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Abstract

Background: Integration of RNA-seq expression data with knowledge on chromatin accessibility, histone
modifications, DNA methylation, and transcription factor binding has been instrumental for the unveiling of cell-
specific local and long-range regulatory patterns, facilitating further investigation on the underlying rules of
transcription regulation at an individual and allele-specific level. However, full genome transcriptome
characterization has been partially limited by the complexity and increased time-requirements of available
RNA-seq library construction protocols.

Findings: Use of the SX-8G IP-Star® Compact System significantly reduces the hands-on time for RNA-seq library
synthesis, adenylation, and adaptor ligation providing with high quality RNA-seq libraries tailored for Illumina high-
throughput next-generation sequencing. Generated data exhibits high technical reproducibility compared to data
from RNA-seq libraries synthesized manually for the same samples. Obtained results are consistent regardless the
researcher, day of the experiment, and experimental run.

Conclusions: Overall, the SX-8G IP-Star® Compact System proves an efficient, fast and reliable tool for the
construction of next-generation RNA-seq libraries especially for trancriptome-based annotation of larger genomes.
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Background
Deciphering the underlying determinants of transcrip-
tional regulation in relation to cell differentiation, func-
tional diversification, environmental signaling, and disease
development remains a central question in biology today.
Integration of expression data with knowledge on chroma-
tin accessibility, histone modifications, DNA methylation,
and transcription factor binding, has been instrumental
for the unveiling of cell-specific local and long-range regu-
latory patterns, facilitating further investigation on the
underlying rules of transcription regulation at an individ-
ual and allele-specific level. Current interest by large col-
laborative projects, such as the ENCODE [1], the NIH
Roadmap Epigenomics Mapping Consortium [2,3], and
the C. elegans and D. melanogaster modENCODE [4], has
been placed on generating genome-wide gene expression
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maps to locate gene expression changes that accompany
important developmental and disease development pro-
cesses. The pairing of traditional expression assays with
high-throughput sequencing (RNA-seq) has allowed the
generation of genome-wide gene expression data with un-
paralleled specificity, throughput, and sensitivity delivering
a detailed representation of the transcriptome.
However, full genome transcriptional gene characteriza-

tion has been partially limited by the complexity and in-
creased time-requirements of available RNA-seq library
construction protocols. Here we report the successful
application of the SX-8G IP-Star® Compact System
(Diagenode) for the easy, rapid, and reproducible RNA-
seq library construction of five Mus musculus (mouse)
samples. Use of the SX-8G IP-Star® Compact System sig-
nificantly reduced the hands-on time for RNA-seq library
synthesis, adenylation, and adaptor ligation providing with
high quality RNA-seq libraries tailored for Illumina high-
throughput next-generation sequencing. Generated data
exhibited high technical reproducibility compared to data
from RNA-seq libraries synthesized manually for the same
samples. Obtained results are consistent regardless the
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Figure 1 A schematic representation of the sample preparation workflow. The processes of the TruSeq™ RNA Sample Preparation v2 low
sample (LS) protocol (Illumina) performed manually and adopted for automated use with the SX-8G IP-Star® Compact System are illustrated. The
automated protocol minimizes the hands-on time required for the error-prone manual steps of RNA-seq library synthesis, adenylation, and
adaptor ligation including all related clean up steps and allows experimental multitasking for the researcher in task.
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Figure 2 Comparison of distributions of FPKM values. Density distributions of FPKM values created using the CummeRbund 2.7.1 R package,
support high data concordance among samples and corresponding technical replicates. Mm_1-5_Auto and Mm_1-5_Man correspond to mouse
samples processed with the automated and manual protocols respectively.
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Figure 3 Correlation analysis of FPKM values. Heat map plots
generated based on FPKM data from samples processed with the
SX-8G IP-Star® Compact System (Mm_1-5_Auto) and their corresponding
technical replicates (Mm_1-5_Man). Transcripts from unexpressed
genes were excluded using a cut-off FPKM value equal to or less than
0.01. Correlation coefficient r2 between each sample and technical
replicate was estimated using the linear regression model in R and
ranged from 0.97-0.98, confirming the high technical reproducibility
between the two tested protocols.
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researcher, day of the experiment, and experimental run.
Overall, the SX-8G IP-Star® Compact System proves an
efficient and reliable tool for the construction of next-
generation RNA-seq libraries especially for trancriptome-
based annotation of larger genomes.

Methods
A schematic step-wise representation of the two tested
protocols is presented in Figure 1. Specifically, we tested
application of the SX-8G IP-Star® Compact System for
the construction of RNA-seq libraries of five mouse
(Mm_1-5_Auto) samples in comparison to a manual
protocol routinely used in our laboratory. The two pro-
tocols were compared using the same thermocycling
machines and reagents. Total RNA integrity value fol-
lowing isolation was measured using the Agilent Tech-
nologies 2100 Bioanalyzer and was equal to eight for all
tested samples. For the manual protocol mRNA prepar-
ation, library construction, and purification were done
according to the TruSeq™ RNA Sample Preparation v2
low sample (LS) protocol (Illumina). Briefly, mRNA was
extracted from 0.2 μg of total RNA for each sample
using 5 min incubation with 50 μl of RNA Purification
Beads (TruSeq™ RNA Sample Preparation Kit v2; Illu-
mina) at 65°C, followed by 5 min incubation at room
temperature. Following washing and elution of the
mRNA denaturation reaction, mRNA was fragmented
using 8 min incubation with 19.5 μl of the Elute, Prime,
Fragment Mix (TruSeq™ RNA Sample Preparation Kit
v2) at 94°C. First Strand Synthesis was performed using
thermocycling with 8 μl of First Strand Master Mix
(TruSeq™ RNA Sample Preparation Kit v2) and Super-
Script II Reverse Transcriptase (Invitrogen) at 25°C for
10 min, 42°C for 50 min and 70°C for 15 min. For sec-
ond strand synthesis samples were incubated with 25 μl
of Second Strand Master Mix (TruSeq™ RNA Sample
Preparation Kit v2) at 16°C for 1 hour. Reactions were
cleaned up with Agencourt AMPure XP beads (Beckman
Coulter Genomics). Libraries were end-repaired, adeny-
lated at the 3’ end, ligated with adapters and amplified
according to the TruSeq™ RNA Sample Preparation v2
LS protocol. Constructed RNA-seq libraries were puri-
fied with Agencourt AMPure XP beads and quantified
using the Quant-iT™ PicoGreen® ds DNA Assay Kit
(Invitrogen) and the KAPA Library Quantification Kit
(KAPABIOSYSTEMS) using qPCR. Library quality con-
trol was performed with the Agilent Technologies 2100
Bioanalyzer. Libraries were normalized and pooled using
the TruSeq™ Cluster Kit v3 (Illumina) based on the
qPCR values. Pooled samples were sequenced using the
HiSeq 2500 v3 sequencer (Illumina). For the automated
protocol the assay was performed as above except that
the most time-consuming stage of library preparation,
synthesis, and adaptor ligation was performed using the
SX-8G IP-Star® Compact System. The only required ac-
tions for this purpose were to select the appropriate
Diagenode Library Preparation protocol (Illumina_TruSeq_
DNA_SamplePrep_v2) for the corresponding sample
number and to set up the necessary reagents and consum-
ables following the robot’s user-friendly and simple
interface.
RNA-seq data generated using the manual and auto-

mated protocols were aligned against the Mus musculus
GRCm38/mm10 genome using TopHat 2.0.7 [5]. Following
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Figure 4 Cluster analysis of FPKM values. Analysis exhibits tight clustering of the tested samples (Mm_1-5_Auto) with the corresponding
technical replicates (Mm_1-5_Man) confirming high technical reproducibility between the two protocols under study.
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extraction of known transcripts, based on the most parsi-
monious trancriptome assembly, Fragments Per Kilobase
of transcript per Million mapped reads (FPKM) values for
each sample processed with the automated (Mm_1-5_
Auto) and manual protocol (Mm_1-5_Man) were gener-
ated using the open-source software package Cufflinks
2.1.1 [6,7] to estimate relative transcript abundance. Tran-
scripts from unexpressed genes with FPKM values equal
to or less than 0.01 were excluded from subsequent ana-
lysis. Heat map plots and correlation coefficient values (r2,
linear regression model) based on FPKM values of each
sample and corresponding technical replicate were gener-
ated using the statistical language R. Data visualization,
density distribution of FPKM values and cluster analysis
were performed using the CummeRbund 2.7.1 R package
(http://compbio.mit.edu/cummeRbund/).

Results
Application of the SX-8G IP-Star® Compact System for
the RNA-seq library construction of five mouse samples,
significantly reduced the amount of hands-on time re-
quired for the most time-demanding stages of library
synthesis, adenylation, and adaptor ligation including all
related clean up steps. Specifically, manual library con-
struction with the protocol routinely used in our labora-
tory typically takes an average of four hours of hands-on
time whereas Diagenode automated library construction
with the same reagents and samples required only 30 mi-
nutes. This corresponds to a 8-fold decrease in the
amount of time the researcher has to be directly in-
volved with the procedure, offering substantial flexibility
for experimental multitasking.
Notably, generated data with the automated protocol

exhibited high technical reproducibility compared to
data from RNA-seq libraries synthesized manually for
the same samples regardless operator and experimental
run. Specifically, density distributions of FPKM values
demonstrated high data concordance among samples
and technical replicates (Figure 2). Correlation coeffi-
cient values r2 obtained using the linear regression
model in R for the five mouse samples and correspond-
ing technical replicates ranged from 0.97-0.98, confirm-
ing that the SX-8G IP-Star® Compact System can be
reliably used for the efficient and accurate construction
of RNA-seq libraries (Figure 3). Cluster analysis illus-
trated tight clustering between samples and technical
replicates, further supporting high technical reproduci-
bility between the two tested protocols (Figure 4).
Conclusions
Overall, the SX-8G IP-Star® Compact System proves an
efficient, reliable and accurate tool for the construction
of next-generation RNA-seq libraries, especially for
trancriptome-based annotation of larger genomes. We
foresee that incorporation of this technology in Next-
Generation Sequencing Cores or Genomics Laboratories
will prove an indispensable tool for high-throughput
RNA-seq library construction, significantly saving on-
hands experimentation time, related costs and error-
prone manual steps. Added benefits of the automated
protocol include ease of operation and generation of
consistent data regardless of human variability and ex-
perimental run. Adaptation of this technology should
support the unveiling of the mechanisms governing dif-
ferential gene expression and transcription processing
genome-wide, leading to a better understanding of gen-
etic and epigenetic regulation and inheritance in a time-
efficient manner.
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ribonucleic acid; qPCR: Quantitative polymerase chain reaction;
FPKM: Fragments per kilobase of transcript per million mapped reads.
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