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Abstract 

Background  The involvement of the central nervous system is a frequent yet underestimated complication of 
diabetes mellitus. Visual evoked potentials (VEP) are a simple, sensitive, and noninvasive method for detecting early 
alterations in central optic pathways. The objective of this paralleled randomized controlled trial was to evaluate the 
impact of ozone therapy on visual pathways in diabetic patients.

Methods  Sixty patients with type 2 diabetes visiting clinics of Baqiyatallah university in Tehran (Iran) hospital were 
randomly assigned to two experimental groups: Group 1 (N = 30) undergoing a cycle of 20 sessions of systemic 
oxygen-ozone therapy in addition to standard therapy for metabolic control; Group 2 (N = 30)—serving as control—
receiving only standard therapy against diabetes. The primary study endpoints were two VEP parameters; P100 wave 
latency and P100 amplitude at 3 months. Moreover, HbA1c levels were measured before the start of treatment and 
three months later as secondary study endpoint.

Results  All 60 patients completed the clinical trial. P100 latency significantly reduced at 3 months since baseline. No 
correlation was found between repeated measures of P100 wave latency and HbA1c (Pearson’s r = 0.169, p = 0.291). 
There was no significant difference between baseline values and repeated measures of P100 wave amplitude over 
time in either group. No adverse effects were recorded.

Conclusions  Ozone therapy improved the conduction of impulses in optic pathways of diabetic patients. The 
improved glycemic control following ozone therpay may not fully explain the reduction of P100 wave latency though; 
other mechanistic effects of ozone may be involved.
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Background
Diabetes Mellitus (DM) encompasses a cluster of com-
mon metabolic disorders that cause hyperglycemia. The 
estimated worldwide prevalence of DM has increased 
substantially over the past three decades, from 30 million 
cases in 1985 to 425 million in 2017. The International 
Diabetes Federation has predicted that if the current 
trend continues more than 629 million people will devel-
ope diabetes by 2045 [1].

DM and its subsequent pathophysiologic changes 
affecting multiple organs place a heavy burden not only 
on patients but also on the entire health care systems [2]. 
Central nervous system disorders are frequent yet under-
estimated complications of DM [3–7] with diabetic neu-
ropathy being the most common sequela.

For years, retinopathy sustained by vascular pathol-
ogy was assumed to be the underlying cause of visual 
dysfunction in diabetic patients. However, diabetes also 
affects neuronal cells of the retina, resulting in dysfunc-
tion and degeneration of some retinal neurons [8].

The main causative factor for early functional changes 
in diabetic neuropathy and reduced nerve conduction 
velocity (NCV) is likely to be endoneurial hypoxia [9]. 
On the other hand, oxidation of elevated levels of intra-
cellular glucose increases the generation of reactive 
oxygen species (ROS) [10, 11]. Both latter mechanisms—
endoneurial hypoxia and ROS  generation—deter-
mines  excessive oxidative stress [12]. Oxidative stress, 
combined with derangements in vascular and metabolic 
pathways, contributes to the development of diabetic 
neuropathy [13].

In experimental studies, treatment with antioxidants 
[14] proved to restore normal blood flow in diabetic neu-
ropathy, improving NCV and retrieving impaired nerve 
function [15–21].

Although ozone molecule in large doses is a powerful 
oxidant and inhalation of ozone gas is very toxic for the 
lungs [22], recent studies have shown that administration 
of small doses of a gas mixture of 2% O3 plus 98% O2 via 
appropriate routes paradoxically induces an adaptive reac-
tion reducing the endogenous oxidative stress [23–26].

The upregulation of the anti-oxidant system induced 
by ozone therapy reportedly reduces chronic oxidative 
stress, thereby improving blood circulation, oxygen deliv-
ery to ischemic tissues, insulin secretion and efficacy, 
inducing also a state of euphoria and wellbeing [23]. For 
instance, ozone therapy in patients affected by diabetic 
foot induced normalisation of organic peroxides levels, 
activation of superoxide dismutase, prevention of oxi-
dative stress and improvement of glycemic control [27]. 
Furthermore, ozone treatment also reduced the oxida-
tive damage on proteins and lipids of patients affected by 
multiple sclerosis [28].

Visual evoked potentials (VEP) are electrical potential 
differences, generated in response to visual stimuli, that 
can be recorded from the human scalp. VEP are a simple, 
sensitive, non-invasive and harmless method for detect-
ing early alterations in central visual pathways. Since 
damage to the optic pathway reduces the amplitude and 
increases the latency of the response wave. VEPs have 
become a routine method to diagnose reversal patterns 
in several neurologic diseases affecting the optic pathway 
[29–31].

Several studies have found abnormalities of VEP 
parameters in diabetic patients, especially prolongation 
of P100 wave latency [29, 32–40]. VEP can detect pre-
clinical neuro-degenerative or micro-vascular changes 
within or downstream the retina, even in patients with-
out diabetic retinopathy [41]. These changes denote a loss 
of neuronal function even before the detection of ana-
tomical abnormalities [42].

In view of the above, this randomized controlled study 
aims to evaluate the effect of ozone therapy to imptove 
the function of visual pathways in diabetic patients 
treated at Baqiyatallah University of Medical Sciecnes in 
Tehran (Iran).

Methods
This was a single-centre, randomized, controlled, paral-
lel-group study enrolling 60 patients with type 2 diabe-
tes, conducted from May   2019 to February 2020 at the 
Ozone Complementary Research Center in Tehran, Iran.

In  absence of reference estimates, hypothesizing 
a 25% difference in P100 wave latency between patients 
treated with ozone as compared to those receiving stand-
ard of care for diabetes, assuming a two-sided test with a 
5% significance level and a desired 80% statistical power, 
at least 52 patients (26 patients treated with ozone versus 
26 controls) were required to achieve statistically signifi-
cant results. We therefore decided to slightly increase the 
latter numbers, recuiting 60 patients (30 per study arm).

SPSS software was used to assign participants to the 
two experimental groups with an allocation ratio of 1:1, 
by blind block randomization:

•	 Group 1 (treatment arm) underwent a cycle of sys-
temic oxygen-ozone therapy in addition to standard 
diabetes therapy for metabolic control.

•	 Group 2 (control arm) did not receive any treat-
ments other than standard diabetes therapy for meta-
bolic control.

Baseline clinical and demographic characteristics of 
patients, including height, weight and duration of dia-
betes, were recorded. Patients underwent baseline 
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ophthalmologic examination to classify their retinopathy 
status as follows:

•	 No apparent retinopathy,
•	 Mild non-proliferative diabetic retinopathy (NPDR),
•	 Moderate NPDR,
•	 Severe NPDR,
•	 Regressed Proliferative Diabetic Retinopathy (PDR),
•	 PDR.

VEP were recorded as primary endpoint, at baseline 
and after 1, 2 and 3  months. HbA1c levels were used as 
the secondary outcome and measured at baseline and 
after 3 months.

No information on side effects was collected.
Exclusion criteria included:

•	 G6PD deficiency;
•	 Pregnancy;
•	 Nursing patients;
•	 Abnormal coagulation tests;
•	 Abnormal thyroid function tests;
•	 Hypersensitivity to ozone; and
•	 Reduced visual acuity not correctable by glasses.

Oxygen ozone therapy
Oxygen ozone therapy (major and minor autohemo-
therapy) was performed twice a week for 20 sessions, and 
10 weeks in total. The procedure was as follows

Major autohemotherapy
Blood was drawn (1.2  mL/kg) from an antecubital vein 
into a sterile glass bottle containing citrate sodium (3.8% 
10 mL per 100 mL of blood) as anticoagulant. After dis-
connecting the bottle, a saline infusion was used to keep 
the vein open. An oxygen-ozone mixture with ozone con-
centration of 25–30 µg/mL was then added to the blood 
bottle, which was gently rotated for 5 min to mix the gas 
blend  with blood. The hyper oxygenated and ozonated 
blood was thereafter reinfused via the same vein over the 
course of 20 min. The entire procedure required 40 min 
to complete.

Ozone was produced by Herrmann Medozon com-
pact (Germany). This device measures ozone concentra-
tion photometrically in real-time, in accordance with the 
rules of the International Ozone Association.

Minor autohemotherapy
Blood (10  mL) was removed i.v. and collected into a 
20 mL disposable syringe prefilled with the same amount 
of ozone-oxygen mixture (10  mL). The syringe was 
shaken for 30 s and slowly injected intramuscularly (i.m.).

Visual evoked potentials
Pattern-reversal VEP was selected as the type of visual 
stimuli for recording since it is less variable in timing 
and waveform than VEP elicited by other stimuli. The 
pattern-reversal stimulus consisted of a checkerboard 
with 8 × 8 black and white checks (medium-sized 0.5, 
30 min of arc) changing phase (from white to black and 
vice versa) abruptly with a frequency of twice per second 
(2/s). The patient, sitting comfortably, was placed in front 
of the checkerboard pattern, at 1  m distance between 
the eyes and the screen. Patients with refractive errors 
were tested with appropriate corrective glasses. Patients 
were asked to focus at the red coloured marker, located 
at the centre of the checkerboard pattern, with only one 
eye at time (monocular stimulation). Surface electrodes 
were employed to record the electrical impulses gener-
ated by the patient’s visual pathway in response to pattern 
alterations.

The surface electrodes were placed with electrode paste 
after proper skin preparation by cleansing, degreasing 
and abrading. According to the international 10/20 sys-
tem, surface electrodes were placed according to bony 
landmarks and size of the head [43, 44]. The active elec-
trode was placed on the scalp over the occiput and above 
the inion (Oz), at a distance to inion equal to 10% of the 
distance between inion (Oz) and nasion. The reference 
electrode was placed on the forehead at Fz, a point above 
nasion at a distance to nasion equal to 30% of the dis-
tance between nasion and inion. The ground electrode 
was attached to a nonspecific point, usually the fore-
head (Fpz). The subscript z indicates a midline position. 
The difference between impulses received by the active 
and reference electrodes was used for recording VEP 
(Oz–Fz).

VEP parameters recorded were P100 wave latency (in 
ms) and P100 wave amplitude (in µV). P100 wave ampli-
tude was calculated using the peak-to-peak amplitudes of 
waves N70-P100.

Statistical analyses
SPSS Version 25 was used to perform the statistical 
analyses.

VEP parameters of the subjects’s right eyes were used 
for statistical analysis.

Quantitative variables were expressed as mean ± stand-
ard deviation (SD), whereas.  categorical variables were 
expressed as number and percentages (%).

Independent samples t-Test were used to compare the 
baseline characteristics of ozone-treated patients  ver-
sus controls and against measurements  from 50 healthy 
individuals without diabetes. One-way ANOVA was 
used to assess the effect of retinopathy status as between-
subject factor on VEP parameters of the eye. Repeated 



Page 4 of 10Izadi et al. Diabetology & Metabolic Syndrome  2023, 15(1):140

ANOVA tests were performed  over time (at base-
line, after one month, after two months, and at three 
months). The level of significance was set at 0.05.

Results
Diabetic patients were recuited from May through 
November 2019, and the clinical trial ended in February 
2020. All 60 patients completed the trial.

Baseline demographic and clinical characteristics 
of the studied population
As can be seen from Table 1, there was no difference in 
the baseline distribution of variables between the two 
patient groups. Patients’ age ranged between 42 and 
82  years, with a mean of 60.8 ± 9.2  years in the  treat-
ment arm against 61.7 ± 9.6 years in the control arm. The 
duration of DM ranged between < 7 days (for newly diag-
nosed cases) up to 31 years, for a mean of 14.2 ± 6.7 days 
in ozone-treated patients  versus 14.4 ± 6.9  days in con-
trols. The mean baseline  HbA1c was 9.04 ± 1.46  days in 
ozone  treated patients  against 8.96 ± 1.54  days in con-
trols; 90% of patients had HbA1c > 53  mmol/mol (7.0%). 

The mean BMI was 27.7 ± 4.7  kg/m2 in patients treated 
with ozone against 27.6 ± 3.9 kg/m2 in controls.

There was no significant difference in baseline retin-
opathy status between the two patient groups. Of total 
60 right eyes, the percentage of retinopathy status was as 
follows:

•	 16.7% no apparent retinopathy;
•	 35% mild NPDR;
•	 15% moderate NPDR;
•	 6.7% severe NPDR; and
•	 26.6% regressed PDR.

Baseline VEP measurements
Table  2 shows the reference data of VEP parameters 
obtained from 50 non-diabetic volunteers. As can be 
seen, compared to males, females had lower P100 latency 
values (p < 0.05). By contrast, no significant difference 
was found for P100 amplitude by sex in each group.

As can be seen from Table  2, compared to non-dia-
betic individuals, diabetic patients treated with ozone 
had significantly longer baseline P100 wave latency 

Table 1  Baseline clinical and demographic characteristics of the studied population

DM diabetes mellitus, N.S non significant

Baseline variables Treatment arm (N = 30) Control arm (N = 30) P-value

Age (years)

 Mean ± SD 60.8 ± 9.2 61.7 ± 9.6 N.S

 40–49 5 (16.7) 5 (16.7) N.S

 50–59 8 (26.67) 7 (23.3)

 60–69 11 (36.7) 12 (40)

 70–79 5 (16.7) 4 (13.3)

 80+ 1 (3.3) 2 (6.7)

Sex

 Male 17 (56.7) 16 (53.3)

 Female 13 (43.3) 14 (46.7)

Duration of DM (days)—(mean ± SD) 14.2 ± 6.7 14.4 ± 6.9 N.S

BMI (kg/m2)—(mean ± SD) 27.7 ± 4.7 27.6 ± 3.9 N.S

HbA1C (%)—(mean ± SD 9.04 ± 1.46 8.96 ± 1.54 N.S

Table 2  Baseline VEP parameters from 50 non-diabetic subjects, diabetic patients treated with ozone and controls, by sex

Group VEP parameter Total (mean ± SD) Males (mean ± SD) Females (mean ± SD) P-value

Healthy subjects P100 wave latency (ms) 98.83 ± 4.48 101.22 ± 4.50 96.60 ± 4.45 0.002

P100 amplitude (μV) 7.08 ± 2.08 6.54 ± 2.02 7.67 ± 2.09 0.085

Treatment arm P100 wave latency (ms) 108.33 ± 5.36 111.82 ± 5.37 103.76 ± 5.32 0.001

P100 amplitude (μV) 4.03 ± 1.89 3.98 ± 1.90 4.09 ± 1.88 0.112

Control arm P100 wave latency (ms) 108.31 ± 5.29 111.53 ± 5.30 104.68 ± 5.22 0.001

P100 amplitude (μV) 4.02 ± 1.91 3.96 ± 1.91 4.08 ± 1.90 0.105
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(108.33 ± 5.36 vs. 98.83 ± 4.48 ms; p < 0.001) and lower P100 
wave amplitude (4.03 ± 1.89 vs. 7.08 ± 2.08  μV; p < 0.001). 
By contrast, there was no significant baseline difference in 
P100 wave latency and amplitude by study arm.

Table  3 shows number and percentage of  dia-
betic  patients with abnormal baseline VEP findings by 
study arm. VEP were considered altered when latency or 
amplitude of P100 wave differed from normal values by at 
least two standard deviations.

Correlation between baseline VEP parameters and HbA1C 
or duration of diabetes
There was no significant correlation between baseline 
measurements of VEP parameters and HbA1C or dura-
tion of diabetes.

Effect of retinopathy status on baseline VEP parameters
There was no significant correlation between retinopa-
thy status and baseline P100 wave latency [F(5; 54)=0.783; 
p = 0.566]  or  amplitude [F(5; 54)=1.76; p= 0.136) in both 
patient groups.

Comparison between groups over the time
Table  4 shows the variation of VEP parameters (P100 
latency and amplitude) as well as HbA1C from baseline 

to month 3, by patients group and between ozone-treated 
patients against non-diabetic individuals. Figures 1, 2 and 
3 show the trend over time of P100 Latency, P100 Ampli-
tude and HbA1C, respectively, by study arm.

P100 latency
As can be seen from Table  4, P100 latency decreased 
from 108.33 ± 5.36 ms  to 106.763 ± 5.27 ms  in patients 
treated with ozone, whereas it slightly increased 
from 108.31 ± 5.29 ms  to 108.434 ± 5.31 ms  in con-
trols. The difference in mean P100 latency at  3  months 
between treatment and control arm was statistically 
significant (p = 0.03).

As can be seen from Table 4, although the mean P100 
latency estimates decreased significantly at 3 months  in 
patients treated with ozone, they were still significantly 
higher than non-diabetic subjects (p < 0.001).

Since  the assumption of sphericity was vio-
lated  at  Mauchly’s test(χ2(5) = 392.701, p < 0.001), 
the  degrees of freedom were corrected using Green-
house–Geisser estimates of sphericity (ε = 0.387). Whilst 
the individual effect of time [F(1.16; 67.33)=3.24; p=007] 
or patient  group [F(1; 58)=0.53; p=0.47] was  not sig-
nificant,  there was a significant time × group interac-
tion [F(1.16; 67.33) = 3.84; p = 0.048] with an effect size 
f(U) = 0.20.

P100 amplitude
As can be seen from Table  4, P100 amplitude 
slightly  increased  from 4.03 ± 1.89 μV  to 4.05 ± 1.93 
μV  in diabetic  patients treated with ozone, wheres it 
remained stable (4.02 μV) in controls. However, the dif-
ference in mean P100 amplitude at 3  months between 
treatment and control arm was not significant

Since the  assumption of sphericity was  vio-
lated  at  Mauchly’s test (χ2(5) = 50.583, p < 0.001), 

Table 3  Number and percentage of diabetic patients with 
abnormal baseline VEP findings, by study arm

Parameter Patient group Number (%)

P100 wave latency (ms) Treatment arm 14 (46.6)

Control arm 14 (46.6)

P100 amplitude (μV) Treatment arm 6 (20)

Control arm 5 (16.6)

Table 4  Comparison of VEP measurements at baseline and after 3 months by patient group (ozone treated diabetic patients versus 
controls). Comparison of VEP measurements  of  ozone-treated diabetic patients both  at baseline and after 3 months 
against values from individuals without diabetes

N.S non significant

*Comparison of treatment versus control arm

**Comparison of ozone-treated patients with non-diabetic patients

VEP parameter Timeline Study arm P-value* Non-diabetic subjects P-value**

Treatment Control

P100 wave latency (ms) Baseline 108.33 ± 5.36 108.31 ± 5.29 N.S 98.83 ± 4.48 < 0.001

At 3 months 106.76 ± 5.27 108.43 ± 5.31 0.032 < 0.001

P100 amplitude (μV) Baseline 4.03 ± 1.89 4.02 ± 1.91 N.S 7.08 ± 2.08 < 0.001

At 3 months 4.05 ± 1.93 4.02 ± 1.90 N.S < 0.001

HbA1C (%) Baseline 9.04 ± 1.46 8.96 ± 1.54 N.S

At 3 months 8.69 ± 1.47 8.87 ± 1.63 0.041
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the  degrees of freedom were corrected using Green-
house–Geisser estimates of sphericity (ε = 0.715). Both 
the individual  effect of time [F(2.14; 124.41) = 1.16, 
p = 0.310] or patient  group [F(1; 58) = 0.004; 
p = 0.952] was non-significant. The interaction term 
of Time × Group was also  not significant [F(2.14; 
124.41) = 0.581; p = 0.572 with an effect size f(U) = 0.27.

There was no significant difference between baseline 
values of P100 amplitude and their  repeated measures 
over time in either study group (Fig. 2).

HbA1C
As can be seen from Table  4, in patients treated with 
ozone HbA1C decreased from 9.04 ± 1.46 % to 8.69 ± 1.47 
%  after 3  months. Among controls, HbA1C diminshed 
from 8.96 ± 1.54 % to 8.87 ± 1.63 % at month 3. Reduction 
of mean HbA1C at 3  months was significantly stronger 
in patients treated with ozone compared to controls 
(p = 0.041). Whilst there was a significant main effect 
of time [F(1; 58) = 23.16;  (p < 0.001], the effect of patient 
group was non-significant, [F(1.58)=0.022;  p = 0.882]. 
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However, a significant ime × group interaction could be 
appreciated [F(1; 58) = 7.54;  p = 0.008].

No correlation was observed between HbA1C meas-
urements and variaton of P100 wave latency over time 
(Pearson’s r = 0.169; p = 0.291).

Side effects
No relevant adverse effects were noted in either group.

Discussion
Key findings
In the present study conduction of impulses across optic 
pathways, in terms of reduction of P100 latency, signifi-
cantly improved 3  months since start of ozone therapy, 
entailing a cycle of 20 treatment sessions. However, 
no significant difference in P100 wave amplitude was 
observed from baseline through month 3.

No correlation was found between P100 wave latency 
or amplitude and duration of diabetes or HbA1 levels.

Finally, the degree of diabetic retinopathy did not cor-
relate with abnormal VEP in the present study.

Interpretation of findings
Stimulation of the central region of the visual field leads 
to generation of P100 waves, mostly occurring in the stri-
ate cortex [45]. The number of functional afferent fibres 
reaching the striate cortex determines the amplitude of 
VEP [46]. A reduction in baseline P100 wave amplitude 
of diabetic patients observed in our study is in line with 
the open literature [29, 47–49]. Although ozone therapy 

had a noticeable impact on P100 wave amplitude, the 
respective effect size was not significant, probably due to 
small number of treatment sessions or participants.

Albeit  ozone therapy was previously found to sig-
nificantly reduce fasting blood sugar (FBS) level in 
diabetic patients [50], the reduction in P100 wave laten-
cies observed in the present study could not be merely 
explained by the effects of the gas on glycemic control. 
Ozone in fact mitigates the oxidative stress mainly by 
shifting the balance of endogenous oxidant-antioxi-
dant systems towards anti-oxidantion, another poten-
tial mechanism for therapeutic effects of ozone [51]. As 
already mentioned above, oxidative stress enhances the 
risk of developing neuropathy in diabetic patients with 
micro-angiopathy [13]

Retinopathy was not associated with VEP abnormali-
ties in the present trial a finding in line with other stud-
ies [39, 52–55]. However, further investigations reported 
prolonged VEP latencies only in patients with prolifera-
tive retinopathy [56–59], Whilst most neurophysiologic 
changes in diabetic patients can be attributed to ischemic 
damage to retinal neurons and other structures induced 
by microangiopathy, other factors may also play an key 
role in diabetic neuropathy.

Several studies investigated the relationship between 
P100 latency changes and long-term glycemic control, 
with conflicting evidence though [33, 37, 40, 60, 61]. 
Whilst correlation between P100 latency changes and 
long-term glycemic control (expressed as HbA1C levels 
or glycaemia) was reported by a few studies [33, 34, 60], 
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several others did not confirm the latter association 
[29, 35, 38, 59, 62–66].

For instance, baseline P100 wave latencies of 30 newly 
diagnosed diabetic patients with mean HbA1C levels of 
79.2  mmol/mol were significantly longer than healthy 
age- and sex-matched  controls’ (p < 0.01), whereaes 
N75 to P100 amplitudes were similar between the two 
groups. Six months later, when all diabetic patients 
achieved glycemic control (mean HbA1c = 55.2  mmol/
mol), all VEPs parameters were completely normalised 
[34].

By contrast, in a study on 18 non-insulin-dependent 
diabetic patients contrasted with 35 normal controls at 
baseline and after 4.6  years, VEP alterations remained 
stable over time (at least 4  years) without correlating 
with metabolic control during the  study period. Con-
versely, peripheral neurological disease progressed  in 
the latter study, correlating positively with metabolic 
control [32].

In another study on 12 diabetic patients with poor 
glycemic control, VEPs were recorded before and 3+ 
days after treatment with continuous subcutaneous 
insulin infusion leading almost to normoglycemia. 
Four diabetic patients (33.3%) had abnormal baseline 
VEPs. In comparison with controls, diabetic patients 
had longer mean  P100 wave latencies (p < 0.01). Three 
days after close control of blood glucose, leading to a 
significant fall in the mean level of blood glucose (from 
13.77 ± 2.2  mmol/L to 6.8 ± 1.2  mmol/L  p < 0.01), a 
significant reduction in the mean P100 wave latencies 
(112.5 ± 7.6  ms; p < 0.01) was observed. Nevertheless, 
compared with normal values, P100 wave latencies in 
diabetic patients were still significantly longer, with 
no correlation between VEPs improvement and fall in 
blood glucose [38]. Likewise, P100 wave latencies in 
diabetic patients were significantly longer than indi-
viduals’ without diabetes in the present study, a finding 
largely consistent with the open literature [4, 29, 44, 45, 
47].

By providing information on pathways distal from the 
optic nerve, pattern electroretinography (PERG) ena-
bles to distinguish VEP delays due to optic nerve dis-
orders from those arising from downstream pathways 
[67]. An index of neural conduction in the retinocorti-
cal pathway can be created by comparing peak implicit 
times of PERG and VEPs [68, 69]. In a study measuring 
both VEP and pattern electroretinogram, a proportion 
of diabetic patients showed abnormal VEP latencies in 
absence of fundoscopic findings of retinopathy, suggest-
ing impaired retinal function and in some cases optic 
neuropathy [70]. Given abnormal VEP parameters in dia-
betic patients could be due to retinal or optic tract disor-
ders or both, future research should use both PERG and 

VEP simultaneously, to better isolate the area on visual 
pathways targeted by ozone therapy.

Study limitations
A relatively short duration of follow-up was the main 
limitation of this study. Further studies with a larger sam-
ple size should be conducted to confirm whether ozone 
therapy can also increase the amplitude of the P100 wave. 
Extended follow-ups would enalble to clarify the timeline 
for P100 wave parameters to return to pre-treatment lev-
els since cessation of ozone therapy.

Furthermore, the present  study was conducted with a 
single electrode placed over the midline of occiput which 
is called a 1-channel VEP. This central electrode picks up 
signals from the combined hemispheres at the visual cor-
tex. Another option is to use three occipital electrodes 
for a 3-channel VEP. With 3-channel electrode place-
ment it is possible to detect optic nerve misrouting and 
determine whether a lesion is located at or posterior to 
the chiasm.

Conclusion
Ozone therapy reduced P100 wave latency and improved 
glycemic control in diabetic patients. Ozone therapy 
could be recommeded as a complementary treatment 
alongside standard therapy to improve the conduction of 
impulses in visual pathways of diabetic patients. A treat-
ment cycle of ozone therapy should probably entailed at 
least 20 sesssions.

The beneficial effect of ozone needs to be explored 
more in depth though, to understand potential further 
therapeutic  mechanims against diabetic neuropathy 
beyond glycemic control. Given abnormal VEP param-
eters in diabetic patients could be due to retinal or optic 
tract disorders or both, simultaneous PERG and VEP are 
recommended in future research studies, to isolate the 
area on visual pathways targeted by ozone therapy.
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