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Abstract 

Background  Although recent studies have investigated the effects of flywheel (FW) training on muscle function, 
the effects of transient FW exercise on jump performance in athletes are unknown. This study examined the effects 
of single and repeated bouts of FW squat exercises on jump performance and muscle damage in male collegiate 
basketball players.

Methods  The participants were 10 healthy college-age men (nonathletes) and 11 male basketball players (athletes). 
The intervention involved 100 squat exercises (10 repetitions × 10 sets) using an FW device. To examine the repeated-
bout effects, the protocol was conducted again after a 2-week interval. Squat jumps, countermovement jumps, drop 
jumps, and rebound jumps were evaluated as jump performance, while isometric maximal voluntary contraction 
(MVC) torque in knee extension, muscle soreness, range of motion, thigh circumference, muscle thickness, and echo 
intensity were evaluated as markers of muscle damage. Measurements were taken at baseline, immediately after exer-
cise, 24 h later, and 72 h later.

Results  The jump performance of nonathletes decreased after exercise (p < 0.05), while that of the athletes did not. 
The results were similar for muscle soreness. MVC torque decreased significantly after the first exercise in both groups 
(p < 0.05) and was significantly lower in the nonathletes versus athletes. Significant repeated-bout effects were found 
for muscle soreness in nonathletes but not athletes.

Conclusions  These results suggest that a single bout of FW exercise reduces jump performance in male nonathletes 
but not basketball players.
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Background
Eccentric contractions (ECCs) are known to cause higher 
torque output than concentric contractions (CONs) and 
isometric contractions. ECCs are also widely known to 
induce delayed-onset muscle soreness and musculoskel-
etal damage such as muscle swelling and reduce muscle 
function and flexibility and neurological function [1–3]. 
Therefore, it is important to elucidate the characteristics 
of muscle damage induced by ECC exercise.

ECC exercise, bearing a large load during the eccen-
tric phase, reportedly induces muscular hypertrophy [4], 
increases muscular strength, and improves jump and 
sprint performance [1, 5]. Several recent reviews have 
clearly shown the effectiveness of training using a fly-
wheel (FW) [6–8]. Such FW training makes use of the 
load due to inertia when a disk-shaped weight, an FW, 
is rotated with acceleration and deceleration, which can 
repeatedly manifest greater force during the eccentric 
versus concentric phase [9]. Of particular interest are 
the numerous reports of the efficacy of FW training for 
increasing muscular power and jump performance in 
athletes [10–15].

There has been little research on muscle damage 
induced by acute FW exercise, and much remains uncer-
tain in this area. Carmona et al. (2015) [16] showed that, 
in healthy and recreationally active young men, FW 
exercise involving acute squats resulted in delayed-onset 
muscle soreness and increased serum creatine kinase lev-
els. Similarly, Coratella et al. (2016) [17] reported that, in 
untrained males, FW exercise involving squats resulted 
in delayed-onset muscle soreness, increased serum CK, 
and decreased isometric maximal voluntary contraction 
(MVC). The repeated-bout effect was also investigated 
in this study [17]. A second FW exercise after a 4-week 
interval significantly suppressed the MVC decrease, 
delayed-onset muscle soreness, and serum CK increase 
compared with the first bout [17]. However, no reports 
have discussed the effects of acute FW exercise on mus-
cle damage in athletes.

Jump performance is a crucial factor in sports such as 
basketball and volleyball because they require frequent 
jumping [18, 19]. Indeed, there is an association between 
countermovement jump (CMJ) performance and compe-
tition level among basketball players [20]. Therefore, we 
hypothesized that elucidating the effects of FW exercise 
on jump performance and muscle damage in basketball 
players would provide important information to improve 
sports performance and training programs. Therefore, 
the present study aimed to examine (i) the acute effect of 
squat exercises using an FW device on jump performance 
and muscle damage in basketball players and nonath-
letes; and (ii) the repeated-bout effect of jump perfor-
mance and muscle damage caused by FW exercise. Since 

basketball players routinely perform jump movements 
[20, 21], we hypothesized that the jump performance 
decrease, muscle damage severity, and repeated-bout 
effect degree would be smaller in basketball players than 
nonathletes.

Methods
Participants
The participants included 10 healthy untrained men 
(nonathletes; age, mean ± standard deviation [SD], 
19.5 ± 1.1  years; height, 171.0 ± 6.6  cm; body mass, 
67.9 ± 9.7  kg) and 11 basketball players (athletes; age, 
20.3 ± 0.9  years; height, 183.1 ± 6.9  cm; body mass, 
76.7 ± 8.5  kg). The nonathletes had not performed any 
regular resistance training for at least 1  year prior to 
participating in the study. The athletes were collegiate 
basketball players competing in Japan’s Kanto College 
Basketball Federation; all had at least 6  years of play-
ing experience. They completed five 2-h practices and 
one game each week during the season. All of the play-
ers were familiar with resistance training, which they 
performed once a week during the season, but none had 
experience using FW devices. In addition, none of the 
players had sustained a severe injury in the 2 years before 
the study, and none reported having any diseases or 
taking any medication during the intervention. All par-
ticipants were asked to avoid any interventions, such as 
massage and medication intake, during the experimen-
tal period. Each was given a detailed explanation of the 
study protocol before participating and provided written 
informed consent.

The study was approved by the Teikyo Heisei Univer-
sity Ethical Committee Involving Human Subjects (ID: 
2022–009-2). The sample size was determined by a power 
analysis (G*power version 3.1.9.4, Heinrich-Heine Uni-
versity, Dusseldorf, Germany) by setting the effect size 
as 0.25, an α level of 0.05, and a power (1-β) of 0.80 for 
the intergroup comparison, which showed that at least 20 
participants were necessary.

Protocol
The study involved two bouts of FW exercise spaced 
2 weeks apart (FW1 and FW2). One week before the start 
of the experiment, both groups performed FW exercises 
to familiarize themselves with the FW device (kBOX4 
Active Advanced System; Exxentric AB, Stockholm, 
Sweden) [17, 22]. To investigate muscle damage, the par-
ticipants were tested at baseline (Pre) and immediately 
after (Post), 24 h after (Day 1), and 72 h after (Day 3) the 
exercise bout for a total of four measurements. Then, to 
examine the magnitude of the repeated-bout effect, the 
same protocol was repeated 2 weeks later. To investigate 
the effects on jump performance and muscle damage 
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caused by enhanced eccentric squats with the FW device, 
squat jumps (SJ), countermovement jumps (CMJ), drop 
jumps (DJ), rebound jumps (RJ), MVC torque, muscle 
soreness, range of motion (ROM), circumference, muscle 
thickness, and echo intensity were measured.

Eccentric exercise
The intervention consisted of 10 sets × 10 repetitions of 
squats using the FW device with an inertia load of 0.05 
kg ⋅ m2. The exercise protocol was determined based on 
previous research by Coratella et  al. [17]. The partici-
pants were instructed to perform the concentric phase 
as quickly as possible and the eccentric phase until the 
knee angle was approximately 90°. Each was requested 
to complete the concentric (1 s) and eccentric (2 s) cycle 
in a total of 3  s. Peak and mean power for each repeti-
tion (eccentric and concentric) were recorded using the 
software (kMeter App) preinstalled on the FW device. 
In addition, all participants were strongly and regularly 
encouraged to maximally perform each repetition. A 60-s 
rest period was provided between sets.

Rate of perceived exertion
The rate of perceived exertion (RPE) was measured using 
a psychophysical category scale, with the participant rat-
ing the strength of his perception from 6 (“no exertion at 
all”) to 20 (“extremely strong exertion”). RPE measure-
ments were recorded immediately upon the completion 
of each set of FW exercises.

Jump performance
Jump performance was assessed for the SJ, CMJ, DJ, and 
RJ to evaluate the power output and stretch–shortening 
cycle of the lower limb muscles. The participant per-
formed each jump on a jump mat (Multi Jump Tester II; 
DKH Inc., Tokyo, Japan) connected to a computer. The 
participants placed their hands on their hips to pre-
vent arm swinging and were instructed to jump as high 
as possible. Their flight and contact time were recorded 
during the jump, while the jump height was calculated 
from the flight time using the following formula: jump 
height (cm) = 1/8 (flight time) × gravitational accelera-
tion (= 9.81 m/s2). The participants performed the DJ by 
jumping off of a box (20- and 40-cm heights) and landing 
on the jump mat and were instructed to perform a maxi-
mal vertical jump with minimal contact time. The RJ was 
performed five times, with the participants instructed 
to perform a maximal vertical jump with minimal con-
tact time. The DJ and RJ indexes were calculated as jump 
height divided by contact time. The SJ, CMJ, and DJ tests 
were performed twice each with a 2-min rest between 
them, while the RJ was performed only once. The highest 

jump height and the RJ and DJ indexes for each partici-
pant were used in the analysis.

Isometric MVC torque
For the measurement of MVC torque of knee extension, 
the participants performed the 3-s maneuvers twice with 
a 60-s rest between them. The participants performed 
knee extension in the dominant leg, and the MVC torque 
was measured using a peak dynamometer (Primus RS; 
BTE Technologies, Hanover, MD, USA) [23]. Device cali-
bration and gravity correction were performed accord-
ing to the manufacturer’s protocols. The participants 
were tested while sitting in a chair with a backrest. The 
anatomical axis of rotation of the knee joint was aligned 
with the dynamometer axis, and the pad of the tool was 
positioned centrally at the lower part of the shin (i.e., the 
tibia). The knee was kept at 90° of flexion, the hip in neu-
tral rotation and abduction, and the foot in plantar flex-
ion. The hands were placed on the abdomen, while the 
trunk, hips, and mid-thigh were stabilized against the 
chair with Velcro straps. The participants were instructed 
to extend their knees (exert pressure upward on the pad) 
and perform the MVC.

Muscle soreness
Muscle soreness was assessed using a digital muscle 
stiffness instrument (NEUTONE TDM-NA1; Try-All 
Corp., Chiba, Japan) to apply pressure to the vastus lat-
eralis, vastus medialis, and rectus femoris. The pressure 
was applied perpendicular to the halfway point between 
the femoral and lateral condyles of each muscle. All 
tests were conducted by the same investigator, who had 
practiced the procedure many times with different par-
ticipants. Muscle soreness was assessed using a 10-cm 
visual analog scale in which 0 was “no pain” and 10 
was “the worst pain imaginable.” The participants were 
instructed to indicate their pain sensation accordingly. 
Subsequently, the experimenter measured the distance 
between the left margin and the participant’s answer and 
used it in the data analysis.

Range of motion
ROM was measured using a goniometer (Takase Medi-
cal, Tokyo, Japan). Flexion was measured when the par-
ticipant attempted to maximally flex the knee joint of the 
dominant leg to touch his hip with his heel while keeping 
the knee joint aligned with the standing leg. Extension 
was measured when the participant attempted to maxi-
mally extend the knee joint of the exercised leg. ROM 
was calculated by subtracting the flexion from the exten-
sion of the knee joint.
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Circumference
When each participant stood with his feet approxi-
mately 10 cm apart and his body weight evenly distrib-
uted on the feet, the perimeter distance of the thigh 
perpendicular to the long axis of the femur at the mid-
trochanteric–tibial level was measured.

Muscle thickness and echo intensity
B-mode ultrasound images of the vastus lateralis, vas-
tus medialis, and rectus femoris muscles were captured 
using an ultrasound device (SONIMAGE HS1; Konika 
Minolta, Tokyo, Japan), and the probe was placed at 
the mid-trochanter–tibial level at the same position 
marked for the circumference measurement. The same 
gain and contrast were used throughout the experimen-
tal period. The transverse images of each muscle were 
transferred to a computer as bitmap files (.bmp) and 
analyzed. The thicknesses of the vastus lateralis, vas-
tus medialis, and rectus femoris were manually calcu-
lated by tracing using image analysis software (ImageJ; 
National Institutes of Health, Bethesda, MD, USA). The 
mean muscle echo intensity of the region of interest 
(20 × 20 mm) was calculated using the same software to 
generate a grayscale histogram (0, black; 100, white) for 
the region as described previously [24].

Statistical analysis
All statistical analyses were performed using SPSS Sta-
tistics software version 22.0 (IBM Corp., Armonk, NY, 
USA). Values are expressed as mean ± standard devia-
tion. All data were confirmed as normally distributed 
using the Shapiro–Wilk test. Changes in peak torque 
and RPE during the ECCs were compared using one-
way repeated-measures analysis of variance (ANOVA). 
MVC torque, jump performance, muscle soreness, 
ROM, circumference, muscle thickness, and echo 
intensity were compared between the athlete and non-
athlete groups by two-way repeated-measures ANOVA. 
In addition, t-tests were performed to compare the 
peak values minus the value of pre (Δ) for each meas-
ure with FW1 and FW2. The average change in mus-
cle soreness was analyzed for the vastus lateralis, vastus 
medialis, and rectus femoris. A significant main effect 
or interaction was found; Bonferroni’s correction was 
performed for post hoc testing, including the differ-
ence from baseline. To demonstrate the effect sizes, 
Cohen’s d was calculated for the t-tests, and the par-
tial eta squared (η2) was calculated for the ANOVA 
[25]. A general guideline for interpreting Cohen’s d 
is as follows: small (0.20), medium (0.50), and large 
(0.80). In addition, a general guideline for interpreting 
η2 is as follows: small (0.01), medium (0.06), and large 

(0.14). Values of p < 0.05 were considered statistically 
significant.

Results
Isometric MVC torque, jump performance, and peak power
The baseline MVC torque, jump performance, and peak 
power are shown in Table 1. The mean MVC torque was 
significantly higher for athletes (126.3 ± 16.2 Nm) than for 
nonathletes (81.7 ± 12.4 Nm) (p < 0.05, d = 3.07). In terms 
of jump performance, mean SJ and CMJ were signifi-
cantly higher in athletes (38.4 ± 3.9 cm and 41.8 ± 3.2 cm, 
respectively) than in nonathletes (33.4 ± 4.8  cm vs. 
37.2 ± 3.9 cm) (both p < 0.05; SJ, d = 1.14; CMJ, d = 1.13). 
Similarly, mean peak power in FW exercises in the con-
centric phase was higher in athletes than in nonathletes 
(886.0 ± 206.7 W vs. 595.7 ± 232.8 W) (p < 0.05, d = 1.32). 
However, the mean peak power in the FW exercises in 
the eccentric phase did not differ significantly between 
groups (905.6 ± 313.0 W vs. 709.1 ± 273.5 W).

Eccentric exercises
Power
The peak and average powers during the FW exercise 
(10 sets × 10 repetitions) in the concentric and eccentric 
phases are shown in Table 2. In both FW1 and FW2, ath-
letes had a significantly higher peak and mean power in 
the concentric and eccentric phases than nonathletes.

Rate of perceived exertion
The RPE values for each set are shown in Table 3. In FW1, 
the peaks for nonathletes and athletes were 19.2 ± 1.5 and 
19.6 ± 0.9, respectively. In FW2, the peaks for nonath-
letes and athletes were 19.5 ± 1.0 and 19.5 ± 1.3, respec-
tively. There were no statistically significant intergroup 
differences.

Table 1  Physiological characteristics at baseline

MVC maximum voluntary contraction

Nonathletes
n = 10

Athletes
n = 11

P value

Age, years 19.5 ± 1.1 20.3 ± 0.9 0.09

Height, cm 171.0 ± 6.6 183.1 ± 6.9  < 0.01

Weight, kg 67.9 ± 9.7 76.7 ± 8.5 0.04

MVC torque, Nm 81.7 ± 12.4 126.3 ± 16.2  < 0.01

Squat jump, cm 33.4 ± 4.8 38.4 ± 3.9 0.02

Counter movement jump, cm 37.2 ± 3.9 41.8 ± 3.2  < 0.01

Concentric peak power, W 595.7 ± 232.8 886.0 ± 206.7  < 0.01

Eccentric peak power, W 709.1 ± 273.5 905.6 ± 313.0 0.14
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Jump performance
Squat jump
In FW1, there was a significant interaction for SJ 
(p < 0.05, η2 = 0.04; Fig.  1A). Nonathletes showed a 
significant decrease at Post (27.2 ± 6.6  cm), Day 1 
(24.1 ± 8.1 cm), and Day 3 (29.3 ± 6.6 cm) after exercise 
compared with Pre (33.4 ± 4.8  cm) (all p < 0.05). Fur-
thermore, SJ was significantly greater in athletes than 
nonathletes at Post (athletes: 36.0 ± 4.5 cm), Day 1 (ath-
letes: 39.0 ± 5.1 cm), and Day 3 (athletes: 40.0 ± 4.5 cm) 
(all p < 0.05). No significant interactions were found 
in FW2. Squat jump height remained unchanged in 
athletes.

Countermovement jump
In FW1, there was a significant interaction for CMJ 
(p < 0.05, η2 = 0.22; Fig.  1B). Nonathletes showed a 
significant decrease at Post (30.1 ± 7.7  cm) and Day 
1 (29.5 ± 8.1  cm) after exercise compared with Pre 
(37.2 ± 3.9  cm) (both p < 0.05). Furthermore, the mean 
CMJ was significantly greater in athletes than in non-
athletes at Post (athletes: 39.1 ± 3.7 cm), Day 1 (athletes: 
42.1 ± 3.7 cm), and Day 3 (nonathletes: 34.6 ± 6.0; athletes: 

43.5 ± 4.6  cm) (all p < 0.05). No significant interactions 
were found in FW2.

Twenty‑centimeter DJ
In FW1, there was a significant interaction for the 20-cm 
DJ (p < 0.05, η2 = 0.05; Fig.  1C). Nonathletes showed 
a significant decrease at Post (21.2 ± 8.0  cm) and Day 
1 (20.4 ± 6.9  cm) after exercise compared with Pre 
(26.8 ± 4.6  cm) (both p < 0.05). Furthermore, 20-cm DJ 
was significantly greater in athletes than nonathletes on 
Day 1 (athletes: 34.8 ± 5.6  cm) (p < 0.05). No significant 
interactions were found in FW2.

Forty‑centimeter DJ
In FW1, there was a significant interaction for the 
40-cm DJ (p < 0.05, η2 = 0.04; Fig.  1D). Nonathletes 
showed a significant decrease at Post (20.9 ± 7.5  cm) 
and Day 3 (24.5 ± 4.1  cm) after exercise compared with 
Pre (27.7 ± 4.7  cm) (both p < 0.05). Furthermore, the 
mean 40-cm DJ was significantly greater in athletes than 
nonathletes at Post (athletes: 34.4 ± 4.5  cm) and Day 3 
(athletes: 37.1 ± 4.9  cm) (both p < 0.05). No significant 
interactions were found in FW2.

Rebound jump
In FW1, there was a significant interaction for RJ (p < 0.05, 
η2 = 0.15; Fig.  1E). Nonathletes showed a significant 
decrease at Post (23.0 ± 6.5 cm) and Day 1 (22.4 ± 8.4 cm) 
after exercise compared with Pre (30.2 ± 5.7  cm) (both 
p < 0.05). Furthermore, the mean RJ was significantly 
greater in athletes than nonathletes at Post (athletes: 
33.6 ± 3.5 cm), Day 1 (athletes: 34.9 ± 3.7 cm) and Day 3 
(nonathletes: 27.8 ± 4.4  cm, athletes: 37.0 ± 3.3  cm) (all 
p < 0.05). No significant interactions were found in FW2.

Isometric MVC torque of knee extension
In FW1, there was a significant interaction for MVC 
torque (p < 0.05, η2 = 0.11; Fig.  2A). Nonathletes showed 
a significant decrease at Post (62.2 ± 15.1 Nm), Day 1 
(56.3 ± 18.3 Nm), and Day 3 (71.2 ± 14.5 Nm) after exer-
cise compared with Pre (81.7 ± 12.4 Nm) (all p < 0.05). In 
addition, athletes showed a significant decrease at Post 

Table 2  Power exerted during the flywheel exercise

CON concentric contractions, ECC eccentric contractions, FW1 first flywheel exercise session, FW2 second flywheel exercise session

FW1 FW2

Nonathletes Athletes P value Nonathletes Athletes P value

CON peak power, W 488.3 ± 151.9 823.6 ± 218.1  < 0.01 685.7 ± 193.5 1020.6 ± 205.4  < 0.01

ECC peak power, W 623.4 ± 289.4 859.6 ± 229.7 0.04 853.5 ± 277.2 1172.7 ± 289.3 0.01

CON average power, W 399.1 ± 125.6 693.4 ± 202.5  < 0.01 559.8 ± 169.4 871.5 ± 186.5  < 0.01

ECC average power, W 486.1 ± 224.9 706.4 ± 205.7 0.02 689.7 ± 225.3 974.6 ± 257.9  < 0.01

Table 3  Rate of perceived exertion during flywheel exercise

RPE rate of perceived exertion

FW1 FW2

Nonathletes Athletes Nonathletes Athletes

RPE 1 set 12.9 ± 2.7 13.2 ± 2.7 9.9 ± 2.5 12.9 ± 2.9

2 sets 13.7 ± 2.1 14.2 ± 2.3 12.3 ± 3.4 14.2 ± 2.1

3 sets 15.1 ± 2.2 14.6 ± 2.5 13.5 ± 3.1 15.3 ± 2.1

4 sets 16.3 ± 2.5 15.5 ± 2.7 14.7 ± 3.5 16.1 ± 2.4

5 sets 16.6 ± 2.1 16.4 ± 2.6 16.1 ± 3.3 17.0 ± 2.0

6 sets 17.3 ± 1.8 17.3 ± 2.5 17.1 ± 3.2 17.5 ± 2.0

7 sets 18.3 ± 2.5 17.8 ± 2.2 18.0 ± 2.4 18.1 ± 1.8

8 sets 19.0 ± 1.5 18.6 ± 1.7 18.7 ± 2.3 18.6 ± 1.7

9 sets 19.0 ± 1.6 19.1 ± 1.4 18.9 ± 2.2 19.0 ± 1.4

10 sets 19.2 ± 1.5 19.6 ± 0.9 19.5 ± 1.0 19.5 ± 1.3
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Fig. 1  Changes (mean ± SD) in squat jump (A), countermovement jump (B), 20-cm drop jump height (C), 40-cm drop jump height (D), 
and rebound jump height (E) measured before (pre) and immediately after (post) the first (FW1) and second (FW2) flywheel exercise and 1 
and 3 days after in the nonathletes versus athletes groups. *p < 0.05 for the difference from the pre-exercise value in the nonathletes group. ♯p < 0.05 
for the difference between nonathletes and athletes groups
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Fig. 2  Changes (mean ± SD) in MVC torque (A), muscle soreness in the vastus lateralis (B), vastus medialis (C), and rectus femoris (D) measured 
before (pre) and immediately after (post) the first (FW1) and second (FW2) flywheel exercise and 1 and 3 days after in the nonathletes 
versus athletes groups. *p < 0.05 for the difference from the pre-exercise value in the nonathletes group. †p < 0.05 for the difference 
from the pre-exercise value in the athletes group. ♯p < 0.05 for the difference between nonathletes and athletes groups
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(108.9 ± 19.7 Nm) and Day 3 (115.5 ± 21.0 Nm) after exer-
cise compared with Pre (126.3 ± 16.2 Nm) (both p < 0.05). 
Furthermore, there was a significant difference between 
the groups at Post and Day 1 (athletes: 114.2 ± 24.8 Nm) 
(both p < 0.05). No significant interactions were found in 
FW2.

Muscle soreness
In FW1, there was a significant interaction for mus-
cle soreness in the vastus lateralis (p < 0.05, η2 = 0.30, 
Fig. 2B) and vastus medialis (p < 0.05, η2 = 0.31, Fig. 2C). 
In the vastus lateralis, nonathletes showed significant 
increases on Day 1 (4.0 ± 2.0 cm) and Day 3 (2.5 ± 1.8 cm) 
compared with Pre (1.0 ± 0.5  cm) (both p < 0.05). Fur-
thermore, there was a significant difference between the 
groups on Day 1 (athletes: 1.1 ± 0.7 cm) and Day 3 (ath-
letes: 0.7 ± 0.6  cm) (both p < 0.05). In the vastus media-
lis, nonathletes showed a significant increase on Day 1 
(5.3 ± 2.0  cm) and Day 3 (4.3 ± 2.1  cm) compared with 
Pre (2.3 ± 1.5 cm) (both p < 0.05). Furthermore, there was 
a significant difference between the groups at Post (non-
athletes: 2.9 ± 2.2 cm, athletes: 1.2 ± 1.2 cm), Day 1 (ath-
letes: 2.3 ± 1.6 cm), and Day 3 (athletes: 1.8 ± 1.3 cm) (all 
p < 0.05). No significant interaction was found in the rec-
tus femoris (Fig. 2D) in FW1, and no significant interac-
tions were found in any of the muscles in FW2.

ROM, circumference, muscle thickness, and echo intensity
The results for ROM, circumference, muscle thickness, 
and echo intensity are shown in Fig.  3. There were no 
significant interactions for these measurements between 
nonathletes and athletes.

Comparison between FW1 and FW2
The differences between the peak values for SJ, CMJ, 
20-cm DJ, 40-cm DJ, RJ, MVC torque, and muscle sore-
ness in each group (i.e., the lowest value for SJ, CMJ, 
20-cm DJ, 40-cm DJ, RJ, and MVC torque and the high-
est value for muscle soreness) minus the Pre values are 
shown in Fig.  4. For SJ, there was no significant dif-
ference between FW1 (nonathletes: − 11.4 ± 6.4, ath-
letes: − 2.9 ± 3.6) and FW2 (nonathletes: − 7.3 ± 4.0, 
athletes: − 3.4 ± 2.2), but there was a significant differ-
ence between nonathletes and athletes in FW1 (p < 0.05, 
d = 1.68) and FW2 (p < 0.05, d = 1.22). For CMJ, there 
was no significant difference between FW1 (nonath-
letes: − 10.0 ± 6.5, athletes: − 3.1 ± 2.5) and FW2 (non-
athletes: − 6.7 ± 4.3, athletes: − 3.3 ± 2.9), but there was 
a significant difference between nonathletes and ath-
letes in FW1 (p < 0.05, d = 1.43) and FW2 (p < 0.05, 
d = 0.93). For the 20-cm DJ, there was no significant 
difference between FW1 (nonathletes: − 9.4 ± 7.1; ath-
letes: − 2.5 ± 2.4) and FW2 (nonathletes: − 6.1 ± 5.1; 

athletes: − 2.4 ± 2.3), but there was a significant differ-
ence between nonathletes and athletes in FW1 (p < 0.05, 
d = 1.34) and FW2 (p < 0.05, d = 0.94). For the 40-cm DJ, 
there was no significant difference between FW1 (non-
athletes: − 8.8 ± 4.9; athletes: − 3.0 ± 3.6) and FW2 (non-
athletes: − 8.1 ± 7.1; athletes: − 3.9 ± 3.3), but there was a 
significant difference between nonathletes and athletes 
in FW1 (p < 0.05, d = 1.34). For RJ, there was no signifi-
cant difference between FW1 (nonathletes: − 9.7 ± 8.4; 
athletes: − 3.5 ± 3.4) and FW2 (nonathletes: − 5.9 ± 4.0; 
athletes: − 3.4 ± 3.0), but there was a significant differ-
ence between nonathletes and athletes in FW1 (p < 0.05, 
d = 0.98).

In nonathletes, the reduction of MVC torque tended to 
be smaller (p = 0.06) in FW2 (− 16.0 ± 6.1) than in FW1 
(− 29.8 ± 19.0). Meanwhile, there was no significant dif-
ference in athletes between FW1 (− 20.3 ± 12.2) and FW2 
(− 24.2 ± 9.5). Muscle soreness, which is average value of 
the vastus lateralis, vastus medialis, and rectus femoris, 
was significantly smaller in nonathletes in FW2 (1.4 ± 6.1) 
than in FW1 (2.7 ± 1.7) (p < 0.05, d = 0.84). A significant 
difference was noted between the nonathletes and ath-
letes in FW1 (0.9 ± 0.7) (p < 0.05, d = 1.37). No significant 
difference in athletes was noted between FW1 and FW2 
(0.8 ± 1.6).

Discussion
This study investigated the jump performance and mus-
cle damage after FW exercise and the repeated-bout 
effect in basketball players and nonathletes. The find-
ings were: (i) the FW exercise resulted in a temporary 
decrease in jump performance in nonathletes but not in 
basketball players; (ii) although MVC showed a signifi-
cant decrease in basketball players, the decrease was less 
marked than in nonathletes; (iii) the FW exercise resulted 
in delayed-onset muscle soreness in nonathletes but not 
in basketball players; and (iv) the repeated-bout effect 
was confirmed in nonathletes as delayed-onset muscle 
soreness, while the repeated-bout effect was not found in 
basketball players. These findings support our hypothesis.

In this study, basketball players showed significantly 
higher baseline muscle strength, jump performance, and 
CON peak power due to FW exercise than nonathletes 
(Table  1). Therefore, the basketball players and nonath-
letes compared here differed clearly in muscle function 
and performance. During FW exercise, the CON and 
ECC peaks and mean power were significantly higher 
in basketball players than in nonathletes (Table  2). In 
a previous study, the mean CON peak power before 
training initiation of university water polo players was 
653.2 ± 216.6 W [26]. In the present study, the peak CON 
and peak ECC power of the basketball players were 
886.0 ± 206.7 and 905.6 ± 313.0 W, respectively, so the 
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Fig. 3  Changes (mean ± SD) in range of motion (A), circumference (B), muscle thickness (C), and echo intensity (D) measured before (pre) 
and immediately after (post) the first (FW1) and second (FW2) flywheel exercises and 1 and 3 days after in the nonathletes and athletes groups
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Fig. 4  Difference (Δ) from baseline to peak or bottom in squat jump (A), countermovement jump (B), 20-cm drop jump height (C), 40-cm drop 
jump height (D), rebound jump height (E), MVC torque (F), and muscle soreness (average of vastus lateralis, vastus medialis and rectus femoris 
muscles) in the first and second flywheel exercise sessions
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performance was higher than that in the previous study. 
Furthermore, although RPE during exercise did not dif-
fer between groups, its value was extremely high, show-
ing that the subjects of this study underwent FW exercise 
with a maximum load (Table 3). However, although ECC 
power should be greater than CON power, ECC peak and 
average power were similar to CON peak and average 
power in athletes. Since the vertical jump of basketball 
players was higher than that of soccer players [27], we 
assume that the basketball players are expected to have 
very high CON power because they perform repetitive 
jumping movements in their daily basketball practice.

This is the first study to compare changes in jump 
performance after acute FW exercise among basket-
ball players and nonathletes. Nonathletes showed sig-
nificant decreases in all tests (SJ, CMJ, DJ, and RJ) after 
acute FW exercise, whereas basketball players showed 
no such decreases (Fig. 1). A previous review stated that 
post-ECC jump performance as a marker of muscle dam-
age decreased significantly at 24‒48 h after exercise [28]. 
This decrease in jump performance was correlated with 
an MVC decrease due to knee joint extension (r2 = 0.67; 
p < 0.001) [28]. An important point is that the basketball 
players in the present study showed no decrease in jump 
performance after FW exercise despite the significant 
decrease in MVC. As basketball is a sport that involves 
jump movements approximately every minute [21], the 
ECCs generated upon landing after a jump routinely exert 
considerable loads. Therefore, we consider that strong 
resistance to jump movements is more closely connected 
to these results than the knee extension model.

MVC decreased significantly in both basketball play-
ers and nonathletes after the first FW exercise (Fig.  2). 
As in a previous study, the FW exercise involving 10 sets 
of 10 squats performed by young healthy male subjects 
induced a significant decrease in MVC up to 3 days after 
the exercise [17]. However, basketball players showed 
significantly smaller MVC decreases than nonathletes. 
A previous study comparing muscle damage severity 
after ECC due to knee joint flexion between resistance-
trained and untrained individuals showed that the MVC 
decrease was significantly smaller in the former [29]. The 
suggested reason for this difference is that routine sport 
training results in the repeated-bout effect, while the 
suggested cause of the smaller decrease in MVC in bas-
ketball players in the present study is the repeated-bout 
effect on the knee extensor muscles.

In the present study, delayed-onset muscle soreness in 
the vastus lateralis and vastus medialis muscles increased 
significantly in the nonathletes but did not change signifi-
cantly in the basketball players (Fig. 2). In previous stud-
ies, FW exercises involving squats performed by healthy 
male subjects resulted in delayed-onset muscle soreness 

at 1‒3 days after the exercise [16, 17]. However, a study 
of resistance-trained and untrained subjects found that 
the decreases in MVC and ROM after ECC by knee joint 
flexion were significantly lower in resistance-trained sub-
jects, whereas no differences were found in delayed-onset 
muscle soreness degrees [30]. The suggested reason for 
this was that delayed-onset muscle soreness is independ-
ent of other muscle damage markers. The mechanism 
for the differences between the results of the present and 
previous studies is uncertain, but we believe that different 
types of athletes show different responses to ECCs due to 
knee joint flexion and delayed-onset muscle soreness due 
to FW exercise.

In the present study, neither basketball players nor 
nonathletes showed changes in ROM, circumference, 
muscle thickness, or echo intensity (Fig.  3). In previous 
studies, however, ECC due to elbow and knee joint exten-
sion and flexion restricted the ROM, while circumfer-
ence, muscle thickness, and echo intensity increased [24, 
31–33]. As far as can be ascertained, no studies to date 
have evaluated ROM, circumference, muscle thickness, 
and/or echo intensity after FW exercise. ROM, circum-
ference, muscle thickness, and echo intensity are report-
edly dependent upon exercise intensity [34–36]. In the 
present study, although the maximum exertion achieved 
in the FW exercise was as high as 10 sets of 10 squats and 
the RPE was high, the relative load on each muscle may 
have been lower than that with ECC based on a single-
joint exercise. Future studies with multiple load condi-
tions are needed.

Nonathletes displayed an effect of the repeated-bout 
effect in relation to delayed-onset muscle soreness as 
well as a tendency in MVC (Fig. 4). In a previous study 
of nonathlete subjects, the result of FW exercise involv-
ing 10 sets of 10 squats performed twice at a 4-week 
interval showed that, after the second exercise, the 
MVC decrease, delayed muscle soreness, and serum 
CK increase were significantly suppressed compared 
with after the first exercise [17]. The results of the pre-
sent study support those results, although serum CK was 
not evaluated. However, in terms of jump performance, 
for which additional tests were performed in the present 
study, no repeated-bout effect was noted for any tests 
(Fig.  4). In a previous study, the result of repeating 50 
drop jump exercises after a 2-week interval was that the 
degree of decrease in SJ and CMJ was significantly lower 
after the second versus first exercise [37]. In addition, 
Bridgman et  al. [38] found that 50 drop jump exercises 
induced the repeated-bout effect on jump performance. 
With respect to the mechanism, multiple factors are 
complexly involved in the repeated-bout effect, including 
adaptation of the nerve system and muscle–tendon com-
plexes, remodeling of the extracellular matrix structure, 
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and suppression of the inflammatory response [39]. We 
speculate that basketball players previously experienced 
these repeated-bout effects due to routine training. 
Indeed, in this study, the severity of muscle damage after 
the first exercise was low in basketball players versus 
nonathletes, and the repeated-bout effects in basketball 
players were not seen for any tests (Fig. 4), while a reduc-
tion in MVC after the first bout and earlier recovery after 
the second bout (Fig.  2A). However, the mechanisms 
connected to the repeated-bout effect on jump perfor-
mance have not been definitively identified and require 
clarification in a future study.

Conclusions
The information obtained in the present study clearly 
demonstrates that intense and acute FW exercises 
involving squat movements did not reduce the jump per-
formance of basketball players. Additionally, although 
basketball players showed decreased muscle strength, 
they did not develop delayed-onset muscle soreness. 
Although the FW exercise reduced jump performance 
and caused muscle damage in nonathletes, our find-
ings suggest the presence of repeated-bout effects on 
delayed-onset muscle soreness and muscle strength. 
These findings indicate that basketball players could add 
FW exercises to their training routine if they consider 
the reduction in muscular function that will occur after 
the first FW session, while nonathletes require recovery 
periods. Earlier recovery was seen after the second than 
first session, especially in nonathletes. We believe that 
this information may be useful for preparing FW training 
programs for basketball players.
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