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Abstract 

Background  Time in range (TIR), as an important glycemic variability (GV) index, is clearly associated with disease 
complications in type 1 diabetes (T1D). Metabolic dysregulation is also involved in the risks of T1D complications. 
However, the relationship between metabolites and TIR remains poorly understood. We used metabolomics to inves-
tigate metabolic profile changes in T1D patients with different TIR.

Methods  This study included 85 T1D patients and 81 healthy controls. GV indices, including TIR, were collected 
from continuous glucose monitoring system. The patients were compared within two subgroups: TIR-L (TIR < 50%, 
n = 21) and TIR-H (TIR > 70%, n = 14). To screen for differentially abundant metabolites and metabolic pathways, serum 
and urine samples were obtained for untargeted metabolomics by ultra-performance liquid chromatography‒mass 
spectrometry. Correlation analysis was conducted with GV metrics and screened biomarkers.

Results  Metabolites were significantly altered in T1D and subgroups. Compared with healthy controls, T1D patients 
had higher serum levels of 5-hydroxy-L-tryptophan, 5-methoxyindoleacetate, 4-(2-aminophenyl)-2,4-dioxobutanoate, 
and 4-pyridoxic acid and higher urine levels of thromboxane B3 but lower urine levels of hypoxanthine. Compared 
with TIR-H group, The TIR-L subgroup had lower serum levels of 5-hydroxy-L-tryptophan and mevalonolactone 
and lower urine levels of thromboxane B3 and phenylbutyrylglutamine. Dysregulation of pathways, such as trypto-
phan, vitamin B6 and purine metabolism, may be involved in the mechanism of diabetic complications related to gly-
cemic homeostasis. Mevalonolactone, hypoxanthine and phenylbutyrylglutamine showed close correlation with TIR.

Conclusions  We identified altered metabolic profiles in T1D individuals with different TIR. These findings provide new 
insights and merit further exploration of the underlying molecular pathways relating to diabetic complications.
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Background
China has a high prevalence of diabetes, but only 49.4% 
of patients have well-controlled diabetes [1]. Type 1 
diabetes (T1D), with an incidence of 3.6% in China, is 
caused by autoimmune-mediated destruction of islet β 
cells [2]. T1D patients have impaired glycemic regulation, 
facing a higher risk of acute and chronic complications 
from blood glucose fluctuations. Therefore, maintaining 
blood glucose homeostasis and preventing diabetic com-
plications are crucial goals in diabetes management [3]. 
Glycemic variability (GV) is defined by fluctuations in 
glucose levels or related parameters over a specific time 
interval and is an essential metric for evaluating glycemic 
control in clinical practice [4]. HbA1c is the current gold 
standard for evaluating GV, but it can only reflect mean 
glycemic conditions over several months and is inaccu-
rate in certain pathological states [4, 5]. Continuous glu-
cose monitoring (CGM) is a novel approach that provides 
various metrics to quantify GV and can also assess the 
risk of hypo- and hyperglycemia, allowing for more pre-
cise monitoring of blood glucose [6].

Time in range (TIR), as a key CGM metric, indicates 
the percentage of time when blood glucose is within the 
target range (usually 70–180 mg/dL) [6]. The 2020 Amer-
ican Diabetes Association (ADA) “Standards of Medical 
Care in Diabetes” recommends the application of TIR 
for the assessment of glycemic control [5]. TIR has been 
used as an end point for many clinical trials [7]. There is 
a clear correlation between TIR and the onset and prog-
nosis of diabetic complications. TIR is associated with an 
increased risk of diabetic retinopathy, peripheral neurop-
athy, and cardiovascular mortality in T2D patients [4, 8, 
9]. For each 10% lower TIR in T1D patients, the hazard 
rates of retinopathy progression and microalbuminuria 
development were increased by 64% and 40%, respec-
tively [7]. However, the exact mechanism behind the cor-
relation between TIR and diabetic complications remains 
poorly understood, particularly in T1D patients. There-
fore, further investigation is needed to gain a comprehen-
sive understanding.

Metabolomics is a novel technology that can pro-
vide pathogenesis information of diabetes by analyzing 
metabolites and their interactions [10]. It studies small 
molecules, including organic acids, amino acids, carbo-
hydrates and lipids, in cells, tissues or biofluids. Complex 
interactions between genes, proteins and environmental 
factors can be detected through downstream metabo-
lites [10]. Amino acid alterations, such as branched-chain 
amino acids and aromatic amino acids, are related to the 
risk of diabetes [10], while lipidomic changes are associ-
ated with T1D autoimmunity [11]. Metabolites are also 
related to the onset and progression of diabetic compli-
cations. Lipidomic analysis revealed that sphingomyelin 

and phosphatidylcholine species were associated with 
diabetic nephropathy and all-cause mortality in T1D [12]. 
Impaired amino acid and TCA metabolism could be crit-
ical in cardiovascular autonomic neuropathy progression 
in T1D [13]. In addition, impaired TCA cycle metabolites 
in T1D lead to sensory nerve fiber loss in the skin and 
contribute to the progression of diabetic-induced periph-
eral neuropathy [14].

As we reviewed, no studies have explored the associa-
tion between TIR and metabolomics. The present study 
combined CGM and metabolomics technology to analyze 
the metabolite characteristics of T1D patients, including 
subgroups divided by TIR and healthy individuals. Then, 
we analyzed the relationship between GV indices and 
identified differentially abundant metabolites.

Methods
This study recruited a total of 85 T1D patients and 81 
healthy controls. Patients (ranging in age from 18 to 65) 
diagnosed with T1D according to the 1999 World Health 
Organization criteria were included from the Endocrinol-
ogy Department of Peking Union Medical College Hos-
pital (PUMCH) between October 2018 and March 2019. 
All patients had a stable dose of insulin usage for more 
than 3 months (dose change < 10%). The exclusion crite-
ria are in the Additional file 1. Observations of the Flash 
Glucose Monitor (FGM) were performed for 14 days to 
collect TIR and other GV metrics calculated by Excel and 
Easy GV version 9.0 R2 (Oxford University). All patients 
maintained a normal drug treatment schedule through-
out the study. According to the recommended target 
goals for TIR of > 70% and > 50% for general and high-risk 
individuals with diabetes, respectively, T1D patients were 
divided into 3 subgroups with different TIR: low TIR 
(TIR-L, TIR < 50%, n = 21), high TIR (TIR-H, TIR > 70%, 
n = 14) and moderate TIR (TIR-M, 50% ≤ TIR ≤ 70%, 
n = 50) groups. In order to screen metabolites having 
more significant difference and closer relation with gly-
cemic variability, TIR-L and TIR-H subgroups were 
used for further metabolomics comparison. The study 
was approved by the Ethics Committee of PUMCH (No. 
13275). All subjects signed the informed consent form.

Clinical data collection
Questionnaires were used to acquire gender, age, the 
onset of diabetes, duration of diabetes, complications of 
diabetes, insulin regimen, drug use, family history, smok-
ing and drinking history, exercise frequency, and other 
information. Physical examinations were performed to 
obtain general conditions, blood pressure, and BMI. Lab-
oratory tests of HbA1c, fasting and postprandial blood 
glucose (FBG, PBG), C-peptide, and other biochemical 
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indices, such as cholesterol and triglycerides, were tested 
by the laboratory department in PUMCH.

Untargeted metabolomics assay
Serum and urine samples were collected at the beginning 
of 2 weeks of FGM observation and stored at − 80 °C. An 
untargeted metabolomics assay was performed by ultra-
performance liquid chromatography tandem mass spec-
trometry (UPLC‒MS). A Waters H-class UPLC system 
was used. The detailed conditions are shown in the Addi-
tional file 1.

Statistical analysis, biomarker identification, and metabolic 
pathway analysis
The raw data obtained by the UPLC-LTQ Orbitrap were 
imported to Progenesis QI software (Version 2.0, Non-
linear Dynamics, UK) for processing. The processing 
procedure includes peak alignment, identification and 
correction. The output is a three-dimensional matrix 
consisting of retention times and exact mass-to-charge 
ratios of peaks, sample names and peak intensities or 
areas. The matrix was analyzed following SIMCA-P soft-
ware 14.0 (Umetrics AB, Umea, Sweden) to identify the 
group difference via principal component analysis and 
screen the potential biomarkers via orthogonal partial 
least-squares discrimination analysis (OPLS-DA). Vari-
able importance in the project (VIP) values, t test, fold 
change (FC) and hierarchical cluster analysis were ana-
lyzed by MetaboAnalyst 5.0. VIP > 1 and P value < 0.05 
were used as conditions for filtering potential biomark-
ers. Afterward, biochemical databases, including HMDB 
(Human Metabolome Database) and KEGG (Kyoto Ency-
clopedia of Genes and Genomes), were used to identify 
and confirm potential biomarkers. Pathway analysis was 
performed using MetaboAnalyst 5.0 by uploading the 
identified compound names to the program to calculate 
the impact value and p value of enriched pathways.

Other data analysis was performed using SPSS 22.0 
software (IBM Corp., Armonk, N.Y., USA). Continuous 
data are expressed as the mean ± standard deviation (SD) 
or median (interquartile range). Student’s t test or Mann-
Whitey U test was used to compare two groups, while 
ANOVA was used for three groups. Categorical vari-
ables were expressed as numbers (percentages) and com-
pared using the chi-square test. Correlation analysis was 
performed using binary logistic regression, Spearman, 
partial correlation, and multiple linear regression analy-
ses. Statistical significance was determined by a p value 
of < 0.05. Graph Pad Prism 8.4.3 (GraphPad Software, San 
Diego, California, USA) was used to perform receiver 
operating characteristic (ROC) curve analysis.

Results
Clinical characteristics
A total of 85 patients with T1D and 81 healthy subjects 
were enrolled in this study. The demographic, anthropo-
metric, and biochemical characteristics of all participants 
are presented in Additional file 1: Table S1. There was no 
significant difference in sex, age or BMI between the two 
groups. The T1D patients showed significantly higher 
HbA1c levels than the healthy controls, which is typical 
of diabetic patients. Control subjects had significantly 
higher TG and LDL-C and lower HDL-C levels than T1D 
patients.

The characteristics of T1D patients with different TIR 
are presented in Tables 1and2. Among 85 T1D patients, 
the median TIR was 59.50 (18.45) %. Only 16.47% of 
patients had TIR > 70%. HbA1c, FBG and PBG were sig-
nificantly lower in T1D patients who had higher TIR. 
Comparing the TIR-L group with the TIR-H group, there 
was no significant difference in sex, age, BMI, blood pres-
sure, serum lipid, ALT, eGFR, complications, family his-
tory, smoking and alcoholic history, exercise frequency or 
oral medications. The fasting serum C-peptide concen-
tration of TIR-H patients was significantly higher than 
that of TIR-L patients. TIR-L patients had an earlier age 
of onset, longer duration of T1D, and larger daily insu-
lin dose than TIR-H patients. For glucose indices, TIR-L 
patients had significantly higher HbA1c [9.00 (1.70)% 
vs. 6.80 (1.40)%, P < 0.001], FBG and PBG than TIR-H 
patients. Comparing CGM metrics (Table  2), TIR-L 
patients had lower TBR1 and higher TAR (including 
TAR1 and TAR2), CV, SD, MG, MODD, MAGE, MAG, 
CONGA, HBGI, GRADE, JINDEX, LI and MVALUE 
than TIR-H subjects.

Metabolite metabolomic differences between T1D patients 
and controls
The OPLS-DA plots in Fig.  1A and B show that the 
metabolomics was different between T1D patients and 
controls in serum and urine samples. A total of 54/440 
serum and 45/158 urine differentially abundant metabo-
lites were identified between them. The heatmaps of the 
hierarchical clustering analysis of differentially abundant 
metabolites are shown in Fig. 1A and B. Additional file 1: 
Tables S2 and S3 summarize the 15 serum and 7 urine 
differentially abundant metabolites included in both 
HMDB and KEGG in order of P value. Figure 2C and E 
and Additional file 1: Table S6 demonstrate the pathway 
analysis. There were 7 and 4 different metabolic pathways 
in serum and urine, mainly including tryptophan metab-
olism, vitamin B6 metabolism, sphingolipid metabolism, 
amino sugar and nucleotide sugar metabolism, pentose 
and glucuronate interconversions, lysine degradation, 
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and purine metabolism. Fourteen potential biomark-
ers in total were selected with a P value < 0.05. Figure 2A 
and B demonstrate the comparison of peak intensity, and 
Table  3 shows the P value, FC, VIP value, and pathway 
involved in each metabolite. Performing a binary logistic 
regression analysis of 14 potential biomarkers with age, 
sex, BMI, TG, HDL-C, and LDL-C as confounding fac-
tors, it was found that elevated 5-hydroxy-L-tryptophan, 
5-methoxyindoleacetate, 4-(2-aminophenyl)-2,4-dioxob-
utanoate (4AD), 4-pyridoxic acid, deoxycholic acid gly-
cine conjugate, and decreased sphinganine in serum, as 
well as elevated thromboxane B3 in urine, can be used as 
T1D predictive factors.

Metabolomic differences between T1D subgroups 
with different TIR
OPLS-DA plots of T1D subgroups of TIR-H versus TIR-L 
in serum and urine samples are presented in Fig. 1C and 
D, which show that the metabolomics profiles were dif-
ferent between them. The TIR-L versus TIR-H group 
had 19/252 and 30/121 differentially abundant metabo-
lites identified in the serum and urine samples, respec-
tively. Figure  1C and D also show the heatmaps of the 
hierarchical clustering analysis of differentially abundant 
metabolites. Additional file  1: Tables S4 and S5 list 15 
serum and 19 urine differentially abundant metabolites 
either included in HMDB or KEGG identified by the TIR 

Table 1  Clinical characteristics of the three TIR subgroups in T1D patients

Bold text represents P value < 0.05

n (%); Median (IQR); Fisher exact test; Kruskal–Wallis H test; Mann-Whitey U test

TIR, time in range; TIR-H, high TIR group; TIR-M, moderate TIR group; TIR-L, low TIR group; BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood 
pressure; TC, total cholesterol; TG, triglyceride; HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; ALT, alanine transaminase; Cr, 
creatine; eGFR, estimated glomerular filtration rate; HbA1c, glycosylated hemoglobin; FBG, fasting blood glucose; FCP, fasting C- peptide; AGI, α-glycosidase inhibitor

Variable Overall
(N = 85)

TIR-L
(N = 21)

TIR-M
(N = 50)

TIR-H
(N = 14)

P-value
(3 subgroup)

P-value
(TIR-L vs. TIR-H)

Gender (F/M) 55/30 13/8 33/17 9/5 0.950 1.000

Age (y.o) 35.00(18.00) 30.00(25.50) 36.00(14.00) 35.50(32.75) 0.323 0.152

Age at onset (y.o) 27.96(19.64) 25.71(26.71) 26.48(19.81) 33.24(27.77) 0.056 0.043
Duration of T1D (years) 6.60(10.61) 8.85(9.45) 8.22(12.33) 3.40(5.23) 0.009 0.024
BMI (kg/m2) 21.16(3.65) 21.20(5.17) 21.10(4.34) 21.37(3.50) 0.584 0.602

SBP (mmHg) 114.00(21.00) 113.00(20.00) 111.50(21.25) 118.50(28.25) 0.897 0.625

DBP (mmHg) 70.00(15.50) 70.00(12.50) 70.00(18.00) 68.00(12.25) 0.713 0.354

TC (mmol/L) 4.63(1.14) 4.47(1.47) 4.67(1.26) 4.69(0.77) 0.874 0.893

TG (mmol/L) 0.54(0.30) 0.56(0.22) 0.55(0.34) 0.48(0.28) 0.474 0.138

HDL-C (mmol/L) 1.57(0.69) 1.46(0.72) 1.57(0.69) 1.70(0.69) 0.714 0.490

LDL-C (mmol/L) 2.43(0.99) 2.46(0.94) 2.42(1.03) 2.35(0.74) 0.703 0.400

ALT (U/L) 15.00(8.00) 16.00(7.00) 15.00(8.25) 18.00(16.00) 0.497 0.266

Cr (umol/L) 59.70(16.00) 59.00(13.50) 61.50(17.75) 57.00(13.85) 0.459 0.555

eGFR (ml/min/1.73m2) 167.19(61.69) 176.12(84.90) 159.23(65.21) 168.92(49.61) 0.500 0.459

HbA1c (%) 7.40(1.75) 9.00(1.70) 7.15(1.20) 6.80(1.40)  < 0.001  < 0.001
FBG (mmol/L) 8.80(6.50) 12.50(6.20) 8.10(6.98) 7.35(3.38) 0.002 0.001
1 h-BG (mmol/L) 16.60(8.25) 19.70(5.80) 16.50(10.00) 13.80(4.93) 0.001  < 0.001
2 h-BG (mmol/L) 19.50(9.95) 23.40(8.60) 19.15(10.63) 16.25(10.35) 0.011 0.006
FCP (ng/mL) 0.00(0.29) 0.00(0.20) 0.00(0.15) 0.34(0.46) 0.015 0.025
Family history, N(%) 28(32.9) 7(33.3) 17(34.0) 4(28.6) 1.000 1.000

Diabetic complications, N(%) 13(15.3) 5(23.8) 7(14.0) 1(7.1) 0.401 0.366

Smoke, N(%) 10(11.8) 5(23.8) 4(8.0) 1(7.1) 0.189 0.366

Drinking alcohol, N(%) 17(20.0) 5(23.8) 10(20.0) 2(14.3) 0.866 0.676

Regular exercise, N(%) 17/8/60 5/3/13 9/2/39 3/3/8 0.185 0.894

Insulin pump, N(%) 21(24.7) 4(19.0) 14(28.0) 3(21.4) 0.779 1.000

Daily Insulin dose (U/d) 34.00(16.50) 36.00(15.03) 34.08(19.45) 26.50(13.00) 0.004 0.003
Average daily Insulin dose (U/kg/d) 0.59(0.23) 0.63(0.21) 0.58(0.24) 0.50(0.24) 0.016 0.016
Oral medications

 AGI, N(%) 16(18.8) 4(19.0) 8(16.0) 4(28.6) 0.587 0.685

 Metformin, N(%) 20(23.5) 7(33.3) 10(20.0) 3(21.4) 0.459 0.704
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group in order of VIP value. Figure 2D and F and Addi-
tional file 1: Table S6 demonstrate the pathway analysis. 
Comparing TIR-L with the TIR-H subgroup, tryptophan 
metabolism, vitamin B6 metabolism, amino sugar and 
nucleotide sugar metabolism in serum (Fig.  2D), and 
lysine degradation and purine metabolism in urine 
(Fig. 2F) were 5 different metabolic pathways. Ten poten-
tial biomarkers in total were selected with a P value < 0.05 
or VIP > 1, as demonstrated in Fig. 2A and B and Table 3. 
Table  3 also demonstrates the binary logistic regression 
analysis of 10 potential biomarkers in the TIR compari-
son group, with age, sex, BMI, duration of disease and 
insulin dosage as confounding factors. It was found that 
decreased mevalonolactone in serum and phenylbutyryl-
glutamine, hypoxanthine, N6, N6, and N6-trimethyl-L-
lysine in urine can be used as low-level TIR predictive 
factors.

Correlation analysis of potential biomarkers and GV 
metrics
Spearman correlation analysis of GV metrics (TIR, TBR, 
TAR, CV, SD, MODD, MAGE, LBGI, HBGI) with 15 
serum and 19 urine differential metabolites screened by 

the TIR group was showed in Fig.  3. To further inves-
tigate the correlation of metabolites with TIR, partial 
correlation analysis and multilinear regression analysis 
adjusting for sex, age, BMI, duration of disease, and insu-
lin dosage as confounding factors were conducted (Addi-
tional file  1: Table  S7). In serum, mevalonolactone was 
positively related to TIR (R = 0.367, P = 0.001) and nega-
tively related to CV, TAR, SD, MODD, MAGE, and HBGI 
(R = − 0.252, − 0.269, − 0.350, − 0.285, − 0.316, − 0.321, 
P = 0.023, 0.015, 0.001, 0.010, 0.004, 0.003). Mevalonolac-
tone was still significantly correlated with TIR (R = 0.320, 
P = 0.005) by partial correlation analysis and is an inde-
pendent predictive factor for TIR in multilinear regres-
sion analysis (β = 0.348, P = 0.001, F = 10.902, R = 0.348). 
In urine, TIR was positively correlated with hypoxanthine 
and phenylbutyrylglutamine (R = 0.244, 0.329, P = 0.032, 
0.003) but negatively correlated with the other 8 metabo-
lites. Partial correlation analysis of these 10 metabolites 
demonstrated that hypoxanthine and phenylbutyryl-
glutamine were still significantly correlated with TIR 
(R = 0.232, 0.308, P = 0.048, 0.008). Multilinear regression 
analysis showed that phenylbutyrylglutamine is an inde-
pendent predictive factor for TIR (β = 0.348, P = 0.002, 

Table 2  CGM metrics of the three TIR subgroups in T1D patients

Bold text represents P value < 0.05

Median (IQR); Kruskal–Wallis H test; Mann-Whitey U test

CGM, Continuous glucose monitoring; TIR, time in range; TIR-H, high TIR group; TIR-M, moderate TIR group; TIR-L, low TIR group; TBR, time below range; TAR, time 
above range; CV, coefficient of variation; SD, standard deviation; MG, mean glucose; MODD, mean of daily differences; MAGE, mean amplitude of glycemic excursions; 
MAG, mean absolute glucose; CONGA, continuous overall net glycemic action; LBGI, low blood glucose index; HBGI, high blood glucose index; GRADE, glycemic risk 
assessment diabetes equation; LI, lability index

Variable Overall
(N = 85)

TIR-L
(N = 21)

TIR-M
(N = 50)

TIR-H
(N = 14)

P-value
(3 subgroup)

P-value
(TIR-L vs. TIR-H)

TIR (%) 59.50(18.45) 36.50(20.65) 61.95(8.10) 76.50(14.33)  < 0.001  < 0.001
TBR (%) 7.50(15.50) 3.10(3.90) 11.30(17.45) 5.60(7.05) 0.001 0.178

TBR1 (%) 4.80(6.15) 2.20(2.65) 7.75(7.85) 4.30(4.23)  < 0.001 0.019
TBR2 (%) 1.70(7.55) 1.00(1.45) 3.75(9.38) 0.90(2.90) 0.010 0.748

TAR (%) 28.20(30.40) 60.60(21.21) 24.10(18.38) 14.30(14.90)  < 0.001  < 0.001
TAR1 (%) 19.60(16.50) 33.60(12.95) 18.75(14.80) 11.75(11.63)  < 0.001  < 0.001
TAR2 (%) 5.60(12.20) 29.90(24.20) 4.35(6.45) 0.30(3.63)  < 0.001  < 0.001
CV (%) 40.10(10.55) 37.10(13.80) 42.45(10.58) 33.60(6.08)  < 0.001 0.028
SD (mmol/L) 3.29(0.98) 4.40(1.30) 3.26(0.73) 2.61(0.87)  < 0.001  < 0.001
MG (mmol/L) 8.08(2.72) 11.48(2.63) 7.75(2.10) 7.19(1.43)  < 0.001  < 0.001
MODD (mmol/L) 3.25(1.22) 4.45(2.00) 3.35(1.01) 2.07(1.09)  < 0.001  < 0.001
MAGE (mmol/L) 7.89(2.27) 9.72(3.67) 7.58(1.92) 6.22(2.06)  < 0.001  < 0.001
MAG (mmol/L) 1.80(0.41) 2.03(0.63) 1.78(0.45) 1.73(0.34)  < 0.001  < 0.001
CONGA 7.53(2.64) 10.58(2.58) 7.12(1.79) 6.49(1.43)  < 0.001  < 0.001
LBGI 5.49(5.79) 5.19(4.92) 6.84(5.72) 3.71(2.99) 0.013 0.064

HBGI 8.60(6.19) 20.08(9.05) 8.13(3.57) 5.14(3.48)  < 0.001  < 0.001
GRADE 6.02(5.25) 13.47(6.35) 5.89(2.48) 3.69(3.26)  < 0.001  < 0.001
JINDEX 41.72(27.70) 89.30(33.98) 39.57(17.58) 30.42(13.99)  < 0.001  < 0.001
LI (mmol/L2/h·week−1) 3.93(2.09) 5.43(2.96) 3.92(1.73) 2.99(1.40)  < 0.001  < 0.001
MVALUE (mmol/L) 14.54(11.67) 32.37(16.14) 14.28(6.26) 6.62(4.67)  < 0.001  < 0.001



Page 6 of 12Ma et al. Diabetology & Metabolic Syndrome           (2024) 16:21 

Fig. 1  OPLS-DA plots and hierarchical clustering analysis of differentially abundant metabolites. A T1D patients compared with control serum 
samples. B T1D patients compared with control urine samples. C TIR-H versus TIR-L subgroup of serum samples. D TIR-H versus TIR-L subgroup 
of urine samples. The left figures are OPLS-DA score plots. The horizontal axis represents intergroup differences, while the vertical axis represents 
intragroup differences. The right figures are heatmaps of hierarchical clustering analysis. The shift from blue to red indicates an increase in content. 
Each row represents a potential biomarker, and each column represents a sample. TIR, time in range; TIR-H, high TIR group; TIR-L, low TIR group; 
OPLS-DA, orthogonal partial least-squares discrimination analysis

Fig. 2  The peak intensity of the 16 potential biomarkers in T1D and subgroups and the pathway analysis of differentially abundant metabolites. The 
comparison of peak intensity of potential biomarkers in serum (A) and urine (B) was performed using a t test. The asterisk represents the P value, 
and one asterisk, two asterisks and three asterisks represent P < 0.05, P < 0.01 and P < 0.001, respectively. C–F Pathway analysis of serum and urine 
samples between T1D versus control and TIR-L versus TIR-H subgroups. Each bubble in the plot depicts a metabolic pathway, with size reflecting 
enrichment level. TIR, time in range; TIR-H, high TIR group; TIR-L, low TIR group; 4AD, 4-(2-aminophenyl)-2,4-dioxobutanoate



Page 7 of 12Ma et al. Diabetology & Metabolic Syndrome           (2024) 16:21 	

Ta
bl

e 
3 

Th
e 

lo
gi

st
ic

 re
gr

es
si

on
 a

nd
 R

O
C

 c
ur

ve
 a

na
ly

si
s 

of
 th

e 
16

 p
ot

en
tia

l b
io

m
ar

ke
rs

TI
R,

 ti
m

e 
in

 ra
ng

e;
 T

IR
-H

, h
ig

h 
TI

R 
gr

ou
p;

 T
IR

-L
, l

ow
 T

IR
 g

ro
up

; F
C,

 fo
ld

 c
ha

ng
e;

 V
IP

, v
ar

ia
bl

e 
im

po
rt

an
ce

 in
 th

e 
pr

oj
ec

t; 
O

R,
 o

dd
s 

ra
tio

; C
I, 

co
nfi

de
nc

e 
in

te
rv

al
; R

O
C,

 re
ce

iv
er

 o
pe

ra
tin

g 
ch

ar
ac

te
ris

tic
; A

U
C,

 a
re

a 
un

de
r c

ur
ve

a  B
ol

d 
te

xt
 o

f O
R 

re
pr

es
en

ts
 s

ig
ni

fic
an

ce
(P

 <
 0

.0
5)

M
et

ab
ol

ite
Pa

th
w

ay
lo

g2
 (F

C)
P 

va
lu

e
VI

P
O

Ra
95

%
CI

AU
C​

T1
D

 v
s. 

CO
N

 (s
er

um
)

 5
-H

yd
ro

xy
-L

-t
ry

pt
op

ha
n

Tr
yp

to
ph

an
 m

et
ab

ol
is

m
0.

41
54

0.
02

6
0.

80
87

1.
77

7
1.

05
9–

2.
98

1
0.

62
36

 5
-M

et
ho

xy
in

do
le

ac
et

at
e

Tr
yp

to
ph

an
 m

et
ab

ol
is

m
0.

72
70

 <
 0

.0
01

1.
06

60
6.

27
9

2.
75

4–
14

.3
15

0.
73

58

 4
-(2

-A
m

in
op

he
ny

l)-
2,

4-
di

ox
ob

ut
an

oa
te

Tr
yp

to
ph

an
 m

et
ab

ol
is

m
0.

49
18

0.
00

1
0.

98
53

3.
51

5
1.

68
9–

7.
31

2
0.

71
96

 4
-P

yr
id

ox
ic

 a
ci

d
Vi

ta
m

in
 B

6 
m

et
ab

ol
is

m
1.

37
53

0.
00

6
0.

75
94

3.
93

9
1.

59
6–

9.
72

1
0.

72
63

 C
hi

to
bi

os
e

A
m

in
o 

su
ga

r a
nd

 n
uc

le
ot

id
e 

su
ga

r m
et

ab
ol

is
m

0.
81

74
 <

 0
.0

01
0.

92
47

2.
75

5
1.

53
5–

4.
94

3
0.

73
36

 G
ly

co
ch

en
od

eo
xy

ch
ol

ic
 a

ci
d 

3-
gl

uc
ur

on
id

e
Pe

nt
os

e 
an

d 
gl

uc
ur

on
at

e 
in

te
rc

on
ve

rs
io

ns
1.

13
91

0.
00

1
0.

77
07

2.
34

2
1.

52
8–

3.
59

0
0.

75
65

 D
eo

xy
ch

ol
ic

 a
ci

d 
gl

yc
in

e 
co

nj
ug

at
e

Bi
le

 a
ci

d 
bi

os
yn

th
es

is
1.

40
09

 <
 0

.0
01

0.
94

00
2.

08
0

1.
31

8–
3.

82
4

0.
75

36

 S
ph

in
ga

ni
ne

Sp
hi

ng
ol

ip
id

 m
et

ab
ol

is
m

−
 0

.6
07

0
0.

00
1

0.
83

90
0.

34
8

0.
16

3–
0.

74
2

0.
65

88

 L
-b

et
a-

as
pa

rt
yl

-L
-s

er
in

e
–

0.
63

99
0.

00
3

0.
70

76
1.

78
6

1.
06

5–
2.

99
3

0.
70

64

T1
D

 v
s. 

CO
N

 (u
rin

e)

 T
hr

om
bo

xa
ne

 B
3

–
0.

48
21

0.
03

6
0.

86
61

1.
82

7
1.

02
2-

 3
.2

66
0.

66
69

 H
yp

ox
an

th
in

e
Pu

rin
e 

m
et

ab
ol

is
m

−
 0

.3
54

1
0.

00
9

1.
14

53
–

–
0.

64
15

 N
6,

N
6,

N
6-

Tr
im

et
hy

l-L
-ly

si
ne

Ly
si

ne
 d

eg
ra

da
tio

n
0.

77
30

0.
04

8
0.

49
91

–
–

0.
59

94

 W
ith

an
ol

id
e 

B
U

bi
qu

in
on

e 
an

d 
ot

he
r t

er
pe

no
id

-q
ui

no
ne

 b
io

sy
nt

he
si

s
0.

69
92

0.
04

1
0.

64
03

1.
80

2
1.

23
3-

 2
.6

33
0.

64
64

 6
-H

yd
ro

xy
-5

-m
et

ho
xy

in
do

le
 g

lu
cu

ro
ni

de
Pe

nt
os

e 
an

d 
gl

uc
ur

on
at

e 
in

te
rc

on
ve

rs
io

ns
−

 0
.6

37
5

 <
 0

.0
01

1.
50

86
0.

27
1

0.
13

5–
0.

54
5

0.
69

61

TI
R-

L 
vs

. T
IR

-H
 (s

er
um

)

 5
-H

yd
ro

xy
-L

-t
ry

pt
op

ha
n

Tr
yp

to
ph

an
 m

et
ab

ol
is

m
−

 0
.6

44
2

0.
04

0
1.

66
27

–
–

0.
72

50

 4
-P

yr
id

ox
ic

 a
ci

d
Vi

ta
m

in
 B

6 
m

et
ab

ol
is

m
−

 0
.9

90
1

0.
10

9
1.

80
41

–
–

0.
65

42

 D
eo

xy
ch

ol
ic

 a
ci

d 
gl

yc
in

e 
co

nj
ug

at
e

Bi
le

 a
ci

d 
bi

os
yn

th
es

is
1.

13
96

0.
11

3
1.

20
84

–
–

0.
63

75

 C
hi

to
bi

os
e

A
m

in
o 

su
ga

r a
nd

 n
uc

le
ot

id
e 

su
ga

r m
et

ab
ol

is
m

−
 0

.1
32

0
0.

73
6

1.
23

66
–

–
0.

51
25

 M
ev

al
on

ol
ac

to
ne

–
−

 1
.8

30
8

 <
 0

.0
01

2.
64

53
0.

05
4

0.
00

8–
0.

36
8

0.
93

75

 L
-b

et
a-

as
pa

rt
yl

-L
-s

er
in

e
–

−
 0

.4
80

8
0.

11
3

1.
33

70
–

–
0.

72
92

TI
R-

L 
vs

. T
IR

-H
 (u

rin
e)

 T
hr

om
bo

xa
ne

 B
3

–
−

 0
.7

02
2

0.
02

4
1.

58
00

0.
20

1
0.

03
9–

1.
02

3
0.

72
18

 N
6,

N
6,

N
6-

Tr
im

et
hy

l-L
-ly

si
ne

Ly
si

ne
 d

eg
ra

da
tio

n
−

 1
.2

27
9

0.
05

5
1.

13
90

0.
30

4
0.

10
1–

0.
90

8
0.

70
68

 H
yp

ox
an

th
in

e
Pu

rin
e 

m
et

ab
ol

is
m

−
 0

.4
61

8
0.

06
4

1.
01

09
0.

07
5

0.
00

8–
0.

73
9

0.
70

30

 P
he

ny
lb

ut
yr

yl
gl

ut
am

in
e

–
−

 2
.2

58
5

0.
02

7
1.

30
21

0.
14

4
0.

03
3–

0.
63

3
0.

77
82



Page 8 of 12Ma et al. Diabetology & Metabolic Syndrome           (2024) 16:21 

F = 10.462, R = 0.348). Besides, L-beta-aspartyl-L-serine 
was also positively related to TIR (R = 0.222, P = 0.046). 
Deoxycholic acid glycine conjugate was positively corre-
lated with MODD (R = 0.270, P = 0.015).

Biomarker analysis
The 16 potential biomarkers were analyzed by ROC 
curve analysis. Table  3 summarizes the area under the 
curve (AUC) values. The metabolites with the top four 
AUC rankings in the list shown in Fig. 4 were selected for 
combined analysis. The panels obtained AUCs of 0.779 
(95% CI 0.677–0.889) and 0.715 (95% CI 0.603–0.830) in 
serum and urine, respectively, to distinguish T1D from 
healthy subjects. For TIR-L versus TIR-H, the panel in 
serum reached an AUC of 0.793 (95% CI 0.440–0.990), 
lower than that of mevalonolactone as a biomarker alone 
(AUC = 0.938), and four urine metabolites obtained an 
AUC of just 0.664 (95% CI 0.400–0.860), without bet-
ter performance than phenylbutyrylglutamine alone 
(AUC = 0.778).

Discussion
T1D is a chronic autoimmune disease with insulin defi-
ciency due to β-cell destruction. Metabolomics sys-
tematically identifies and quantitates metabolites from 
biological systems. Certain metabolites and metabolic 

pathways are associated with risks of T1D onset and 
complications [10]. T1D complications are also strongly 
correlated with glycemic fluctuation. Investigation of 
metabolite profile changes affected by glycemic fluctua-
tion can assist in understanding the mechanism of T1D 
complications.

First, this study supported that TIR is a reliable GV 
indicator. We demonstrated that T1D patients with lower 
levels of TIR have an earlier age of onset, a longer dura-
tion of disease, a larger daily insulin dose, and higher lev-
els of blood glucose, HbA1c, fasting serum C-peptide, 
and CGM indices, representing greater glycemic fluctua-
tion. These results strengthen the use of TIR as an indi-
cator to evaluate glycemic control and to assist in the 
management of T1D.

In addition to comparison with healthy individuals, we 
showed how the metabolic profiles of T1D patients with 
different TIR varied for metabolomics analysis. Trypto-
phan metabolism, vitamin B6 metabolism and purine 
metabolism were the major changed pathways, which 
may have an impact on GV and be involved in the devel-
opment of diabetic complications.

This study showed that three metabolites in the tryp-
tophan metabolism pathway were increased in T1D, 
including 5-hydroxy-L-tryptophan, 5-methoxyindoleac-
etate, and 4AD. Among them, 5-hydroxy-L-tryptophan 

Fig. 3  Spearman correlation analysis between differentially abundant metabolites and glycemic variability index. A Analysis of serum samples. B 
Analysis of urine samples. The correlation with a P value < 0.05 is shown with a circle. The number in the circle represents the correlation value. Red 
and blue represent positive and negative correlations, respectively. The darker the color and the larger the circle, the greater the absolute value 
of the correlation coefficient. TIR, time in range; TBR, time below range; TAR, time above range; CV, coefficient of variation; SD, standard deviation; 
MODD, mean of daily differences; MAGE, mean amplitude of glycemic excursions; LBGI, low blood glucose index; HBGI, high blood glucose index
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was reduced in the TIR-L subgroup. Tryptophan (TRP) is 
essential for humans and is mainly involved in two meta-
bolic pathways: serotonin synthesis and the kynurenine 
pathway (KP). The majority of TRP is degraded through 
KP, which produces kynurenine (KYN) and kynurenic 
acid (KYA) and finally synthesizes NAD+ for energy pro-
duction [15]. T1D development can be influenced by 
modifications in TRP metabolism. Reduced plasma free 
L-tryptophan levels may impact neural signaling and ser-
otonin metabolism related to neuropsychiatric disorders 
[16]. Mouse models show TRP metabolism changes at 
the early stage of T1D disease progression [15]. Another 
study found increased plasma TRP and a decreased 
KYN/TRP ratio in T1D patients. They proposed that 
TRP metabolism may contribute to T1D autoimmun-
ity through the augmentation of autoimmune-induced 
pancreatic cell apoptosis and the reduction in TRP con-
sumption influenced by the gut microbiome [17]. An 
in vitro study suggested that dendritic cells regulate TRP 
metabolism to inhibit T lymphocyte function, poten-
tially affecting T1D autoimmunity development [18]. 
5-Hydroxy-L-tryptophan, a precursor of serotonin, also 
increases insulin release in pancreatic β cells [19]. Supple-
mentation with 5-hydroxytryptophan rescued glucose-
induced insulin secretion in defect pancreatic β-cells 
[20]. Additionally, 5-hydroxy-L-tryptophan is decreased 
in early pregnancy serum among gestational diabetes 
mellitus [21], and it induces more rapid hypoglycemia 

than dosing tryptophan in rats [22]. This study showed 
higher levels of 5-hydroxy-L-tryptophan in the T1D and 
TIR-H subgroups. T1D individuals may have compensa-
tory mechanisms that increase 5-hydroxy-L-tryptophan 
to release more insulin in pancreatic β cells. The TIR-H 
subgroup may have better compensatory mechanisms, 
resulting in higher levels of 5-hydroxy-L-tryptophan. 
5-Methoxyindoleacetate is a downstream metabolite of 
serotonin, and 4AD is an intermediate in the conversion 
of KYN to KYA [23]. Thus, metabolic changes in these 
two metabolites may be associated with the abovemen-
tioned key reactions. Diabetic rats fed with advanced 
glycation end-products had significantly higher levels of 
oxidative stress and lower 5-methoxyindoleacetate levels 
in serum and urine [24]. In rats, 5-methoxyindoleacetate 
has been associated with ischemic stroke [25]. Interest-
ingly, 5-methoxyindoleacetate and 4AD were higher in 
T1D patients in this study. The underlying mechanisms 
are not clear and require further investigation.

The T1D and TIR-L subgroups had altered vitamin 
B6 metabolism in this study. Vitamin B6 metabolism is 
impaired at an early stage in T1D [26], and vitamin B6 
deficiency is an independent risk factor for diabetic com-
plications, including cardiovascular, cerebrovascular, and 
peripheral vascular disease [27]. Supplementation with 
vitamin B6 normalized endothelial dysfunction in T1D 
[27]. 4-Pyridoxic acid (4-PA) is the vitamin B6 degrada-
tion product. A study showed that plasma and urinary 

Fig. 4  The ROC curve of the potential biomarkers. Analysis of potential biomarkers to discriminate T1D from controls in serum (A) and urine (B) 
samples and to discriminate TIR-H from the TIR-L subgroup in serum (C) and urine (D) samples. ROC, receiver operating characteristic; TIR, time 
in range; TIR-H, high TIR group; TIR-L, low TIR group
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excretion of 4-PA were increased in diabetic patients 
(P < 0.001) and positively correlated with HbA1c and dia-
betes duration, indicating that the degradation of vitamin 
B6 may be related to metabolic dysfunction in hypergly-
cemia and increases in severity as diabetes progresses 
[28]. In this study, serum 4-PA was higher in T1D, which 
is in line with previous findings. However, it tended to 
be lower in the TIR-L group. The activity of enzymes 
degrading vitamins may explain this result, which was 
increased in T1D patients but with better function in 
the TIR-H subgroup, resulting in higher degradation 
products. Further studies are needed to confirm this 
hypothesis.

Hypoxanthine in urine was markedly reduced in T1D 
and tended to be lower in the TIR-L subgroup with 
VIP > 1. It was also an independent predictive factor and 
positively related to TIR. Hypoxanthine is a crucial sub-
stance in purine metabolism. The conversion of hypox-
anthine to xanthine and then to uric acid (UA) requires 
xanthine oxidase (XO) catalysis and generates reactive 
oxygen species (ROS). Hypoxanthine and its oxidation 
product can be used as potential markers for monitor-
ing the oxidative state [29]. Studies have explored the 
association between purine metabolism and diabetes. 
Nonobese diabetic mice had higher xanthine levels in 
the pancreas [15]. Purine metabolism disorder is cor-
related with an elevated risk of diabetic nephropathy 
(DN), supported by evidence of elevated UA in both rats 
and T1D patients [30, 31]. XO is an important source of 
hyperglycemia-induced ROS production in skeletal mus-
cle [32]. XO can directly harm kidney cells by oxidative 
damage and indirectly induce inflammation by activating 
the NF-κB signaling pathway in DN rats [31]. The drop 
in hypoxanthine observed in T1D and the positive cor-
relation with TIR may indicate that more hypoxanthine 
is metabolized to downstream metabolites, causing more 
ROS in T1D with unstable glucose control.

In addition to purine metabolism, other differentially 
abundant metabolites (thromboxane B3 [33], chitobiose 
[34], withanolide B [35]) and metabolic pathways (amino 
sugar and nucleotide sugar metabolism, pentose and glu-
curonate interconversions [36]) we screened are also pos-
sibly related to oxidative stress and inflammation, which 
is consistent with the proposed mechanism between GV 
and the risk of complications from T1D [37]. A long dura-
tion of blood glucose fluctuations leads to the accumula-
tion of ROS, affecting the expression of related genes and 
resulting in pathophysiological changes, thereby increas-
ing the risk of complications [38].

In addition to the metabolites implicated in these 
pathways, we discovered some rarely reported metabo-
lites that performed well as potential biomarkers, such 
as mevalonolactone and phenylbutyrylglutamine, which 

are positively related to TIR and can be independent 
predictive factors. Through the mevalonate pathway, 
mevalonolactone is a precursor for the biosynthesis of 
various steroids and isoprenoids. Inhibitors of this path-
way, such as statins, which inhibit HMG-CoA reductase, 
can reduce blood cholesterol levels. The mevalonate 
pathway also regulates the development and survival of 
brown adipocytes [39]. Mevalonolactone may therefore 
be an important factor involved in GV by affecting cho-
lesterol synthesis. Phenylbutyrylglutamine is a metabolite 
of phenylbutyrate that is used to treat thalassemia, can-
cer, etc. [40] but has not yet been related in any reports 
to diabetes.

We observed that T1D patients had elevated deoxy-
cholic acid glycine conjugate, which is a secondary bile 
acid (BA) produced in the liver by the conjugation of 
deoxycholate with glycine. BAs can help with the excre-
tion, absorption, and transport of lipids in the liver and 
intestines. Dysregulated BA metabolism contributes to 
the risk and pathogenesis of T1D [41]. In addition, T1D 
patients in this study showed low TG and LDL-C lev-
els and high HDL-C levels, possibly due to differences 
in insulin distribution compared to healthy individuals. 
Most of the exogenously supplied insulin in T1D is dis-
tributed in circulation, and little reaches the liver, leading 
to reduced TG and LDL synthesis. Alternatively, higher 
levels of BAs in T1D patients may lower serum lipids. 
However, further investigation is needed to understand 
lipid metabolism in T1D.

Our study has several strengths and limitations. This 
research combined two novel technologies, metabo-
lomics and CGM, which are rarely reported. The explo-
ration of the changes in metabolism affected by glycemic 
fluctuations in T1D patients provides insights for further 
research into the mechanism of complications. However, 
the UPLC‒MS method is still challenging in identifying 
exact chemical structures from peak data. The targeted 
metabolomics method can be used for further verifica-
tion. We did not include other confounding factors, such 
as environmental and nutritional conditions, which may 
help to find other meaningful results. In addition, more 
sample data are needed, as the sample size of the sub-
group is insufficient. Further validation in other cohorts 
is also needed to identify potential biomarkers. Impor-
tantly, basic experiments are needed to further clarify 
the mechanism of the potential TIR-related biomarkers 
screened in this study.

Conclusions
In summary, metabolite profiling of serum and urine 
based on the UPLC‒MS method combined with 
CGM metrics was performed to provide complemen-
tary insight into the differences in T1D patients with 
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different TIR. T1D patients with unstable GV have 
altered metabolites and metabolic pathways, mainly 
including tryptophan, vitamin B6 and purine metabo-
lism. Further investigation of potential biomarkers may 
provide new insights into the mechanism of diabetes 
complications related to GV.
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