
Pearson et al. 
BMC Sports Science, Medicine and Rehabilitation          (2022) 14:129  
https://doi.org/10.1186/s13102-022-00526-x

RESEARCH

Effects of maximal-versus submaximal-intent 
resistance training on functional capacity 
and strength in community-dwelling older 
adults: a systematic review and meta-analysis
Liam T. Pearson1*, David G. Behm2, Stuart Goodall1, Rachel Mason1, Samuel Stuart1,3 and Gill Barry1 

Abstract 

The objective of this systematic review is to investigate the effects of different methods of resistance training (RT) on 
functional capacity in older adults. A systematic literature search was conducted using PubMed, SPORTDiscus, Web of 
Science, CINAHL, Cochrane CENTRAL, ClinicalTrials.gov databases, from inception to December 2021. Eligibility criteria 
consisted of randomised control trials (RCT’s) involving maximal-intent resistance training (MIRT), where participants 
(aged 60+) had specific instruction to move ‘as fast as possible’ during the concentric phase of the exercise. Twelve 
studies were included within the meta-analysis. Divided into functional capacity and strength-related outcomes; 
Improvements were evident for timed-up-and-go (p = 0.001, SMD: − 1.74 [95% CI − 2.79, − 0.69]) and knee exten-
sion one-repetition maximum (1RM) (p = 0.01, SMD: − 1.21, [95% CI − 2.17, − 0.25]), both in favour of MIRT, as well 
as in 30 s sit-to-stand in favour of T-STR (p = 0.04, SMD: 3.10 [95% CI 0.07, 6.14]). No statistical significance was found 
for combined functional capacity outcomes (p = 0.17, SMD: − 0.84, [95% CI − 2.04, 0.37]), with near-significance 
observed in strength-related outcomes (p = 0.06. SMD: − 0.57, [95% CI − 1.16, 0.02]) favouring MIRT. Heterogeneity for 
FC-outcomes was observed as  Tau2 = 4.83; Chi = 276.19, df = 14,  I2 = 95%, and for strength-outcomes  Tau2 = 1.290; 
Chi = 109.65, df = 115,  I2 = 86%. Additionally, MIRT elicited substantial clinically meaningful improvements (CMI) in 
Short Physical Performance Battery (SPPB) scores but fell short of CMI in 400 m walk test by 0.6 s. In conclusion, this 
systematic review highlights the lack of sufficient and quality evidence for maximal- versus submaximal-intent resist-
ance training on functional capacity and strength in community-dwelling older adults. Study limitations revolved 
around lack of research, low quality (“low” PEDro score), and largely due to the fact many comparison studies did not 
match their loads lifted (1500 kg vs. 500 kg), making comparisons not possible.
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Introduction
The World Health Organisation (WHO) predicts by 
2050 “the number of people aged 60  years or older 
will rise from 900 million to 2 billion” [1]; and with the 

decline in neuromuscular function and subsequent func-
tional capacity (FC) associated with ageing [2–6], more 
investigation is required for improving FC and physi-
cal performance of older adults. The National Strength 
and Conditioning Association (NSCA) and The WHO 
World Confederation for Physical Therapy (WCPT) [7, 
8], in 2019, both released position statements asserting 
the benefits of resistance training (RT) for older adults 
as almost overwhelming, and for the use of RT in older 
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adults for maximising FC. Outcomes related to FC can 
be assessed using a standardised Short Physical Perfor-
mance Battery (SPPB) test [9], which has shown to be 
applicable in: age-associated declines in muscle mass [4, 
10], multiple geographical settings [11, 12], general and 
clinical populations [13–16], obese and frail adults [17], 
in Alzheimer’s patients with early-stage dementia [12], 
older adults with and without mobility limitations ([4]), 
older adults at risk of disability ([18]), and has shown 
potential as an early predictor of declining FC in only 
adults in clinical populations [19]. Resistance training, 
as recommended by WHO 2020 guidelines, has shown 
positive correlations in physical function in older adults 
[20–22], as well as enhancements in outcomes in SPPB 
scores, strength, gait speed, sit-to-stand, and reduction of 
hip pain [23–28]; All of which, are outcomes supported 
by the American College of Sports Medicine (ACSM) 
[29] and Physical Activity Guidelines Advisory Commit-
tee (PAGAC) [30] for functional parameters linked to 
improvements in FC. Less is known about how the intent 
of resistance training can impact FC and strength out-
comes in older adults, due to the lack of articles directly 
comparing speed or intent of movement during exercise 
programs.

Resistance training can be defined as; the use of load, 
machinery, or Q2own body weight while exercising the 
muscles [31] or, a modality of exercise used to increase 
the body’s ability to overcome load [32]. RT is used as 
the main intervention within this review as there is over-
whelming support for the use of RT in the prevention of 
sarcopenia [33–36], one of the most common conditions 
suffered by up to 13% of all older adults, and upwards of 
50% in those aged 80 and above [37]. It is therefore sug-
gested the stronger an older adult, the better they will 
likely cope with basic physical activity guidelines [20, 38, 
39] and are therefore more likely to adhere to, or even 
exceed said guidelines, leading to an improved FC.

Evidence to support the use of high-velocity resistance 
training (HVRT) in non-athletic populations is beginning 
to emerge, with current papers from Bernat, Candow 
[40] and Englund, Sharp [41], both concluding HVRT 
in untrained ageing adults shows encouraging results 
compared to traditional strength training (T-STR). This 
supports research from 2008 which advocates maximal 
power and optimal velocity training in older women 
were found to improve physical performance, and be sig-
nificant mobility factors in older adults [42]. Commonly 
with HVRT, the protocol is to have a slow and controlled 
eccentric action followed by a powerful concentric reac-
tion, with eccentric action being linked to improvements 
in outcome measures in older adults well-being, mobil-
ity, survival, and activities for daily living [43]. T-STR is 
commonly accepted as moderate-load (60–80% 1RM), 

multi-joint RT between three to five sets of eight to 
twelve repetitions, with emphasis on slow and controlled 
repetitions and three minutes recovery between sets [44–
46]. For this systematic review, and due to the fact older 
adults may not express high-velocities common in HVRT 
or velocity-based training (VBT) literature, it was there-
fore deemed more appropriate to investigate maximal-
intent resistance training (MIRT), which can be defined 
as; the purposeful intention of the individual to attempt 
to move as fast as possible, regardless of the imposed 
resistance during RT, whether through intrinsic motiva-
tion or encouragement from an external source.

The nervous system is also an important contributor 
to mobility, or more specifically, mobility limitations, 
with said limitations typically observed through ageing 
[2, 47, 48], with evidence to suggest RT may be a possi-
ble solution to stall what we lose through ageing [49–51]. 
A specific ‘power’ RT intervention conducted by Rod-
riguez-Lopez, Alcazar [48], Reid, Martin [52], McKin-
non, Connelly [5] also observed significantly improved 
neuromuscular activation in older adults, with similar 
findings of neuromuscular and cognitive performance 
observed by Marques, Neiva [53]. Due to the neural 
adaptations observed following RT, further investiga-
tion is needed regarding the potential significance and 
application across all general, ageing, and clinical popu-
lations [54–59]. Neuromuscular responses to RT do not 
have to be conducted at high velocities, there are links to 
the intent of movement being an equal factor to neural 
improvements in muscle activation and movement time 
[60], with evidence replicated over 10  years later [61]. 
Although there is merit to physical improvements in 
older adults that relate to FC from MIRT [5, 24, 25], the 
underpinning neural mechanisms of the observed neuro-
muscular changes remain unclear [62]. Observations also 
suggest links of psychology to the neuromuscular sys-
tem [63]; with Behm [64] additionally observing links to 
high-velocity training adaptations may involve significant 
neural adaptations, including Ansdell, Škarabot [65] who 
observed differences in neural responses between sexes.

The objective of this systematic review is to investigate 
the effects of Maximal-intent resistance training (MIRT) 
versus traditional resistance training (T-SRT) on func-
tional capacity and strength in older adults.

Methods
A systematic literature search was conducted on PubMed, 
SPORTDiscus, Web of Science, CINAHL, Cochrane 
CENTRAL, ClinicalTrials.gov databases, from incep-
tion to December 2021, using standard operators (AND, 
OR). Guidelines from Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) [66] were 
followed throughout. Search terms used throughout each 
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database were “resistance training” OR “strength train-
ing” AND “VBT” OR “velocity-based” OR “MVC” OR 
“MVIC” OR “RFD” OR “maximal-intent” OR “explosive” 
AND “older adult”. Combined results from all databases 
were screened by the lead author (LP) and one additional 
reviewer (RM), using the Rayyan web-based platform 
[67]. Any discrepancies in the results were reviewed by 
a third, blinded, reviewer (GB). Where necessary data 
was missing, attempts were made to contact the authors. 
The authors, title and year of publication, sample size, 
participant characteristics (age, sex, and health sta-
tus), intervention characteristics (group/intervention, 
exercises, length of intervention, weekly frequency of 
training, training time per session), retention rates and 
adherence, outcome measures for each group at baseline, 
follow-up, and change scores (mean and standard devia-
tion [SD]), were extracted manually by LTP using the 
online platform Rayyan [67]. If mean and standard error 
(SE) were reported, the SD was calculated from the SE 
using the following formula: SD = SE*√n, with n denot-
ing sample size [68]. If age was only reported per group, 
the Cochrane calculator was used to transform age into 
a pooled mean and SD for the study characteristic table 
[68]. Where data was reported in Newtons (N), this was 
divided by 9.81 to equate to kilograms (kg).

Statistical analysis
Software used for the meta-analysis of this systematic 
review were Review Manager (RevMan V5.3; Cochrane 

Collaboration, Oxford, UK) using continuous outcomes, 
change scores in mean and standard deviation (SD), and 
reported as standardised mean difference (SMD) using 
95% confidence intervals. Between-study variability was 
examined for heterogeneity, using  I2 statistics for quanti-
fying consistency, with thresholds being set at  I2 = ≤ 25% 
(low),  I2 = 26–74% (moderate), and  I2 =  ≥ 75% (high) 
[69]. For conservative reasons, a random-effects model of 
meta-analysis was applied to the combined data.

Inclusion and exclusion criteria
Inclusion criteria followed Population, Intervention, 
Comparison, Outcome, and Study (PICOS) and Physi-
otherapy Evidence Database (PEDro) methodologies [66, 
70] (Table1):

Results
The meta-analysis comprised 12 studies totalling 371 
participants. When combining related outcomes, no 
significant improvements were found for FC outcomes 
(p = 0.17, SMD: − 0.84, [95% CI − 2.04, 0.37]) (Fig.  2), 
however, near-significance with moderate magnitude 
of effect was observed in strength-related outcomes 
(p = 0.06. SMD: − 0.57, [95% CI  − 1.16, 0.02]), favouring 
MIRT (Fig. 3).

Search results
Figure  1 below indicates the PRISMA flow diagram of 
search results.

Table 1 PICOS inclusion and exclusion criteria for data synthesis

Population

Conducted on community-dwelling older adults aged ≥ 60 years

Intervention

Concentric muscle action

Randomised control trial

Participants must have been instructed to move “as fast as possible” during the concentric phase, or instructions of a similar description

Comparison

Comparison between RT performed whilst being encouraged to concentrically move as fast as possible (MIRT) vs. slow-to-moderate velocity (T-STR)

Studies that reported pre- and post-intervention scores for changes in SPPB score

Outcome

Primary outcome measure was SPPB score, or any individual test derived from the SPPB tests (30-s chair stand (STS), timed-up-and-go (TUG), or bal-
ance testing)

Secondary outcomes were dynamic leg press 1RM and knee-extension 1RM, 400-m (400 m) walk, 6-min walk test

Study

A minimum four-week intervention Between-group design

Published in a peer-reviewed journal Full-text available in English

Exclusion criteria

Did not specify whether maximal concentric velocity was encouraged Used concurrent training methods

Did not reply with additional information upon request within 30 days The article had been retracted

Supplementary/dietary combined intervention A quasi-experimental research design
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Intervention attributes
All studies focused primarily on lower-body RT, with 
zero focusing exclusively on the upper body. Across 
all studies, sample sizes ranged from 18 to 50. Seven 
studies (70%) [27, 71–76] mixed both male and female 
participants. Most studies recruited from links with 
community-dwelling adults and organisations [27, 
71–77]. All participants came from the same cohort of 
recruitment, with a similar number of participants per 
group. A variety of common RT exercises and deriva-
tives were utilised across all studies such as squats, leg 
press, lunges, knee flexion and extension.

Only one study provided a power calculation, Tigge-
mann, Dias [78]. Four studies (40%) [27, 73, 75, 76] 
recorded their method of randomisation, all using a 

computerised random number generator. Only two 
studies (20%) included information regarding safety 
of RT or injuries/illnesses sustained during the inter-
vention; Gray, Powers [27] reported no injuries and 
suggested MIRT as safe and effective, and Miszko, 
Cress [72] reported a 22% (11/50 participants) drop-
out through injuries and/or personal medical rea-
sons. Three studies (30%) [27, 78, 79] failed to include 
dropouts, whilst one paper (10%), Drey, Zech [73], 
cited power training appeared more likely to influence 
dropout than T-STR. No participants were blinded to 
the intervention hypothesis, and no sham exercises 
or groups were implemented. No no-exercise control 
groups were included within this systematic review or 
meta-analysis.

Records identified from*:

Databases:
Web of Science: n = 710
Cochrane: n = 19
Scopus: n = 445
EBSCO:   n = 263
ClinicalTrial.gov: n = 15
PubMed: n = 7

Records removed before screening:

Duplicate records removed (n = 342)
Records marked as ineligible by automation tools (n = 0)
Records removed for other reasons (n = 0)

Records screened:

(n = 1,102)

Records excluded**:

(n = 886) 

Wrong intervention (n = 350) 
Wrong population (n = 270) 
Wrong study design (n = 192) 
Wrong outcome (n = 92)

Records sought for retrieval:

(n = 215) 

Records not available: 

(n = 2) 

Records assessed for eligibility:

(n = 213) 

Records excluded (n = 201):

Wrong intervention (n = 70) 
Wrong study design (n = 43) 
Wrong outcome (n = 41) 
Wrong population (n = 19) 
Wrong control group (n = 24)
Results merged young & old participants (n = 3)
Inappropriate washout period (n = 1)

Studies included in review:

(n = 12) 

Identification of studies via databases and registers
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Fig. 1 PRISMA flow diagram
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Risk of bias and methodological quality
The Physiotherapy Evidence Database (PEDro) scale [80], 
ranging from zero (‘poor’) to ten (‘excellent’), was used 
to assess risk of bias and methodological quality of stud-
ies included in quantitative synthesis [70]. PEDro scores 
were directly sourced from the PEDro database (https:// 
search. pedro. org. au/ search), revealing a mean score of 
4.6 ± 1.1 points. All included studies adhered to ran-
domised groups. All eligible studies and their respective 
PEDro scored can be found below (Table 2):

As some studies reported age as a range, and not 
mean ± SD, it was not possible to calculate the over-
all mean age range for all studies included within this 
systematic review, only an age range between 60 and 
90 years.

Training durations ranged from 6 to 48 weeks. Training 
frequency ranged from 2 to 6 days per week. Exercise sets 
were consistent throughout, with 2–3 sets for RT pro-
grammes and repetitions per exercise ranging from 8 to 
14. Rest intervals ranged from 60 to 300 s. Exercise inten-
sity ranged from 40 to 90% of one-repetition maximum 
(1RM).

With Henwood and Taaffe [71] comparing four dif-
ferent interventions; high-velocity, low-velocity, high-
velocity with gymnastics, and no training; only data from 
high-velocity and low-velocity training groups were 
extracted for comparison.

A breakdown of study characteristics can be found in 
the Additional file  1 alongside this manuscript, titled 
Additional file 1: Appendix A.

Sensitivity analysis
The removal of eight low-quality studies (PEDro score of 
0–4) resulted in no change for the overall effect of MIRT 

on FC-related outcomes (p = 0.16, SMD: -0.83 [95%CI 
-2.00, 0.34],  I2 = 92%), however, the effect of MIRT on 
strength-related outcomes would be deemed signifi-
cant (p = 0.006, SMD: − 1.39 [95% CI − 2.38, − 0.41], 
 I2 = 88%). Sub-group analysis was not possible for 400 m 
walk or SPPB, due to the lack of studies in the revised 
pool (one).

For outcome measures relevant to this review, clinically 
meaningful improvements are estimated as being mini-
mal at 0.3–0.8 points of change and substantial at 0.8–1.5 
points of change for SPPB scores, and 20–30 s reduction 
in time for the 400 m walk test [84].

Functional capacity outcomes
See Fig. 2.

Strength outcomes
See Fig. 3.

SPPB scores No statistical significance was reported 
with the two studies (68 participants) for changes in 
SPPB scores (p = 0.58, SMD: 0.39 [95% CI − 0.99, 1.76], 
 I2 = 84%). Substantial clinical improvements were 
observed in favour of MIRT, with change scores reported 
as 0.9 and 0.8.

Leg press 1RM No statistical significance was found 
with the nine studies (237 participants) for changes in leg 
press 1RM (p = 0.74, SMD: − 0.13 [95% CI − 0.89, 0.64], 
 I2 = 87%).

Knee extension 1RM Statistical significance was found 
to favour MIRT in the seven studies (175 participants) 
for improvements in knee extension 1RM, (p = 0.01, 
SMD: − 1.21 [95% CI − 2.17, − 0.25]),  I2 = 87%).

30 s sit‑to‑stand (STS) Analysis of 30  s STS initially 
included five studies, of which only three (amounting to 
80 participants) were able to be included due to two stud-
ies providing no change scores. Statistical significance 
was found for improvements in 30 s sit-to-stand scores, 
favouring T-STR (p = 0.04, SMD: 3.10 [95%CI 0.07, 6.14], 
 I2 = 94%).

Timed‑up‑and‑go (TUG) Analysis of TUG included 
six studies, of which only four studies (99 participants) 
were able to be included due to two studies providing 
no change scores. Statistical significance was found for 
improvements in TUG scores, favouring MIRT (p = 0.001, 
SMD: − 1.74 [95% CI − 2.79, − 0.69],  I2 = 77%).

Table 2 PEDro scores of studies included in data synthesis

Reference PEDro score Score obtained 
from pedro 
database?

Richardson, Duncan [81] 7/10 Y

Coelho-Junior and Uchida [76] 6/10 Y

Drey, Zech [73] 6/10 Y

Henwood and Taaffe [71] 5/10 Y

Bottaro, Machado [82] 4/10 Y

Henwood, Riek [74] 4/10 Y

Lopes, Pereira [77] 4/10 Y

Lopes, Pereira [83] 4/10 Y

Marsh, Miller [75] 4/10 Y

Ramirez-Campillo, Castillo [79] 4/10 Y

Tiggemann, Dias [78] 4/10 Y

Miszko, Cress [72] 3/10 Y

https://search.pedro.org.au/search
https://search.pedro.org.au/search
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400m walk There was no statistical significance with 
the two studies amounting (79 participants) investigat-
ing 400  m walking scores (p = 0.19, SMD: − 20.84 [95% 
CI − 52.29, 10.60]),  I2 = 98%). MIRT fell short of clinically 
meaningful difference by 0.6 s, with T-STR being over 10 s 
adrift.

6‑minute walk test (6MWT) Statistical significance was 
severely lacking with the four studies (87 participants) 
for improvements in 6MWT scores (p = 0.96, SMD: 0.06 
[95% CI − 2.37, 2.50]),  I2 = 95%).

Discussion
This systematic review and meta-analysis examined the 
effect of maximal-intent RT vs traditional RT on func-
tional capacity and strength outcomes. These findings 
suggest no statistically significant differences between 
different training on aggregated functional capacity or 
strength outcomes. However, subgroup analysis dem-
onstrated statistically significant improvements on 

timed-up-and-go, 30  s sit-to-stand scores, and knee 
extension 1RM, favouring MIRT. This systematic review 
and meta-analysis are a first of its kind to the author(s) 
knowledge, encompassing 12 studies. Whilst some stud-
ies provide statistical significance, others show low qual-
ity (“low” rating via PEDro score) and high heterogeneity 
 (I2 of 95% for FC and 85% for strength) within additional 
subgroup analysis, meaning this review cannot draw 
meaningful conclusions on the effects of MIRT on FC 
in older adults. Research in this area requires further 
investigation.

Sensitivity analysis would suggest that no study 
included within this review overestimated the effect of 
MIRT on FC, however, statistically significant changes 
were observed when on strength outcomes when lower 
quality studies were removed, suggesting lower quality 
studies overestimate the effect of MIRT on strength in 
community-dwelling older adults.

Additionally, a meta-analysis was performed and 
included on outcomes with only one or two articles due 

Fig. 2 Standardised mean difference (95% CI) from baseline of the effect of maximal-intent training on functional capacity outcomes
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to the fact that FC outcomes are a combination of multi-
ple factors/tests, and therefore every included paper has 
significance in the overall outcome of FC in community-
dwelling older adults.

Impact of MIRT on functional capacity
Although ACSM [29], PAGAC [30], NSCA [7], The 
World Confederation for Physical Therapy [8], and The 
Journal of Geriatric Nursing [85] all support the use of 
MIRT for older adults, this investigation only found sta-
tistically significant improvements in timed-up-and-go, 
30  s sit-to-stand scores, and knee extension 1RM. No 
significance was found in SPPB, 6MWT, 400 m walk or 
leg press 1RM. Clinically meaningful improvements were 
observed in SPPB scores [84].

During screening, it was noted when standardised tests 
were selected such as the SPPB or walking tests, research-
ers were modifying these standardised tests, thus quash-
ing any form of comparison. This must be addressed in 
future research if we are to gain further insight into the 
most effective methods of collecting and collaborating 
data on improving functional capacity in older adults. 
An agreed upon, and regularly undertaken, Functional 
capacity testing programme is needed to aid compari-
sons between interventions. The findings of some of the 
subgroup analyses such as 6MWT, 400  m walk, TUG, 
and STS should be considered with caution due to the 
small-to-moderate effect sizes and low participant num-
bers leading to potential underpowered studies skewing 

results. Low number of studies eligible for data synthesis, 
including low-to-moderate quality and bias assessment 
by means of PEDro scores are also reasons to interpret 
this meta-analysis with care. There also needs to be more 
consistency and symmetry in the designing of studies, for 
example, many studies conducted velocity-based inter-
ventions but did not standardise the exercises conducted 
within each group, leading to a differing specificity and 
training-effect between groups. Titles of research also 
need considerations, such as the use of velocity-based 
that were not using velocity to modify intra-sets or -rep-
etitions, thus were not velocity-based and would be bet-
ter categorised as velocity-monitored.

From papers captured within this review, there are sug-
gestions of minimum dose of interventions being inad-
equate, with Bottaro, Machado [82] citing older adults 
require a higher dose of weekly RT, suggesting a mini-
mum of three training sessions per week for 16 weeks as 
a maintenance dose for neuromuscular adaptation, and 
only one day per week for young adults.

Time-under-tension (TUT), which would commonly 
be used in a T-STR block, improved muscle strength 
specifically in older adults (p < 0.01), with larger effects 
being seen for those who were under tension the long-
est (maximum 6 s) [86]. There was also a relatively novel 
finding within Borde, Hortobagyi [86]’s research, in that, 
although they advocated for one less weekly training ses-
sions per week than Bottaro, Machado [82], they found 
that a rest of 4  s per repetition was found to be most 

Fig. 3 Standardised mean difference (95% CI) from baseline of the effect of maximal-intent training on strength outcomes
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successful for improvements in RT-related outcomes in 
older adults. Giving a 4 s rest per repetition also heavily 
favours MIRT, as this recovery between repetitions may 
allow for greater amount of high-velocity repetitions, 
therefore improving the number of repetitions to allow 
for neuromuscular adaptations [82], whilst also obtain-
ing the benefits of MIRT [7, 8, 85]. Rest per repetition 
was not recorded in any of the studies in this review, thus 
highlighting a key area for further investigation.

Functional capacity is a complex outcome measure with 
many contributing factors, such as both lower and upper 
body strength, mobility, and diet. Functional capacity is 
also subject to psychological and psychosocial considera-
tions. More robust RCT’s are necessary to enhance future 
meta-analyses, investigating the magnitude and direction 
of effect across different dosages, and velocities, of exer-
cise on FC outcomes in older adults. The outcome meas-
ures in most of the studies in the review are relatively 
subjective in nature and only tell us about one global 
functional outcome (i.e., walking speed). Future research 
could use wearable technology (i.e., wearable sensors) to 
assess subtle changes in movement for a number of out-
come measures including 6MWT, TUG, Sit-to-stand, 
and 400  m walking. Allowing for more robust outcome 
measures to be captured and potentially more informa-
tion regarding FC.

Outcome measures
Practitioners also need to ensure they are using the 
abbreviation 6MWT appropriately, as there are many 
studies confusing 6MWT with both 6-min walking test, 
and 6-m walking test, again, a standardised set of these 
practises and abbreviations would be of benefit to the sci-
entific and wider community.

Plausible mechanisms
Whilst the actual mechanisms responsible for improve-
ments are yet to be distinguished, most aspects of FC 
revolve around knee and hip dominant movement pat-
terns, such as the ability to stand up from a chair, loco-
motion, and stair climbing, all preferably pain-free and 
without superfluous fatigue [87]. It is therefore expected 
that exercises such as the leg press and knee extension 
(of which at least one was present in all interventions) 
all improved aspects of FC, theorised as these exercises 
closely mimic the movement patterns of FC outcomes 
such as STS and TUG. These theories were observed 
in the results of this systematic review, and likewise as 
observed by McKinnon, Connelly [5] who found as older 
adults age, their reliance shifts from ankle-, to knee- and 
hip-dominance during locomotion. As previously noted, 
it is suggested that greater velocities produce greater neu-
ral adaptations [61], therefore MIRT could illicit similar 

adaptations due to participants being asked to move as 
fast as possible, resulting in surpassing of thresholds 
for type II fibres that may elicit neural adaptations [88]. 
MIRT may also improve firing frequencies within the 
muscle, and since rate of force development is associated 
with higher firing frequencies and increase in muscle ten-
sion, this may be why we see results suggesting MIRT 
improving FC such STS, TUG, and leg press, as all are 
movement patterns that require high levels of force and 
require high levels of action potential to execute [5, 48]). 
There is also speculation that the greater forces thought 
to be sustained within the musculotendinous unit due to 
the higher movement speed than that of T-STR and TUT, 
and lack of central circulatory stress observed through 
higher volume training, may be resulting in peripheral 
muscle adaptation [89].

Clinical interpretations
No statistically significant improvements were found for 
SPPB, 6MWT, 400  m walk or leg press 1RM. However, 
improvements were found in favour of MIRT for knee 
extension 1RM and TUG, as well as 30 s sit-to-stand in 
favour of T-STR; These findings align with research by 
Bean, Kiely [90], who’s investigation highlighted signifi-
cant associations between improvements in leg power 
(regardless of one’s strength) and clinically meaningful 
improvements in FC in older adults. Highlighting the 
need for further investigation as to whether the associa-
tions between leg power are, for example, ankle, knee, or 
hip dominant, which could lead to significantly isolated 
and specific exercise regimes recommendations for older 
adults looking to improve their FC.

Study limitations
Many additional studies were eligible for this meta-analy-
sis based on the inclusion criteria, but workloads between 
groups were not comparable, for example groups lifting a 
total of 522 kg versus 1500 kg (across all sets and repeti-
tions). This must be addressed in future research. Exer-
cise groups must begin to be matched on volume and 
intensity to allow for comparisons of intervention. The 
average of the included studies was 4.6/10 (Table 2). All 
included studies were conducted over differing periods of 
time, utilising differing training prescriptions.

Conclusion
In conclusion, this systematic review highlights the lack 
of sufficient and quality evidence for maximal-versus 
submaximal-intent resistance training on functional 
capacity and strength in community-dwelling older 
adults. No statistical significance was present in com-
bined FC outcomes (p = 0.17), but MIRT observed near-
significance for improvements in strength (p = 0.06). 
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Clinically meaningful improvements were observed in 
SPPB scores, showing potential for MIRT over T-STR 
resistance training recommendations if further research 
continues to support these findings. Further investigation 
is necessary to observe whether similar clinically mean-
ingful improvements are replicated, in hopes of provid-
ing future guidelines for MIRT in older adults for both 
physiological and neurological adaptations over T-STR; 
Rest-between-repetitions has also been highlighted as 
significant interest as a direction for future investiga-
tions. Due to the less time-consuming and lesser short-
term and long-term fatiguing nature of MIRT over 
T-STR, MIRT has a greater chance of being adopted by 
the community-dwelling older adult community.
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