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microbiota, and disruptions in the cutaneous and gas-
trointestinal barriers; however, the prevalence of these 
organisms varies considerably depending on geographi-
cal location [2]. This disease presents as an entire spec-
trum of diseases, ranging from fungemia to deep-seated 
candidiasis and to septic shock with multiorgan failure, 
with an associated mortality rate of > 70% [2, 3]. Clini-
cally, the treatment of systemic fungal infections often 
requires large doses and long courses of antifungal drug 
treatments; nonetheless, the mortality rate of severe 
patients remains as high as 40–50% [4], which makes 
the treatment of invasive fungal infections a major clini-
cal challenge. C. albicans, which colonizes the gut, is 
the most dominant pathogen of invasive candidiasis. In 

Background
Invasive candidiasis is a common fungal infection that 
majorly affects immunocompromised individuals and 
it is an important cause of death in severely ill patients 
[1]. It can be caused by several Candida spp., which 
are common commensal organisms of the skin and gut 
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Abstract
Background  The gut microbiota plays an important role in human health, as it can affect host immunity and 
susceptibility to infectious diseases. Invasive intestinal candidiasis is strongly associated with gut microbiota 
homeostasis. However, the nature of the interaction between Candida albicans and gut bacteria remains unclear.

Objective  This review aimed to determine the nature of interaction and the effects of gut bacteria on C. albicans so 
as to comprehend an approach to reducing intestinal invasive infection by C. albicans.

Methods  This review examined 11 common gut bacteria’s interactions with C. albicans, including Escherichia coli, 
Pseudomonas aeruginosa, Acinetobacter baumannii, Enterococcus faecalis, Staphylococcus aureus, Salmonella spp., 
Helicobacter pylori, Lactobacillus spp., Bacteroides spp., Clostridium difficile, and Streptococcus spp.

Results  Most of the studied bacteria demonstrated both synergistic and antagonistic effects with C. albicans, and just 
a few bacteria such as P. aeruginosa, Salmonella spp., and Lactobacillus spp. demonstrated only antagonism against C. 
albicans.

Conclusions  Based on the nature of interactions reported so far by the literature between gut bacteria and C. 
albicans, it is expected to provide new ideas for the prevention and treatment of invasive intestinal candidiasis.
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a disordered system of the intestinal microenvironment 
and microecology, C. albicans takes the opportunity to 
multiply excessively, the transition from the yeast phase 
to the pathogenic mycelial phase, express adhesion mol-
ecules, release C. albicans toxin, destroy the gut muco-
sal barrier, and invade the blood, resulting in sepsis and 
multiple organ insufficiency, both of which are fatal [5]. 
Considering that the gut microbiota is the most impor-
tant line of defense to maintain the intestinal epithelial 
barrier and block the invasion of intestinal C. albicans 
[6], understanding the multiple interactions occurring 
between the gut bacteria and C. albicans is a very prom-
ising research field. In recent years, an increasing number 
of studies on the human gut microbiota have presented 
several discoveries, which continue to constantly refresh 
our understanding of this field. Several past reviews 
have attempted to summarize the nature of interactions 
between C. albicans and gut bacteria as either antago-
nistic or synergistic; however, several of the reported 
interactions are not a single pattern, rather they are both 
synergistic and antagonistic. Therefore, we have provided 
a comprehensive summary of the interactions between C. 
albicans and some valuable gut bacteria in an attempt to 
achieve better insight into the current state of research 
in this field as well as to develop new ideas for designing 
strategies toward the prevention and treatment of inva-
sive intestinal candidiasis.

Main text

The adaptations of C. albicans in the gut
The rapid adaptation of C. albicans to the gut microenvi-
ronment is closely associated with its colonization abil-
ity. The formation of hyphae is directly associated with 
the virulence of C. albicans, which represents a greater 
destructive power; hence, it is difficult for C. albicans in 
its hyphal form to establish a good intestinal symbiotic 
homeostasis [7–11]. Thus, the filamentation of C. albi-
cans is inhibited to colonize the gut. In this process, Efg1 
plays an important role, although it is affected by hypoxia 
and the host’s immune status [11, 12]. In addition, C. 
albicans can transform itself into an opaque (a/α), grey, 
and gastrointestinally induced transition (GUT) cell to 
adapt to the changing gastrointestinal environment [8, 
13, 14].

In addition to changing their phenotypes for estab-
lishing intestinal symbiotic homeostasis, C. albicans has 
to adapt to other gut conditions, including the carbon 
source problem.

Glucose is the preferred carbon source for C. albicans, 
but the amount of glucose varies in different parts of the 
gut. For example, the glucose level in the large intes-
tine, especially the colon, is low as most of the glucose is 
absorbed by the small intestine before it enters the large 

intestine. Thus, C. albicans is often forced to use alterna-
tive carbon sources that allow it to survive at the ecologi-
cal sites with or without glucose [15–19]. Moreover, C. 
albicans can sense amino acids through the Ssy1p-Ptr3p-
Ssy5p (SPS) sensor and hydrolyze activated transcription 
factors Stp1 and Stp2 to utilize amino acids as a carbon 
source [20–23]. Rtg3 and Sfp1 can help C. albicans to 
adjust the utilization of lactic acid and glucose according 
to environmental changes [24]. Fatty acids can be used 
as a substitute carbon source for C. albicans through 
β-oxidation [25]. Moreover, because gluconeogenic and 
glyoxylate cycle enzymes are unaffected by ubiquitin-
mediated decomposition of metabolites, both the gly-
colysis and gluconeogenesis pathways remain active in C. 
albicans, such that C. albicans can utilize multiple carbon 
sources simultaneously [16, 26–30]. This flexible carbon-
assimilation strategy of C. albicans enhances its ability to 
colonize and infect mammalian hosts [27]..

While living in the gut, C. albicans often face the issue 
of scarce resources or excessive ingestion. To better 
absorb iron from the environment, C. albicans has devel-
oped a safe mechanism for iron uptake and utilization 
whereby it absorbs iron using several different strategies, 
such as acquiring RBC-derived iron and inducing the 
expression of high-affinity iron permease gene CaFTR1 
and ferrichrome-type siderophores [31–34]. Meanwhile, 
to avoid toxicity caused by excessive iron, C. albicans 
possesses the transcription factor Sfu1 that inhibits iron 
uptake, various transcription factors that control iron 
permeability (such as plasma membrane-related Ftr1 and 
Ftr2 and vacuole-related Fth1 and Fth2) [34–36], and a 
variety of iron oxidases [36–39] .

Copper uptake is also a crucial factor. The key aspect 
in the copper uptake by C. albicans is ScCc2, a copper-
transporting P-type ATPase that has an important role 
in iron transport [40]. It can express transcription fac-
tors Mac1 and Ctr1, which promote copper absorption, 
and can also avoid toxic effects caused by excessive cop-
per accumulation through its unique plasma membrane 
structure and the activation of the copper resistance 
assay gene CRD1 [41–45].

In addition to iron and copper, zinc is essential for the 
growth and biofilm formation of C. albicans. To obtain 
zinc from the host, C. albicans possess a complete set of 
regulatory modes. Past studies have demonstrated that 
under the mediation of Zrt1 and Zrt2, C. albicans can 
obtain zinc from the host environment with the help 
of pH-regulated antigen 1 (Pra1), a secreted zinc scav-
enger (“zincophore”), and a secreted aspartic protease 
Sap6. The ZnT-type transporter Zrc1 then stores zinc in 
the vacuole [46–49]. Zrt2 also ensures zinc uptake in an 
acidic environment, and Zap1 regulates the zinc homeo-
stasis in C. albicans. [47, 49].
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In addition to the problem of carbon sources and trace 
elements, C. albicans faces pressure from the guts’ physi-
cal and chemical environment, but C. albicans can resist 
them through specific signaling pathways [50, 51]. For 
example, resistance to the osmotic pressure and oxida-
tive stress can be promoted through the Hog1-mediated 
MAP kinase pathway [52–54]; the gene CAP1, which 
codes for a bZip transcription factor of the AP-1 family, 
drives transcriptional responses to oxidative stress [55–
57]; Mkc1- and Cek1-mediated MAP kinase pathways 
promote C. albicans resistance to cell wall stress [51, 58, 
59]; transcription factors Cta4 and Hsf1 respond to the 
intestinal nitrosation stress and heat shock [60–62]. In 
addition, C. albicans can produce prostaglandin PGE2 
from host-derived arachidonic acid to potentiate fun-
gal fitness by acting on the fungi themselves and/or host 
tissue phagocytes to improve the ability of C. albicans 
to evade killing by phagocytes, thereby creating more 
favorable conditions for colonization [63]. These stress 
responses are essential for the survival of C. albicans in 
the gut, and, if the key stress responses get inactivated, 
colonization and virulence of C. albicans are significantly 
reduced.

While C. albicans struggles to adapt to the gut environ-
ment, these adaptability changes also inevitably reshape 
its original virulence, invasiveness, ability to defend itself 
against the host’s immune system, and susceptibility to 
antifungal drugs. The colonization ability of this fungal 
strain is driven by a complex regulatory network that 
connects metabolism, morphogenesis, stress adaptation, 
and cell wall remodeling, thereby affecting its symbiotic 
and infection-causing ability [64]..

C. albicans and gut bacteria
C. albicans and Escherichia coli
E. coli is a gram-negative bacterium and one of the major 
bacterial species found in the gastrointestinal tract of 
warm-blooded animals. This species consists of harm-
less, symbiotic bacterial and different pathogenic vari-
ants that can cause intestinal or extra-intestinal diseases, 
including diarrhea, respiratory tract infections, wound 
infections, and septicemia, in humans and several ani-
mal hosts [65, 66]. E. coli and C. albicans often co-exist 
in human tissues and body fluids. Considering that they 
are common symbiotic bacteria found in the mammalian 
gut, their interaction deserves further investigation. Past 
studies have demonstrated that the interaction between 
E. coli and C. albicans is synergistic and that their com-
bination significantly increases the risk of mortality when 
compared to that of either of them individually [67, 68]. 
The specific mechanism underlying the increase in mor-
tality may be associated with the regulation of biofilm 
formation, biofilm dispersion, hyphae growth, and anti-
fungal sensitivity of C. albicans by E. coli [67, 69]. Past 

reports have suggested that, after the formation of fun-
gal/bacterial mixed biofilm, the formation of C. albicans 
biofilm increased by 2.2 times [67, 69] and the spread of 
C. albicans increased by 2.7 times. Moreover, the sensi-
tivity of C. albicans to nystatin decreased, and the mini-
mum inhibitory concentration increased from 25 µg/mL 
to 50 µg/mL [70]. ( Fig. 1A).

However, studies on the influence of the supernatant of 
E. coli biofilm on the development of C. albicans biofilm 
demonstrated that E. coli biofilm secretions could regu-
late C. albicans hypha-specific genes (HSGs) expression 
and significantly impair its biofilm development. This 
secretion considerably restrained C. krusei, C. tropicalis, 
C. glabrata, and C. albicans biofilms at 24 h, and all Can-
dida spp. at 48 h [71]. (Fig. 1B) In addition, Cabral et al. 
reported that a soluble factor secreted by E. coli can kill 
C. albicans in a magnesium-dependent manner [72]..

C. albicans and Pseudomonas aeruginosa
P. aeruginosa, a common gram-negative bacterium, is an 
important pathogenic factor that causes serious infec-
tions in humans. Owing to its natural resistance to anti-
biotics, an infection caused by this pathogen can result in 
serious clinical complications [73]. Clinically, C. albicans 
and P. aeruginosa are frequently isolated from various 
sites of the body and body fluids simultaneously, includ-
ing the urine, venous ducts, the lungs of cystic fibrosis 
patients, and the gut [74]..

In patients with cystic fibrosis and ventilator-acquired 
pneumonia (VAP), the co-presence of P. aeruginosa and 
C. albicans is associated with a higher fatality rate [75, 
76]. Colonization at the respiratory tract by C. albicans 
increases patients’ risk to develop a P. aeruginosa VAP 
[75, 77, 78]. Antifungal therapy for patients with C. albi-
cans colonization in the tracheobronchus can reduce the 
risk of P. aeruginosa VAP or its colonization in the tra-
cheobronchus [79], which, in turn, proves that C. albi-
cans plays an important role in promoting P. aeruginosa 
infection. C. albicans has also been found to induce the 
growth of P. aeruginosa in the gut [80]..

Nevertheless, the two organisms have demonstrated 
obvious antagonism in a bi-species environment [81]. P. 
aeruginosa can produce a variety of phenazines that are 
harmful to C. albicans, such as pyocyanin (PYO) and 
5-methyl-phenazine-1-carboxylic acid (5MPCA) [82, 
83]. Past researchers used the analog PMS of 5MPCA to 
characterize the specific antifungal machinery of 5MPCA 
and found that phenazines could covalently bind soluble 
proteins in C. albicans biofilms in vivo. As a result, these 
soluble proteins of C. albicans were reduced by NADH 
and then spontaneously oxidized by oxygen to produce 
reactive oxygen species (ROS) [82]. Thus, the pathway of 
oxygen acquisition and respiration metabolism of C. albi-
cans biofilm were blocked. Hence, the hyphal formation, 
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intercellular adhesion, and biofilm development of C. 
albicans were inhibited [83]. In addition, cell–cell sig-
naling molecules such as 3-oxo-C12 homoserine lactone 
produced by P. aeruginosa can hinder the filamentation 
of C. albicans [84]..

Interestingly, ethanol produced by C. albicans induced 
by phenazines can promote P. aeruginosa to convert PCA 
into more phenazine final products such as PYO, phen-
azine-1-carboxamide, and 5MPCA. This positive feed-
back loop consisting of ethanol and phenazines drives 
a more P. aeruginosa-conducive interaction pattern 
between the two microbes [85]. However, for self-protec-
tion, C. albicans can reduce P. aeruginosa’ s virulence by 
inhibiting its release of pyochelin [86]. (Fig. 2).

C. albicans and Acinetobacter baumannii
A. baumannii is certainly a very dangerous germ that can 
cause hospital-acquired infections (HAI) in the current 
healthcare systems, often causing refractory periodonti-
tis, ventilator-associated infections and blood infections 
in critically ill patients. Owing to its multidrug-resistant 
nature, only rare antibiotics can cure infection caused 
by A. baumannii. Hence, the transmission of multidrug-
resistant A. baumannii is worrying [87–89]. The gut, 
which serves as the body’s main reservoir for A. bau-
mannii, may play an important role in the multidrug 
resistance of A. baumannii [90], which also arouses our 
curiosity about its interaction with C. albicans. Respira-
tory colonization of C. albicans has been reported to be 
an independent risk factor for A. baumannii VAP [91]. 

Fig. 1  The interaction between C. albicans and E. coli. (A) Mixed biofilms formed by C. albicans and E. coli are more beneficial for resistance to antibiotics. 
(B) The supernatant of E. coli biofilm can restrain C. albicans
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In a rat model of respiratory colonization of C. albi-
cans, researchers found that the colonization of C. albi-
cans made rats more prone to A. baumannii-associated 
pneumonia, with a higher CFU burden of A. baumannii 
and more severe lung damage [92]. The reason why C. 
albicans can make A. baumannii more likely to survive 
that, as a fungus, the ethanol produced by C. albicans 
can not only serve as a carbon source for A. baumannii 
but also upregulate the expression of 49 genes in A. bau-
mannii, including genes encoding efflux pumps, secre-
tory phospholipase C, osmozyme, and iron assimilation. 
In addition, ethanol can induce the high-affinity phos-
phate transport system of A. baumannii and help resist 

the toxic effects of salts [93, 94]. In addition, because of 
the significant structural homology between A. bauman-
nii outer membrane protein A (OmpA) and C. albicans 
hyphal wall protein Hyr1p, Hyr1p can be used as a recep-
tor for the binding of A. baumannii and C. albicans to 
form mixed-species biofilms [95]. ( Fig. 3A).

However, the interaction between C. albicans and 
A. baumannii is also paradoxical. It was found that the 
secretion of farnesol by C. albicans disrupts the mem-
brane integrity of A. baumannii, impairs its virulence 
characteristics, and alters its cell morphology. However, 
A. baumannii can use an efflux pump against farnesol, 
which may work as a defense mechanism [96]. (Fig. 3B) 

Fig. 2  The interaction between C. albicans and P. aeruginosa. P. aeruginosa can secrete phenazines such as 5MPCA and pyocyanin to block the pathway 
of oxygen acquisition and respiration metabolism of C. albicans. Ethanol produced by C. albicans induced by phenazines can promote P. aeruginosa to 
secrete more phenazines. But C. albicans can reduce P. aeruginosa’ s virulence by inhibiting its release of pyochelin
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In addition, A. baumannii can attenuate the virulence of 
C. albicans by inhibiting its filamentation process and 
attaching the outer membrane protein A (OmpA) to C. 
albicans hyphae in order to induce its apoptosis [97–99]. 
(Fig. 3C).

C. albicans and Enterococcus faecalis
E. faecalis is a gram-positive pathogen. It is ubiquitous 
and can survive in various natural environments, includ-
ing the human body. As an opportunistic pathogen, it 
colonizes the human gut surface, forms a biofilm, con-
tributes to severe hospital infections, and shows high 
resistance to several antibiotics [100, 101]. Past stud-
ies have reported that E. faecalis has a protective effect 
against C. albicans infection. After oral administration 
of heat-inactivated E. faecalis to mice infected with C. 
albicans, E. faecalis can prevent thrush in mice by inter-
acting directly with C. albicans in vivo and stimulat-
ing the host to enhance the immune response [102]. In 
a multi-microbial model of C. elegans, E. faecalis was 
observed to secrete heat-resistant proteases GelE and 
SerEin by relying on the Fsr quorum-sensing system to 
inhibit the hyphae morphogenesis of C. albicans, thereby 
negatively affecting its virulence [103]. E. faecalis can 
also encode EntV to block the biofilm development of 
C. albicans on a solid matrix and disrupt its pre-formed 
biofilm against the current antifungal drugs. The peptide 
also protects macrophages and enhances their antifungal 
abilities. These results suggest that EntV may be used as 

a potential fungal agent against C. albicans in the future 
[104]. Furthermore, Shekh et al. isolated and purified a 
non-hemolytic anti-C. albicans protein (ACP) from E. 
faecalis for the first time and proposed that this protein 
could be used to treat candidiasis in the future [105]. 
(Fig. 4A).

Although several studies have demonstrated that E. 
faecalis could help in the treatment of C. albicans infec-
tion, a study found that when E. faecalis and C. albicans 
were co-infected, a thicker, denser biofilm with stronger 
tolerance to harmful stresses was formed on root canal 
dentin and glass slides, which can increase bone resorp-
tion of osteoclasts, inhibit the bone formation of osteo-
blasts, upregulate inflammatory cytokines such as IL-6 
and TNF-α, and ultimately increase the severity of dental 
pulp diseases. Moreover, past studies have reported that 
C. albicans can help E. faecalis become more resistant 
to starvation [106, 107]. Past studies using mouse mod-
els also demonstrated that the existence of C. albicans in 
cefoperazone-treated gut facilitated the rehabilitation of 
E. faecalis during antibiotic recovery [108, 109]. Mean-
while, the metabolites of carbohydrates, amino acids and 
polyamines in the mixed biofilm of the two changed, dis-
playing higher anti-quorum sensing (QS) activity com-
pared to that of a single biofilm [110]. (Fig. 4B).

C. albicans and Staphylococcus aureus
S. aureus is a clinically important pathogen that can give 
rise to various infections in the body, including mild 

Fig. 3  The interaction between C. albicans and A. baumannii. (A)C. albicans and A. baumannii can utilize the homology of Hyr1p and OmpA to form a 
mixed biofilm. At the same time, ethanol secreted by C. albicans can upregulate a range of genes in A. baumannii, making it more likely to survive. (B) 
Farnesol secreted by C. albicans can disrupt the membrane integrity of A. baumannii, but A. baumannii can use an efflux pump against it. (C)A. baumannii 
can attenuate the virulence of C. albicans by attaching the OmpA to C. albicans hyphae in order to induce its apoptosis
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skin infections, severe tissue infections, and septicemia, 
and it is a common reason for hospital-acquired and 
community-acquired infections [111]. Because S. aureus 
and C. albicans share several common host niches, 
including the gut, both are often co-isolated from mixed 
fungal-bacterial infections. Several studies and clinical 
cases have demonstrated that S. aureus and C. albicans 
have an infectious synergistic effect. The co-inoculation 
of C. albicans and S. aureus can cause more severe and 
extensive infection and higher mortality than the inocu-
lation of either species alone [112–114]. Signaling path-
ways controlled by Efg1, a transcription factor used to 
induce C. albicans hyphal gene expression and hyphae 
growth, have been reported to be critical for C. albicans 
to strengthen S. aureus’s virulence in abdominal infection 

[115, 116]. However, C. albicans’ s ability to enhance S. 
aureus’s virulence in the peritoneal cavity has not been 
correlated with the presence or absence of the hyphae of 
C. albicans, suggesting that when the two microorgan-
isms co-infect the peritoneal cavity, there may be other 
processes independent of morphology that are regulated 
by Efg1, which result in fatal synergies [117, 118].

In addition, co-infection with C. albicans and S. aureus 
reduces the sensitivity of S. aureus to antibiotics [113, 
119]. Vancomycin has been reported to have a significant 
effect on the formation of a single biofilm of S. aureus, 
but a significantly reduced effect on mixed biofilms 
[119]. This effect is related to the adhesion between the 
two, farnesol-induced upregulation of the S. aureus drug 
efflux pump and increased eDNA and polysaccharide 

Fig. 4  The interaction between C. albicans and E. faecalis. (A)E. faecalis can secrete EntV, ACP and heat-resistant proteases to block the biofilm develop-
ment of C. albicans and inhibit its virulence. (B)C. albicans can help E. faecalis recover in antibiotic-treated gut
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intercellular adhesin (PIA) in S. aureus biofilms, which 
induce the formation of network structures [120]. 
(Fig. 5A).

Interestingly, virulence factors and superantigen-like 
proteins, which play a huge role in the spread of C. albi-
cans infection, were downregulated during co-infection, 
whereas the capsular polysaccharide gene was upregu-
lated during co-infection, suggesting that C. albicans 
adopts a strategy that is more conducive to survival, as 
well as increased persistence and immune evasion of 
the host in cases of mixed infections [119]. The specific 
mechanism behind this may be that S. aureus affects the 
metabolism, morphogenesis, and virulence of C. albicans 
by producing peptidoglycans [117]. (Fig. 5B).

However, a protective effect on the host can be induced 
when the timing of C. albicans and S. aureus inocula-
tion is different, possibly because of the trained immu-
nity induced by β-glucan of C. albicans, which provides 
cross-protection against secondary S. aureus infection 
[121–126]. (Fig. 5C).

C. albicans and Salmonella
Salmonella is a gram-negative bacterium that causes gas-
trointestinal lesions ranging from asymptomatic carri-
ers to gastroenteritis and typhoid fever [127, 128]. Based 
on the current studies, the relationship between Sal-
monella and C. albicans is only antagonistic. Past stud-
ies have demonstrated that when C. elegans are infected 
with both C. albicans and Salmonella typhimurium, 
the filamentation of C. albicans is hindered [129]. The 

underlying action mechanism is that the type III secre-
tion systems encoded by SPI-1 and SPI-2 by Salmonella 
genes directly inject various effector proteins into C. 
albicans to exert the virulence of this species [130–132]. 
Among these effector proteins, the one encoded by sopB 
can be translocated into C. albicans hyphae through SipB 
to downregulates the transcription of CDC42, thereby 
destroying C. albicans’ s hyphae to attenuate its virulence 
[133]. (Fig. 6A).

Correspondingly, C. albicans can use β-glucan, an 
immunomodulatory substance in its cell wall, to inhibit 
the colonization of S. typhimurium in the gut and liver 
[134]. (Fig. 6B).

C. albicans and Helicobacter pylori
H. pylori, a gram-negative microaerobic bacterium, 
grows in the human gastroduodenal mucosa, causes 
inflammation and gastrointestinal diseases, and increases 
the risk of gastric cancer development [135, 136]. As a 
facultative intracellular bacterium, H. pylori can para-
sitize human gastric epithelial cells and immune cells. It 
has evolved to use the vacuoles of eukaryotic cells as a 
protective niche, which can help avoid the harsh gastric 
environment and produce obvious resistance to antibiot-
ics, thereby allowing reproduction and persistence in the 
host for a long time [137–141]. H. pylori has been found 
to move and survive in the vacuole of C. albicans, sug-
gesting that C. albicans can be used as a host and carrier 
by H. pylori to provide an alternative niche [142]. This is 
an unusual evolutionary phenomenon because the fungal 

Fig. 5  The interaction between C. albicans and S. aureus. (A)C. albicans can upregulate a range of genes that promote C. albicans to express drug ef-
flux pumps and small molecules that help form network structures in biofilms to resist antibiotics. (B)S. aureus can secrete peptidoglycans to affect the 
metabolism, morphogenesis, and virulence of C. albicans. (C) Inoculating separately can induce a protective effect on the host, possibly because of the 
trained immunity induced by β-glucan of C. albicans
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cell wall typically limits endocytosis and the uptake of 
bacteria [143]. In this process, H. pylori can fuse its vacA 
s1s2, ureAB, 16  S rRNA, and ahpC genes into C. albi-
cans DNA and create an ideal shelter for itself by taking 
advantage of the good tolerance of C. albicans to stress 
conditions, so that it can obtain nutrition, express pro-
teins, and reproduce in C. albicans cells and continue to 
exist and reinfect the host [144–147].

Stress from the physicochemical environment and 
drugs in the gut is a powerful booster for H. pylori to 

enter C. albicans. A previous study showed that H. pylori, 
which can only adapt to fluctuations in pH in the range 
of 6–8, entered the cell of C. albicans, which can accept 
fluctuations in pH in the range of 2–10, to protect itself 
in an acidic environment that is not conducive to its sur-
vival; this phenomenon is more evident when the pH is 
lower [148]. Similarly, when H. pylori are treated with 
antibiotics such as amoxicillin, more numbers of H. 
pylori cells can be observed to enter C. albicans cells than 
usual, which causes treatment failure to a large extent 

Fig. 6  The interaction between C. albicans and Salmonella. (A)Salmonella can inject SopB into C. albicans through SipB to attenuate its virulence. (B)C. 
albicans can use β-glucan to inhibit the colonization of S. typhimurium in the gut
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[149]. (Fig. 7)Meantime, when H. pylori patients are older 
and their proton pump inhibitors (PPI) intake is higher, 
C. albicans’ s colonization in the human stomach gains 
an advantage, thus forming a positive cycle of mutual 
coordination [150]. On researching how H. pylori are 
safely released from C. albicans, some studies found that 
H. pylori can be released from C. albicans in the form of 
vesicles or free bacteria without causing damage to C. 
albicans [151]..

This combination of pathogenic microorganisms is 
undoubtedly a great threat to human health, and oral and 
fecal-oral transmission of C. albicans also contributes to 
the wider spread of H. pylori. Moreover, C. albicans in 

the vagina is more efficient to H. pylori colonization than 
C. albicans in the mouth. If C. albicans is transmitted 
from the mother’s vagina to the mouth of the newborn, it 
may significantly increase the risk of H. pylori infection in 
the newborn [152]..

However, the relationship between H. pylori and C. 
albicans is not entirely mutually beneficial. Some stud-
ies have shown that the peptide HP [2–20] produced by 
H. pylori is highly toxic to C. albicans [153]. HP [2–20] 
can destroy the cell membrane structure of C. albicans or 
directly interact with the lipid bilayer, thereby increasing 
the outflow of potassium ions, reducing the intracellular 

Fig. 7  The interaction between C. albicans and H. pylori. H. pylori can be parasitic in C. albicans, especially under the pressure of drugs
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trehalose content of C. albicans, and eventually exerting 
antifungal activities [153–156].

C. albicans and Lactobacillus
The genus Lactobacillus is taxonomically complex and 
consists of > 170 gram-positive species. Although they 
are a part of the normal human gastrointestinal and vagi-
nal flora, they may act as opportunistic human pathogens 
[157]. They are often widely used in the preparation of 
various commercial products, as well as probiotics [158]. 
Several studies have demonstrated an obvious antago-
nism between Lactobacillus and C. albicans. Lactobacil-
lus can protect against intestinal epithelial necrotizing 
injury caused by C. albicans [159, 160]; the supplemen-
tation of Lactobacillus and Bifidobacterium in prema-
ture and low-birth-weight infants can reduce C. albicans 
colonization in the gastrointestinal tract, thereby reduc-
ing the incidence of C. albicans sepsis and infant mortal-
ity [161]. Past studies have reported that the protection 
was time- and dose-dependent and independent of com-
petition for the adhesion sites. This mechanism can be 
classified as direct physical antagonism and chemical 
antagonism with soluble molecules [25, 159]. In physical 
antagonism, Lactobacillus directly interacts with C. albi-
cans and causes it to detach from the gut mucosa [159]. 
Chemical antagonism can be categorized as reshaping 
the metabolic environment of C. albicans (e.g., it con-
sumes the main nutrient source of C. albicans and forces 
it to change its metabolic mode, thereby weakening its 
toxicity) and as a direct secretion of molecules with anti-
fungal activities (e.g., lactic acid, short-chain fatty acids, 
hydrogen peroxide, bacteriocin-like substances, and bio-
surfactants) [25, 159, 162, 163]. In addition, Lactobacil-
lus can produce indole-3-aldehyde, which acts on aryl 
hydrocarbon receptor (AhR) and activates leukocytes. 
The activation of group 3 ILCs (ILC3s) and regulatory T 
(Treg) cells produce a large amount of IL-22, which can 
hinder the colonization of C. albicans in the gut mucosa 
and create gut mucosal homeostasis that allows the sur-
vival of mixed microbial communities [164]. (Fig.  8) 
Moreover, Lactobacillus can inhibit the expression of 
drug efflux protein produced by drug-resistant C. albi-
cans and reverse its drug resistance [165]..

Under an appropriate conditions, C. albicans launches 
a counterattack against Lactobacillus. Past studies have 
shown that C. albicans prevented Lactobacillus regrowth 
in the stomach of mice treated with cefoperazone, an 
effect that persisted for at least 3 weeks after antibiotic 
treatment was discontinued, which induced stomach 
inflammation. However, this phenomenon can be eas-
ily suppressed. Some studies have shown that restoring 
the bacterial community in the stomach of mice within a 
week of discontinuing antibiotics was adequate to inhibit 
the development of gastritis [108, 109, 166].

C. albicans and Bacteroides
Bacteroides are clinically important pathogens that are 
commonly associated with most anaerobic infections, 
with a death rate of > 19% [167]. Bacteroides maintain a 
complex and beneficial relationship with their host when 
they remain in the gut, and their leaving this environ-
ment can induce significant pathological changes such 
as bacteremia and multiple abscesses all over the body 
[167]. Studies have found that Bacteroides can hinder C. 
albicans’s growth and virulence, making them the most 
effective bacterial group to promote the colonization 
resistance of C. albicans [168]. The oral administration 
of Bacteroides fragilis to antibiotic-treated C. albicans-
colonized mice showed that C. albicans was eliminated 
from the gut after 14 days. During this process, host pro-
duction (HIF-1α and CRAMP) induced by Bacteroides 
played a huge role in maintaining the colonization resis-
tance of C. albicans [169]. As an important regulator of 
the mammalian innate defense, HIF-1α upregulates the 
expression of cathelicidin-related antimicrobial peptides 
(CRAMP) in the bone marrow cells, which play a key role 
in mammalian natural immune defense against bacterial 
infection. The human cathelicidin LL-37 has been dem-
onstrated to possess anti-C. albicans ability to hinder 
C. albicans adhesion to the epithelium by preferentially 
binding to the components of C. albicans cell wall such as 
mannan, chitin, and dextran [170–173]. (Fig. 9).

Although these studies demonstrated that Bacteroides 
are almost lethal for C. albicans, the mucin produced by 
Bacteroides thetaiotaomicron has been found to promote 
the growth of C. albicans [174]. In addition, in the cecum 
of cefoperazone-treated mice, the existence of C. albicans 
facilitated the rehabilitation of Bacteroides during cefo-
perazone treatment [109, 166]. A possible mechanism 
for this is that C. albicans provides a hypoxic microenvi-
ronment for Bacteroides through aerobic respiration and 
produces antioxidants to promote its growth [175, 176].

C. albicans and Clostridium difficile
C. difficile, an anaerobic toxin-producing bacterium, is 
the main reason behind hospital-acquired infections. 
Multiple surface proteins and flagella allow C. difficile to 
colonize the gut, where it can cause gut diseases ranging 
from mild diarrhea to deadly infectious colitis, leading 
to significant morbidity and mortality worldwide [177, 
178]. Fecal microbiota transplant (FMT) treatment in C. 
difficile infections (CDI) model mice demonstrated that 
the existence of C. albicans reduced the efficacy of FMT, 
whereas antifungal therapy restored the efficacy, indicat-
ing that C. albicans promotes C. difficile’s survival [179]. 
The underlying mechanism behind this may be that the 
existence of C. albicans creates an anoxic microenviron-
ment for C. difficile, which allows C. difficile to continue 
to grow under aerobic conditions [175, 180]. Meanwhile, 
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higher C. albicans infection rates have been reported in 
CDI patients, suggesting that C. difficile may promote the 
colonization of C. albicans [179, 181].

However, similar to Bacteroides species, C. difficile is 
the key to maintaining resistance to the colonization of 
C. albicans in the mice gut [169]. Past studies have dem-
onstrated that taurocholate acid (TCA) can promote 
the colonization and transmission of C. albicans in the 
gastrointestinal tract by significantly reducing the abun-
dance of C. difficile, which indirectly indicates that C. 
difficile plays a certain antagonistic role in the gastroin-
testinal tract against C. albicans [182]. In addition to acti-
vating HIF-1α and inducing CRAMP expression similar 

to Bacteroides for reducing gut colonization and post-
infection mortality associated with C. albicans, C. difficile 
can produce para-cresol, a bacteriostatic compound that 
can alter the morphology, inhibit biofilm formation, and 
antagonize the growth of C. albicans via tyrosine fermen-
tation [169, 180, 183].

C. albicans and Streptococcus
Streptococcus is a common gram-positive coccus, con-
sisting of 104 strains, which mainly cause otitis media, 
pneumonia, bacteremia, and meningitis. When Strep-
tococcus colonizes the digestive tract, it can cause dis-
eases in the digestive system [184]. Because of their 

Fig. 8  The interaction between C. albicans and Lactobacillus. Lactobacillus can antagonize C. albicans by physical adhesion, secretion of molecules with 
antifungal activities, reshaping the metabolic environment and activating leukocytes in the gut
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niche preference, Streptococcus and C. albicans mainly 
coexist in the human mouth. Presently, most studies on 
the interaction between Streptococcus and C. albicans 
are related to oral diseases. However, both microorgan-
isms can be found and extracted from the gut as well. 
Because Streptococcus is composed of a complex variety 
of strains, the interactions and mechanisms between dif-
ferent Streptococcus types and C. albicans are different. 
Several Streptococcus strains have been confirmed to co-
aggregate with C. albicans such as S. sanguis, S. gordonii, 
S. mutans, S. oralis, and S. anginosus [185]. Among them, 
S. mutans has been reported to form synergies with C. 
albicans. In early childhood caries, there occurs a cross-
feeding mechanism between these two microorganisms, 

which is mediated by the glucotransferase GtfB secreted 
by S. mutans. GtfB can bind to mannan on the outer sur-
face of the C. albicans cell wall to produce a large num-
ber of the α-glucan matrix into the mixed biofilm, which 
not only promotes the formation of mixed biofilms and 
provides enhanced binding sites for the two microorgan-
isms but also improves the utilization of carbohydrates 
by C. albicans, thereby increasing the severity of the dis-
ease [186–189]. GtfC and GtfR play a role similar to that 
of GtfB in the interaction between the two microorgan-
isms [190–192].  (Fig.  10 A) In addition, the antigen I/
II of S. mutans can mediate the increase in the number 
of C. albicans and the production of acids in the mixed 
biofilm [193]. In the process of interaction, C. albicans 

Fig. 9  The interaction between C. albicans and Bacteroides. Bacteroides can induce host production to promote the eliminated of C. albicans from the gut 
in antibiotic-treated C. albicans-colonized mice
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promotes the growth of S. mutans by secreting farnesol 
and polysaccharides [188, 194]. In addition to S. mutans, 
another representative Streptococcus strain that can form 
a synergistic effect with C. albicans is S. gordonii, which 
promotes biofilm formation, filamentation, and adhesion 
of C. albicans. The formation of dual-species biofilm also 
shows a high degree of resistance to combined antifun-
gal and antibacterial treatment [195–198]. The key to this 
interaction is the glucosyltransferase GtfG [199]. In addi-
tion, C. albicans can promote the growth and metabolism 

of S. gordonii by increasing the activity of S. gordonii cell-
wall-anchored glycoside hydrolases [200]..

However, the interaction between Streptococcus strains 
and C. albicans is also not a single synergy. Several Strep-
tococcus strains mentioned above can secrete trans-
2-decenoic acid to terminate the expression of HWP1 
associated with the formation of C. albicans hyphae, 
thereby inhibiting its virulence [201]. (Fig.  10B)Another 
Streptococcus, S. gordonii, has been found to secrete 

Fig. 10  The interaction between C. albicans and Streptococcus. (A) After C. albicans and Streptococcus form a mixed biofilm, Streptococcus induces C. 
albicans to produce a large amount of α-glucan by secreting glucotransferases. (B)Trans-2-decenoic acid secreted by Streptococcus inhibits C. albicans’s 
virulence
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competence-stimulating-peptide (CSP), which hinders C. 
albicans’s biofilm-formation [201]..

Conclusions
The colonization of C. albicans in the gut is a complex 
process that requires suppression of its filamentation and 
transformation into other cell types. In addition, C. albi-
cans is required to adapt to the metabolic environment 
of the gut, resolve the carbon source problem as well as 
the intake and discharge balance of other micronutri-
ents. Under the intestinal physical and chemical environ-
mental pressures, the responses of C. albicans created 
by various signal pathways can determine its capacity to 
colonize the gut.

After colonizing the gut, the interactions between C. 
albicans and the gut bacteria become a significant part of 
the host’s health. With the continuous emergence of new 
findings, our understanding of the interactions between 
C. albicans and various gut bacteria continues to deepen. 
In general, the nature of the interactions of microbes 
can be classified into 5 broad categories: direct physical 
contact, chemical interaction by small secreting mol-
ecules involved in quorum sensing, alterations in host’s 
immune response, competition for carbon sources, and 
parasitism.

Among all the bacteria studied in this review, P. aerugi-
nosa, Lactobacillus spp. and Salmonella spp. exhibit only 
antagonism against C. albicans, indicating that they are 
promising as the key to the treatment of C. albicans in 
the future [202]. Meanwhile, for bacteria that can secrete 
small molecules that antagonize C. albicans, purifying 
these secretions (e.g., soluble factors secreted by E. coli; 
phenazines and 3-oxo-C12 homoserine lactone secreted 
by P. aeruginosa; OmpA of A. baumannii; GelE, SerEin, 
EntV, and ACP secreted by E. faecalis; HP protein 
secreted by H. pylori; para-cresol secreted by C. difficile; 
trans-2-decenoic acid and CSP secreted by Streptococcus 
spp.) and using them to antagonize C. albicans is also a 
very promising approach. In addition, we can selectively 
knock out the synergistic genes of bacteria and intro-
duce the mutant strains into the body, such as by knock-
ing out the genes expressing various glucosyltransferases 
in Streptococcus spp. and only using its antagonism to C. 
albicans.

Nevertheless, several difficulties are encountered in the 
implementation of these treatment methods, such as the 
requirements of technical expertise in purifying small 
molecules, the dosage of small purified molecules to 
treatment, whether the harmful genes among the oppor-
tunistic pathogenic bacteria can be completely knocked 
out, and whether knocking out these bacterial genes have 
potential risks implications to the host health. All these 
aspects need to be constantly explored in practice. The 
synergistic effect of C. albicans and bacteria reveals that 

it is important to treat bacterial infections while treating 
C. albicans infection. We can apply their synergy to the 
treatment of mixed microbial infections. For example, 
owing to the homologous nature of Hyr1p of C. albicans 
and OmpA of A. baumannii, active immunization using 
rHyr1p-N or passive immunization using polyclonal 
antibodies against specific peptide motifs of rHyr1p-N 
provides new ideas for the future treatment for both C. 
albicans and A. baumannii [95]; Treatment of C. albicans 
is very beneficial in the treatment of H. pylori.

However, researches on the interactions between C. 
albicans and gut bacteria are still lacking. First, in the 
current studies, there are some conflicting observations, 
wherein the specific mechanisms are unknown. For 
example, although C. albicans can increase S. aureus’s 
resistance to antibiotics by secreting farnesol, this hap-
pens only when the concentration of farnesol is low. If the 
concentration of farnesol is high, its effect on S. aureus 
is opposite [203–205]. Second, most in vivo experiments 
were conducted using mouse, nematode, and fruit fly 
models, and not human ones. Finally, very little research 
has been conducted on the direct interactions of several 
bacteria with C. albicans in the gut.

Therefore, more number of researches on the human 
gut is necessary to understand, more deeply and com-
prehensively, the mechanisms of interactions between C. 
albicans and gut bacteria. In the future, mutant strains 
with deletions of specific gene fragments, vaccines, or 
purified biomacromolecules could serve as essential 
alternatives in the prevention and treatment of invasive 
intestinal candidiasis.

Figure lengends.
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