the authors of IMPUTE2 [9]. 
The authors of SHAPEIT also demonstrate an improved 
phasing accuracy compared to other methods.

Regardless of the choice of imputation tool, consider-
able work has to be done before any of these can be used 
in a full pipeline. The reason for this is that these tools 
require pre- and post-processing steps such as liftover-
ing, quality control, and splitting/merging of data in 
order to work effectively. Liftover is the process of chang-
ing the genomic positions of a dataset from one version 
of a genome assembly to another. It is very common that 
a study panel is aligned to a different build of a genome 
assembly than the reference panel. This pre-processing 
step is essential and precedes all genomic studies that 
include a study combining more than one dataset.

Existing bioinformatics pipeline management systems 
have a limited coverage for genotype imputation. For 
example, Galaxy [17] does not include imputation meth-
ods in its public database. Other workflow management 
systems like Taverna [18] and Ergatis [19] offer a thor-
ough and complete toolset for describing bioinformatics 
workflows, but lack specific cases for genotype imputa-
tion. To our knowledge, the only bioinformatics solution 
relevant to imputation is GRIMP [20], but rather than 
performing imputation, it focuses on the analysis of the 
GWAS data that usually follows it. Moreover, setting up 
such advanced workflow systems requires more time and 
skill than most genetics researchers have available.

Here we present MOLGENIS-impute, a simple com-
mand line tool to run complete genotype imputa-
tion pipelines on local servers and a variety of HPC 
environments. This tool is for geneticists and lab 

bioinformaticians who simply want to perform an 
imputation with minimal overhead of discovering, 
installing and configuring tools, while ensuring best 
practices are followed and applying proper quality 
control. The steps covered are aligning markers to 
the same genomic reference as the reference panel (by 
default hg19), applying quality control to check for 
genomic strand inconsistencies between the study and 
the reference panel, phasing the study panel, splitting 
the study panel into multiple chromosomal and sam-
ple chunks, and merging the resulted imputed data-
set. The pipeline can be executed either on a local or 
cloud server for smaller studies, or on an HPC clus-
ter or grid environment for larger efforts. The solu-
tion we offer employs a fail-safe approach regarding 
any failures that might occur during execution. The 
user interacts with a simple python script via com-
mand line options. Although the required tools and 
commands that are necessary to execute this script 
are relatively common in a Linux installation, we have 
included a list of these tools and installation instruc-
tions in Additional file 1.

Methods
Before imputation, researchers normally spend a con-
siderable amount of time in setting up a pipeline that 
includes the necessary pre- and post-processing steps, 
such as liftovering, quality control, and splitting/merg-
ing of data. The first main component of our approach is 
a single script that downloads, configures and installs all 
the necessary tools, data and scripts (Table 1). After care-
ful evaluation, we selected the IMPUTE2 and SHAPEIT2 
tool family for this implementation, but our pipelines can 
be extended to include other tools as well. The second 
main component is the automation of all the necessary 
steps. Here we use the MOLGENIS-compute package to 
auto-generate simple shell scripts ready for execution on 
a local server or for submission to a cluster or grid [21]. 
The only prerequisite is that the study panel should be 
in the default standard PLINK PED/MAP format or the 
binary equivalent BED/BIM/FAM [22]. Our pipeline con-
sists of the following steps:

Step 1 is the liftovering, or the conversion of the posi-
tions of the study panel to those used by the reference 
panel. By default, this optional step converts from 
UCSC hg18 to UCSC hg19 genomic assembly. Alterna-
tively, a user can specify a chain file in order to perform 
liftover between other builds of the genome. Chain files 
contain a mapping of the positions between two dif-
ferent genome assemblies. We provide a list of chain 
file repositories on the documentation page for MOL-
GENIS-impute.
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Step 2 is the phasing using SHAPEIT2, with which we 
infer the haplotype structure of the genotype data. 
Although this step is not necessary for imputation per 
se, it increases the imputation quality and it significantly 
speeds up the process. Especially when multiple impu-
tation tasks have to be performed, phasing of the study 
panel only needs to be done once. This is useful when a 
new version of a reference panel becomes available.
Step 3 is the quality control step that guarantees that data 
in the study panel are aligned to the same strand as the 
reference panel. Alignment of G/C and A/T variants is 
performed by assessing the LD structure using Geno-
type Harmonizer [23]. This tool removes SNPs from 
the study when strand correction cannot be applied (for 
example, an A/T SNP in the study that exists as A/C in 
the reference panel). It also generates a log file of all the 
performed checks that includes all the removed markers.
Step 4 is the splitting of the study panel into sample 
and chromosomal chunks. By default, each chunk 
contains no more than 5  Mbp length of markers, as 
recommended by the IMPUTE2 software. The num-
ber of samples that each chunk has is a value between 
500 and 1,000, and is devised during execution so that 
chunks have an approximately equal number of sam-
ples. This two-dimensional splitting is an essential step 
in order to handle the enormous computation that is 
usually required and to scale the imputation process 
effectively in an HPC environment.
Step 5 is the actual imputation. IMPUTE2 employs 
an agnostic approach regarding the population com-

position of the reference panel and offers the ability 
to combine multiple reference panels. Upon comple-
tion of all imputation steps, we concatenate the result-
ing sample and chromosomal chunks for downstream 
analysis. IMPUTE2 generates two main results files. 
The first contains the posterior genotype probabilities 
and the second contains quality metrics per imputed 
marker. Merging sample chunks for the posterior 
genotype probabilities is trivial, since sample splitting 
does not affect them. Unfortunately this does not hold 
for the quality metrics. To overcome this, we re-com-
pute IMPUTE2’s quality metrics for the concatenated 
sample files. These quality metrics and the respective 
formulas are presented in Additional file 2.

Sample study and reference panel
The installation also contains a sample study and refer-
ence panel. The study panel is a subset of 100 samples 
from the HapMap project (version 2, release 3) and it 
contains all markers from 1 to 10 million bp in chromo-
some 1. This dataset contains 4,836 markers. The sample 
reference panel contains all 1,092 samples of the GIANT 
release of the 1,000 Genomes Project reference panel. 
This dataset contains only the markers from 1 to 15 mil-
lion bp in chromosome 1, namely 88,650 markers.

Implementation
All computational steps are defined as templates 
of BASH scripts for the MOLGENIS compute sys-
tem. BASH is the default shell environment in many 

Table 1  Tools and data installed during MOLGENIS-impute set up

Step Tool Version Usage

Set up Molgenis-compute 0.0.1 Manage scripts, handle parameters, submit to HPC

Molgenis-pipelines 0.1.0 Imputation BASH scripts and
Pipeline in CSV format

Step 1 Liftover 20120905 Change genomic reference of study panel to the one used 
by the reference panel (by default from hg18 to hg19)

PLINK 1.07 Update marker position of input files during liftover step

Step 2 SHAPEIT v2.r644 Phasing of study panel

Step 3 Genotype Harmonizer 1.3.1 Perform quality control

Step 4 Bash script Split data in sample chunks

Step 5 Impute2 v2.3.0 Main imputation tool

Prepare reference panel vcftools 0.1.11 Convert reference panel from VCF format to IMPUTE2

tabix 0.2.6 Compress reference panel VCF files and build index

Step Data Version Usage

Step 1 Hg18 to hg19 chain file Map positions between hg18 and hg19 genomic reference

Step 2, 3 Subset (chromosome 1, first 10 Mbp) of HapMap data v.3 release 2 Example study panel for imputation

Step 3 Subset (chromosome 1, first 10 Mbp) of 1,000 Genomes project GIANT release Example reference panel for imputation

Step 3 Recombination map for hg19 Calibration of hidden Markov model [13]
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modern Linux distributions, and BASH scripts are 
lightweight and easily embedded into external tools. 
The designed order of the steps in the pipeline and 
the input/output parameters of each step are defined 
in a set of CSV files [21]. MOLGENIS compute has 
specific mechanisms to accommodate the scripts to 
different backends (e.g. local, PBS, grid). Based on 
all of the above, MOLGENIS compute generates the 
actual analysis scripts. The input and output variables 
of these scripts are passed as BASH variables. In the 
header of each generated script there are definitions 
for the system requirements of this particular step to 
the specific computer cluster/grid environment. These 
parameters are the desired number of CPUs, amount 
of memory, and execution time. Additional documen-
tation is available on https://rawgit.com/molgenis/
molgenis-compute/master/molgenis-compute-core/
README.html.

The imputation scripts belong to the MOLGENIS-
pipelines collection, which also includes scripts and pipe-
lines for next-generation sequencing (NGS) and GWAS 
analysis. They are hosted in a separate git repository: 
https://github.com/molgenis/molgenis-pipelines. For 
imputation, interested readers can check the pipeline at 
the following directory of the git repository: ‘compute5/
Imputation_impute2’.

MOLGENIS-compute offers a mechanism to parse 
these template files and generate executable scripts. 
These scripts are adjusted for the execution environment 
that is specified in the –backend command line param-
eter. So far, the available options are ‘local’, ‘pbs’ or ‘grid’ 
and are explained in the ‘usage’ section. Since the distri-
bution and availability of computation resources varies 
among different HPC environments, it tries to maximize 
the utilization of resources. Moreover, MOLGENIS-
compute handles iterations in the pipeline (for example, 
for each chromosome), orders the scripts in the correct 
order and generates a submission script, named submit.
sh that, when executed, submits the complete pipeline 
to the user-defined HPC environment [21]. All these 
orchestration actions take place without needing any 
user interaction.

Finally, we have wrapped the user interaction with the 
pipeline within a single python script with simple com-
mand line arguments. However, all the generated scripts 
as well as the tool output are still accessible for inspection 
and review, if needed. To ease installation and usage we 
have wrapped all the essential operations in a molgenis-
impute.py python script that automatically installs all the 
necessary components on ‘setup’ (see Table  1) and also 
eases running of the pipeline (see usage, below). Figure 1 
depicts the main architecture and functionality of this 
python script.

Results and discussion
We first describe the usage of MOLGENIS-impute and 
then discuss the practical issues, including installation on 
Amazon EC2 cloud.

Usage
To install MOLGENIS-impute, clone the following git 
repository:

To download and set up all necessary tools, genetic 
map and example data (Table 1) run:

python molgenis− impute.py −−dl_tools

The tools and scripts that this command installs are 
compatible with any modern 64 bit Linux operating sys-
tem. For a complete list of system and software depend-
encies, see Additional file 1.

The command to list all reference panels that are either 
installed or available for download is:

python molgenis− impute.py −−list

So far, the following reference panels are available for 
download:

GIANT.phase1_release_v3.20101123: This is a refer-
ence panel prepared from the GIANT consortium [24]. 
It contains all 1,092 samples from the 1,000 Genomes 
Project, excluding monomorphic and singleton sites.
GIANT.metabo.phase1_release_v3.20101123: This is a 
Metobochip- [25] specific reference panel that focuses 
on well-imputed, fine-mapped regions.
1,000_Genomes_phase3_build37: This dataset is based 
on sequence data from 2,504 samples from the 1,000 
Genomes Project, phase 3 [26].

The command to download a reference panel is:

python molgenis− impute.py

−− dl_reference < NAME >

We also include commands to install and use an arbi-
trary imputation reference panel. After these steps, a user 
can continue with the following steps, depicted in Fig. 2.

Liftovering (optional step):

git clone git@github.com : molgenis/

molgenis− imputation.git

python molgenis− impute.py \

https://rawgit.com/molgenis/molgenis-compute/master/molgenis-compute-core/README.html
https://rawgit.com/molgenis/molgenis-compute/master/molgenis-compute-core/README.html
https://rawgit.com/molgenis/molgenis-compute/master/molgenis-compute-core/README.html
https://github.com/molgenis/molgenis-pipelines
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Phasing:

Imputing:

−− action liftover \

− − study < input directory with PED/

MAP files > \

−− output < liftover results

directory (PED/MAP) files >

python molgenis− impute.py \

− − action phase \

− − study < liftover results directory

(PED/MAP) files > \

−− output < phasing results directory >

python molgenis− impute.py \

− − action impute \

Many additional options exist for refining the 
presented steps covering all possible options of 
IMPUTE2 and SHAPEIT2. The options −action 
liftover_phase_impute and liftover_phase

_impute can be used in order to combine the presented 
steps in a single run. Moreover, liftovering and phasing 
commands also accept binary PLINK files (BED/BIM/
FAM). Detailed documentation is available on the tool’s 
site. Execution can take place on three different environ-
ments, according to the −− backend parameter:
local This is the default option. The scripts are adjusted 

for a single CPU, 64 bit local computer with a Linux 
operating system. This option does not generate any 
special HPC headers and is intended mainly for testing 
purposes.
pbs Adds headers that allow submission to, for exam-

ple, Portable Batch System (PBS) [27] or Sun Grid Engine 
(SGE) clusters.
grid Adds headers that allow the submission to 

a grid middleware, such as glite-WMS grid sched-
uler. Resources are managed with Storage Resource 

−− study < phasing results directory > \

−− output < imputation results directory >

Fig. 1  Outline of MOLGENIS-impute architecture. molgenis_impute.py is the python script with which the user interacts. The script can either 
install tools and reference panels or use MOLGENIS-compute to create and submit imputation scripts. The imputation BASH scripts and description 
of the pipeline are in a separate git repository.
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Management (SRM) [28] and data transfer and submis-
sion is managed with Job Description Language (JDL). 
In order to achieve execution in all nodes of the grid, we 
employ the MOLGENIS pilot job solution [29], where 
workflow deployment (i.e. tool availability) is achieved 
by reusing the environment modules package [30]. Data 
transfer and pipeline monitoring are hidden in pilot-jobs.

When running on a cluster or grid environment, the 
submitted jobs can be monitored, queried and, if neces-
sary, re-submitted. The latter means that if the pipeline 
crashes during execution, a simple re-submission will 
resume the execution from the point where it stopped. 

Moreover, all output results are saved in temporary files 
and only after the analysis of each step is successfully 
completed are the temporary files copied to the expected 
results location. This ensures that even if a failure hap-
pens during the saving of the results files, the user will 
not end up with erroneous or incomplete files. Re-sub-
mission always generates new temporary files. After sub-
mission, the user receives information on how to access 
the temporary files, the job outputs and the submission 
scripts.

Installing all the required tools takes approximately 
2 min on an Amazon EC2 virtual machine instance (t2.

Fig. 2  MOLGENIS-impute’s workflow of three steps. Liftovering, phasing and imputation. Rectangles on the left contain a description of each step 
and on the right a respective demo python command.
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small) and 30 min to download and convert the GIANT.
phase1_release_v3.20101123 version of the 1,000 
Genomes Project. After that, the computational time 
needed for imputation is as published by the authors of 
the IMPUTE2 tool [9]. Detailed installation and setting 
up instructions that cover Amazon EC2 and other com-
puting environments can be found in Additional file 1.

Evaluation
To evaluate the computation requirements of MOL-
GENIS-impute, we ran the pipeline in all possible 
instances of Amazing Elastic Compute Cloud. We used 
the sample study and reference panel presented above, 
which is included in the tools and datasets that MOL-
GENIS-impute initially installs. This analysis resulted in 
88,650 imputed markers. The results are shown in Table 2 
and reveal that phasing requires less than 10  s for Step 
1, 5 min and 23 s for step 2, and 6 min and 40 s for Step 
3. Table 2 also includes a cost estimation given the cur-
rent Amazon EC2 prices (November 2014). According to 
IMPUTE2 documentation, when the study panel is pre-
phased (like in our pipeline), the imputation scales lin-
early with both the number of imputed markers and the 
number of samples. Hence, the cost presented in Table 2 
can be easily extrapolated for larger datasets on vari-
ous EC2 instances. Our data show that low to medium 
instance types exhibit optimal cost benefit.

We evaluated MOLGENIS-impute on various Ama-
zon EC2 instances using the presented sample study (100 
samples of HapMap2 v. 3, 4,836 markers in chromosome 
1) and reference panel (1,092 samples of the GIANT 
release of the 1,000 Genomes Project reference panel 
limited to 88,650 SNPs in positions from 1 to 15 million 
of chromosome 1). All runs used standard parameters. 
The results show that use of Amazon EC2 low to medium 
instances is quite cost-effective. According to the authors 
of IMPUTE2, the imputation scales linearly for number 
of samples/markers, so the cost can be estimated for 
larger datasets. ECU is EC2 Compute Unit, a relative 
measure of the processing power of an EC2 instance.

Applications
MOLGENIS-impute has been used as the main impu-
tation platform for the Genome of the Netherlands 
(GoNL) project [31]. GoNL is a whole-genome-sequenc-
ing project in a representative population sample, con-
sisting of 250 trio-families from all the provinces in the 
Netherlands. It aimed to characterize DNA sequence 
variation in the Dutch population [32]. An initial study 
assessed the performance of GoNL as a novel reference 
panel for European samples [33]. Another aim of this 
project was to provide a population specific imputation 
panel for various Dutch cohorts in order to improve 
GWA and meta-analysis studies. Studies that have now 
been imputed using MOLGENIS-impute include: Dutch 
Prospective ALS Study [34] with 192 samples, Rotter-
dam Study [35] with 9,878 samples, Cohort on Diabe-
tes and Atherosclerosis Maastricht (CODAM) [36] with 
574 samples, the National Twin Registry, Amsterdam 
(NTR) [37] study with 1,700 samples, the LifeLines [38] 
study with 13,707 samples and the Leiden Longevity 
Study (LLS) [39] with 1,918 samples. These experiments 
gave us the opportunity to fine-tune our pipeline and 
we received valuable feedback from a diverse group of 
bioinformaticians.

Conclusions
The main deliverable of our approach is a single script 
that downloads, configures, installs and runs all the tools, 
data and scripts necessary for genotype imputation. The 
pipeline management tool that we use ‘under the hood’ 
is MOLGENIS-compute, which generates scripts ready 
for submission to grid, cluster or local computation 
environments.

MOLGENIS-impute is intended for bioinformaticians 
and geneticists who want to minimize the time and effort 
needed to set up and configure an imputation pipeline that 
includes all the necessary quality check and data manage-
ment steps. This approach belongs to the family of open 
bioinformatics solutions suited for HPC environments. As 
demonstrated, computationally intense solutions need to 

Table 2  Time required to perform imputation

Instance type ECUs vCPUs Memory (GiB) Cost/hour Phasing Imputation

t2.small Variable 1 1 $0.026 5′ 23″ 6′ 40″

t2.medium Variable 1 2 $0.052 4′ 28″ 5′ 56″

m3.medium 3 1 3.75 $0.070 3′ 50″ 5′ 50″

m3.large 6.5 2 7.5 $0.140 3′ 16″ 5′ 33′

m3.xlarge 13 4 30 $0.280 1′ 0″ 5′ 26″

c3.large 7 2 3.75 $0.105 3′ 4″ 5′ 11″

c3.xlarge 14 4 7.5 $0.210 1′ 35″ 5′ 6″

c3.2xlarge 28 8 15 $0.420 0′ 56″ 5′ 5″
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have gateways for environments like the cloud [40, 41] and 
grid [42] in order to be directly executable.

No special set up for the execution or programming 
language knowledge is required. The format for param-
eters and workflows is CSV. Simplicity and expandability 
was a primary development goal [43]. In this way, MOL-
GENIS-impute can easily act as a component of more 
complex genetic pipelines.

Currently, the presented pipeline supports a subset of 
available imputation software. Our priority was to offer 
a tightly coupled and tested pipeline that utilizes well-
known tools. Nevertheless, additional tools like BEAGLE 
and MaCH/Minimac can expand the functionality and 
cover more uses. Adding and editing tools or computa-
tional steps in the pipeline is straightforward for a bioin-
formatician and is covered in the online documentation 
of MOLGENIS-compute [44]. Some additional effort is 
needed in order to adapt the presented python wrapper 
to these potential additions. Easing modifications in the 
python wrapper and extending the list of computational 
environments of MOLGENIS-compute is one of our 
future aims. More importantly, we plan to upgrade the 
pipeline when new imputation best practices appear.

Availability and requirements
The source code, documentation, installation instruc-
tions and requirements are available in the following 
github repository:

https://github.com/molgenis/molgenis-imputation.
License: Simplified BSD License.
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