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Abstract

of IS elements across bacterial genomes.

Mobile genetic elements (MGEs) impact the evolution and stability of their host genomes. Insertion sequence (IS)
elements are the most common MGEs in bacterial genomes and play a crucial role in mediating large-scale variations
in bacterial genomes. It is understood that IS elements and MGEs in general coexist in a dynamical equilibrium with
their respective hosts. Current studies indicate that the spontaneous movement of IS elements does not follow a
constant rate in different bacterial genomes. However, due to the paucity and sparsity of the data, these observations
are yet to be conclusive. In this paper, we conducted a comparative analysis of the IS-mediated genome structural
variations in ten mutation accumulation (MA) experiments across eight strains of five bacterial species containing IS
elements, including four strains of the E. coli. We used GRASPER algorithm, a de novo structural variation (SV)
identification algorithm designed to detect SVs involving repetitive sequences in the genome. We observed highly
diverse rates of IS insertions and IS-mediated recombinations across different bacterial species as well as across
different strains of the same bacterial species. We also observed different rates of the elements from the same IS family
in different bacterial genomes, suggesting that the distinction in rates might not be due to the different composition
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Main text

The intricacies of mobile genetic elements (MGEs) in
their host genomes have challenged if not inspired scien-
tists to understand the evolution and stability of genomes.
MGEs can replicate from one location to another within a
genome or between genomes (transposition) [1, 2], which
is a major cause of large-scale genome reorganization in
both eukaryotes and prokaryotes [1]. MGEs and their
hosts typically have opposing interests (i.e., selection on
MGEs favors elements with greater proliferative ability,
whereas selection on the host favors less transposition
meaning host selection acts on maintaining a coherent
and functional genome and transposition would affect
this), which define the co-evolution between both players
and ultimately shape the architecture of host genomes [3].
Though generally deleterious, MGEs can ultimately con-
tribute to the innovation of biological functions in the host
genomes [4—10]. While the impact of MGEs on higher
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eukaryotic genomes is being increasingly recognized (e.g.,
the connection between MGEs and human diseases [11]),
the studies of MGEs in bacteria and other lower organisms
are relatively limited [2, 12, 13].

Insertion sequence (IS) elements are the smallest but
a common class of MGEs in bacterial genomes. IS ele-
ments play a crucial role in mediating large DNA sequence
variation in bacterial genome evolution and mutagenicity
[12, 14-16]. Their mobility in the genome can lead to
detrimental, advantageous or neutral effects on the bacte-
ria fitness [17—20]. We previously studied the IS-mediated
genome structural variations (SVs) in the selection-free
conditions using whole genome re-sequencing data from
mutation accumulation (MA) lines of the Escherichia coli
K12 MG1655 strain [21]. We observed that IS insertions
and IS-induced recombinations constitute most of the
spontaneous genome SVs events. We reported on average,
3.5x10~* IS insertions and 4.5 x 10~° IS-mediated recom-
binations occur spontaneously per genome per generation
in the E. coli K12 MG1655 genome, and these rates remain
constant across the wild-type and 12 DNA repair deficient
mutants [21].
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An immediate question following up this study is if and
how these rates change across different bacterial genomes
(different species or different strains of the same species).
Shewaramani and colleagues [22] investigated MA lines
of E. coli REL4536 strain grown aerobically and anaer-
obically, respectively, and reported that the spontaneous
rate of IS insertions is 2.1 x 10~ per genome per gener-
ation when it is grown in an aerobic environment, and is
elevated to 6.4 x 10~* when it is grown in an anaerobic
(oxidative stress) environment, both comparable (within
two-fold of difference) with the IS insertions rate reported
in E. coli K12 MG1655 genome [21, 22]. Moreover, our
analyses on the IS-mediated structural variations in the
MA lines of Deinococcus radiodurans BAA-816 wild type
strain and D. radiodurans R1 (ATCC13949) DNA repair
deficient mutant (mutL™) revealed much higher rates,
2.5 x 1073 and 4.8 x 107* IS insertions per genome
per generation, respectively [23]. Although these observa-
tions may suggest that the spontaneous movement of IS
elements does not follow a conserved rate in different bac-
terial genomes, the data are too sparse to be conclusive.

In this study, we conducted a comparative analysis of
IS-mediated genome structural variations (SVs) in ten
previously published mutation accumulation (MA) exper-
iments [22-27] conducted on eight strains from five
bacterial species (Table 1, Additional file 1: Table ST1),
which span both gram-negative (i.e., E. coli, Burkholderia
cenocepacia and Vibrio cholerae) and gram-positive bac-
teria (i.e., Mycobacterium smegmatis and D. radiodurans).
Furthermore, the data include four different and divergent
strains of E. coli (see Additional file 1: Figure SF1): ED]a,
IAI1, REL4536 in addition to the E. coli K12 MG1655
analyzed previously by us [21]. We used GRASPER [28],
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a de novo structural variation identification algorithm, to
identify SVs in each MA experiment, and then identified
IS-mediated SVs among them. Note that we conducted
the re-analyses of the published datasets using GRASPER
so that the results could be directly comparable.

Our findings indicate that there is a divergence in the
rates of IS-mediated insertions and recombinations, both
within and among bacterial species (Table 1 and Fig. 1).
The insertion rate of IS elements in M. smegmatis MC2
155 is approximately 4.4 x 10~* IS insertions per genome
per generation, a rate comparable to the observed rate
in E. coli K12 MG1655 [21]. However, we observed a
lower IS insertion rate of 1.7 x 107> IS insertions per
genome per generation in V. cholerae 2740-80 MMR defi-
cient strain and the rate of 2.1 x 10~* IS insertions per
genome per generation in B. cenocepacia HI12424, respec-
tively. We note the observed discrepancy in IS insertion
rates is not due to the variation of genome sizes. For
example, the D. radiodurans BAA-816 genome is slightly
shorter than the E. coli K12 MG1655 genome (3.8 Mbps
vs. 4.6 Mbps), whereas the insertion rate of IS elements
in D. radiodurans BAA-816 [23] is about 7 times higher
than that in E. coli K12 MG1655. More interestingly, the
insertion rates of IS elements vary significantly among
different strains of E. coli (Table 1 and Fig. 1). Specifi-
cally, we did not observe any IS insertions in E. coli IAIl,
while only seven were observed in E. coli ED1a (yielding
an IS insertion rate of 2.3 x 10> insertions per genome
per generation; see Table 1). Notably, in some cases, we
identified more IS-mediated SVs than the original studies,
resulting in slightly higher insertion rates of IS elements.
For example, we identified 58 and 166 IS insertions in MA
lines of E. coli REL4536 grown in aerobic and anaerobic

Table 1 IS-mediated structural variation rates across bacterial genomes

Bacteria strain Genome size Number of  Generations Insertions Deletions Reference
[Mbps] MA lines per MAline  ISrelated Rate [x10™%] IS-related Rate [x107°]
B. cenocepacia HI2424 7.70 50 5500 57 2.10 This study
V. cholerae 2740-80 MMR mut 4.09 48 1254 1 0.02 This study
M. smegmatis MC2 155 6.99 49 4900 106 4.40 202 84.0 This study
D. radiodurans BAA-816 3.8 43 5961 640 25.0 [23]
D. radiodurans R1 (ATCC13949) mutL- 38 19 993 9 480 23]
E. coli K12 MG1655 464 520 4186 758 350 98 4.50 21]
E. coli REL4536 (Aerobic) 463 24 4500 58 540 78 720 This study
E. coli REL4536 (Anaerobic) 463 24 3456 166 200 78 94.0 This study
E.coliED1a 5.21 50 6114 7 0.23 11 3.60 This study
E. colilAI 4.7 49 6342 - - 2 0.64 This study

In previous studies, the IS insertion rate was reported to be approximately 2.5 x 1073 insertions per genome per generation in the wild type of D. radiodurans BAA-816,
which is much higher than the rate of 4.8 x 10~ IS insertions per genome per generation observed in D. radiodurans R1 (ATCC13949) mismatch repair (MMR)-deficient strain
[23], and the rate of 3.5 x 10~ IS insertions per genome per generation reported in £. coli K12 MG1655 [21]. Our results indicate that the insertion and recombination rates of
IS elements vary between different bacterial genomes and even among strains of the same species
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Fig. 1 IS insertion rates vary across different bacterial genomes. IS insertion rates of various bacterial genomes are compared to the IS insertion rates
in the wild-type and 12 DNA repair deficient mutants of E. coli K12 MG1655 reported previously [21]. This figure plotted the number of observed IS
insertions (y-axis) versus the total number of generations (x-axis) in a group of MA lines originating from the same founder strain in a single
experiment. While all the MA experiments on £. coli K12 MG1655 exhibited a linear relationship between the number of insertions and the number
of generations, suggesting a constant IS insertion rate per generation across these lines, only in some of the other E. coli strains and bacterial species
studied here, similar IS insertion rates were observed. In contrast, much higher rates were observed in wild-type D. radiodurans BAA-816 and E. coli
REL4536 grown in the anaerobical condition, whereas much lower rates are observed in E. coli ED1a and IAI1 strains.For the linear regression, the
dotted line shows the 95% confidence interval boundaries

conditions, respectively, which are higher than the num-
bers reported in the original publication (22 and 53 IS
insertion events, respectively) [22].

The activities of IS elements in different IS families are
not the same in bacterial genomes. The elements in some
IS families are active in some bacterial genomes but not
in others. 1S2, 1S3 and IS150, which belong to the IS3
family, along with IS1 and IS5, are the major constant pas-
sengers in E. coli strains, and they remain active in these
genomes. The activity of IS110 elements are only observed
in M. smegmatis MC2 155 and in B. cenocepacia H12424
genomes. The IS elements in some families were observed
to be active only in specific genomes. For example, 1S1096,
1S6120 and IS1549 elements are involved in genome struc-
tural variations in M. smegmatis MC2 155, whereas the
activities of IS256, 1S66 and 1S481 elements were observed
only in B. cenocepacia HI12424 genome. Among the E. coli
strains, the activities of IS elements are also divergent: the
activity of IS1 element was the only observed in E. coli
ED1a, while the activity of IS2 elements was only observed
in E. coli K12 MG1655. Although the elements of some
common families (e.g., IS3) are detected in all bacterial

genomes (see Additional file 1: Table ST2), there is no IS
element/family that was found to be active across all these
bacterial genomes (see Additional file 1: Table ST3).

We observed all IS-mediated deletions are due to the
homologous recombination between two IS elements in
bacterial genomes, consistent with our previous study
[21]. Similarly, the rate of IS-mediated deletions varies
within and across bacterial species as shown in Table 1.

In summary, the results reported here substantiate that
IS-mediated SVs vary among different bacterial species
and different strains of the same bacterial species voire
within IS families. The cause and impact of this diver-
gence in IS activity remains to be explored. Nevertheless,
these observations suggest that the activity of IS elements
may not be determined by the mere IS composition within
host genome, but rather from an evolutionary mecha-
nism orchestrated by both IS elements and their hosts.
The distribution and composition of IS elements are quite
sparse across bacterial genomes (see Additional file 1:
Table ST2). The quest for plausible explanations of this
observation has led to several different but not mutually
exclusive views of IS maintenance and proliferation within
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bacterial genomes. Initially, IS elements were considered
as DNA parasites, which do not contribute to host fit-
ness, maintained by their ability of self-replication and
mainly spread through horizontal gene transfer [29, 30].
However, there are ample evidence that this is not the
proper and well-suited view of the state of IS elements in
prokaryotes [14]. In fact, some studies argue that IS ele-
ments are maintained by neutral selection where both IS
elements and their host coexist in a dynamic equilibrium
that defines the co-evolution and shapes the architecture
of host genomes [3]. Other studies recognize IS elements
as sources of genetic diversity and thus contribute to their
host fitness by mediating beneficial mutations through
natural selection [17-20]. However, a recent study indi-
cated that transposition bursts do not lead to IS per-
sistence in bacterial genomes despite offering occasional
beneficial and adaptive mutations to the host genome in
the short term [31]. Obviously, more studies are needed to
provide evidence supporting the assertions about the state
of IS elements in bacterial genomes. Nevertheless, our
observations suggest that the forces driving the activity of
IS elements are regulated by both IS elements and their
hosts, and thus, the mechanism of IS regulation is not
only element-specific but also related to the host bacterial
species.

Additional file

Additional file 1: Supplementary materials. (°PDF 129 kb)
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