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Abstract 

Background:  Diabetic hepatopathy is a serious complication of poorly controlled diabetes mellitus. An efficient 
antidiabetic drug which keeps normal liver tissues is not available. The renin-angiotensin system has been reported to 
be involved in both diabetic state and liver function. Aliskiren is a direct renin inhibitor and a recently antihypertensive 
drug with poly-pharmacological properties. The aim of the current study is to explore the possible hepatoprotective 
effects and mechanisms of action of aliskiren against streptozotocin (STZ) induced liver toxicity.

Methods:  Mice were distributed to 3 groups; first: the normal control group, second: the diabetic control group, 
third: the diabetic group which received aliskiren (25 mg/kg; oral) for 4 weeks. At the end of the treatment period, 
plasma glucose, insulin, lipid profile, oxidative stress, and liver function tests were evaluated spectrophotometrically. 
ELISA technique was used to measure the expression levels of TNF-α and adiponectin. Furthermore, a Histopathologi-
cal examination of liver samples was done.

Results:  It was shown that aliskiren treatment ameliorated the STZ-induced oxidative stress and elevated inflamma-
tory biomarkers, hypercholesterolemia, serum aminotransferases and alkaline phosphatase levels in diabetic mice. In 
addition, hepatocellular necrosis, and fibrosis were improved by aliskiren treatment.

Conclusion:  aliskiren protects against the liver damage caused by STZ-induced diabetes. This can be explained by its 
ability to block angiotensin-II, and its anti-diabetic, hypocholesterolemic, antioxidant and anti-inflammatory effects. 
Aliskiren could be a novel therapeutic strategy to prevent liver diseases associated with hypertension and diabetes 
mellitus.
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Background
Diabetes mellitus (DM) is a chronic severe metabolic 
endocrine disorder. It is considered one of the most com-
mon and serious chronic disorders worldwide [1, 2]. Pre-
vious studies have reported that diabetic patients with 
poorer glycemic control suffer hepatomegaly, elevated 
levels of serum alanine transaminase (ALT) and aspartate 
transaminase (AST) [3, 4], high oxidative stress [5], hepa-
tocellular necrosis and fibrosis [6]. Thus indicates liver 
impairment associated with DM [7, 8].

Blocking of the renin angiotensin aldosterone sys-
tem (RAAS) by different ways has reported to be 

involved in hepatic protective impacts [9–11]. Aliskiren 
(C30H53N3O6, Molecular weight: 551.8  g/mol) is the 
first approved drug in the recent antihypertensive class; 
direct renin inhibitors [12]. Aliskiren acts by down-reg-
ulation of the RAAS, lower plasma renin activity, plasma 
angiotensin I (Ang I), and angiotensin II (Ang II) [13, 14]. 
Ang II is produced through endothelial cleavage of Ang I. 
Ang I is produced from angiotensinogen by hepatocytes. 
Renin cleaves angiotensinogen to form Ang I which is 
then converted by ACE to the active Ang II [15]. Fur-
thermore, the antidiabetic effects of aliskiren have been 
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proven previously [16]. A previous study has reported 
that aliskiren reduced portal pressure and intrahepatic 
resistance in cirrhotic rat liver [17]. The current study 
aimed to estimate the hepatoprotective impacts and pos-
sible mechanisms of action of aliskiren in an experimen-
tal model of induced diabetes in mice using STZ.

Methods
Animals and experimental design
Male Swiss albino mice (25–30  g) were maintained at 
20–25  °C in a 12  h light/dark cycle, with a commercial 
normal rodent diet and water freely available. They were 
divided into three groups, 8 mice each: 1st; normal con-
trol group (received citrate buffer, IP for 1  month), 2nd; 
diabetic control group (STZ-induced diabetic mice and 
received normal saline, IP, for 1 month). 3rd; diabetic mice 
were treated with aliskiren; three days after STZ injec-
tion, this group of mice received daily aliskiren (25 mg /kg 
oral, dissolved in sterile normal saline) for 1 month. The 
volume of injection was 0.25 ml/20 g mice. Different dose 
levels of aliskiren have been tested before in experimental 
studies [18, 19]. We have selected the least effective dose 
correlated to the clinical dose used in patients [20]. We 
did not try different dose levels to reduce the number of 
used animals according to the standard research ethics.

Diabetes induction
Mice for the second and third groups were overnight 
fasted and then injected intraperitoneally with a single 
dose of 50  mg/kg streptozotocin dissolved in a freshly 
prepared citrate buffer (pH 4.5), 15  min after nicotina-
mide (NA) 110  mg/kg (dissolved in normal saline), to 
partially prevents the harmful effects of STZ to develop 
a model of non-insulin-dependent DM. Three days later; 
blood glucose was checked by a one-touch Glucome-
ter, using blood from the tail. Mice with hyperglycemia 
(≥ 250 mg/dl) were selected as diabetic [21].

At the end of the treatment period, mice were fasted 
overnight. Blood samples were collected into tubes con-
taining EDTA. Plasma was separated by centrifugation 
(10,000  rpm/min, for 10 min, 4  °C). Liver samples were 
separated, washed with saline, and kept in 10% formalin.

STZ, aliskiren, and ELISA kits were purchased from 
Sigma Aldrich Co (St Louis, MO, USA). Other chemicals 
and reagents were of analytical grade and were supplied 
by Biodiagnostic company, Egypt.

Biochemical analysis
Blood glucose and serum insulin
Fasting blood glucose was assessed spectrophotometri-
cally using blood from the lateral tail vein on the last day 
of the experiment; by a commercial kit (Biodiagnostic, 

Egypt) [22]. Serum insulin was assessed using the ELISA 
technique.

Oxidative stress biomarkers
Serum oxidative stress biomarkers and antioxidant 
enzymes [reduced Glutathione (GSH), Superoxide dis-
mutase (SOD), Malondialdehyde (MDA), and Nitric 
oxide (NO)] were measured spectrophotometrically 
using commercial reagent kits. SOD was assessed in line 
with the pyrogallol autoxidation technique [23]. MDA 
was estimated according to Satoh [24]. GSH was meas-
ured in agreement with Beutler et al. [25].

Liver functions markers and lipid profile
Serum albumin level was assessed in agreement with the 
modified bromocresol green technique [26]. Serum ALT 
and AST were assayed according to Piyachaturawat et al. 
[27].

The level of serum alkaline phosphatase was assayed 
according to Reitman and Frankel [28]. CPK-total was 
assayed according to Bishop et  al. [29]. Cholesterol and 
triglyceride were determined enzymatically using a com-
mercial kit according to Cox and García-Palmieri [30].

Adiponectin
Adiponectin was quantitatively measured in serum using 
a commercial ELISA kit (Biovision, Inc., San Francisco). 
The principle of the assay is that polyclonal antibody 
specific for adiponectin has been pre-coated into 96 well 
microplate. Standards and samples were pipetted into the 
wells and any adiponectin present is bound by immobi-
lized antibody. The bound adiponectin is then captured 
by anti-adiponectin monoclonal antibody. With adding 
HRP conjugated anti-mouse IgG and HRP substrate, the 
colors developed in proportion to the bound adiponec-
tin, can be easily measured by Elisa plate reader [31].

Tumor necrosis factor‑alpha (TNF‑α)
TNF-α was measured using BioVision’s ELISA Kit. This 
assay employs a monoclonal antibody specific for mouse 
TNF-α coated on a 96-well plate [32].

Histological preparation
Liver samples were flushed and fixed in 10% neutral 
buffered formalin for 72  h. Samples were trimmed and 
processed in serial grades of ethanol, cleared in Xylene, 
synthetic wax infiltration and embedding into Paraplast 
tissue embedding media. 5μn tissue sections were cut 
by rotatory microtome then fixed into glass slides and 
stained by Hematoxylin and Eosin (H and E) stain. Then 
examined by experienced histologist in blinded manner 
by using Full HD microscopic imaging system “(Leica 
Microsystems GmbH, Wetzlar, Germany)”. All standard 
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procedures for samples fixation, processing and staining 
were done according to Culling, C.F.A. [33].

Statistical analysis
The data were obtained from at least 3 different experi-
ments and were expressed as means ± S.E. Results were 
calculated by one-way ANOVA, followed by Tukey’s test 
as a post hoc test. P < 0.05 was considered significant. 
All the analyses were carried out by using SPSS software 
(version 22.0) for Windows 8.1 (SPSS, Inc., Chicago, IL, 
USA).

Results
Blood glucose and serum insulin level
STZ leads to significant hyperglycemia associated with 
a significant decrease in serum insulin. Treatment with 
aliskiren leads to a significant lowering in blood glucose 
and increase in serum insulin as related to STZ only 
treated group, P < 0.05 (Table 1).

Oxidative stress markers
STZ treated group showed a significant elevation in 
oxidative stress biomarkers (MDA and NO). This was 
accompanied by a significant reduction in plasma anti-
oxidants (GSH, SOD). Treatment with aliskiren demon-
strated a significant reduction of oxidative stress markers 
(MDA and NO) and significant elevation in GSH and 
SOD, P < 0.05 (Table 1).

Liver functions markers and Lipid profile
STZ resulted in impairment of liver function markers 
that was demonstrated by the significant elevation in 
AST, ALT, ALP, and CPK-total. This was accompanied by 
a significant reduction in albumin content. In addition to 
a significant elevation in lipid profile as demonstrated by 
the significant increase in TG and C, P < 0.05 (Figs. 1, 2, 3, 
Table 2).

Treatment of the diabetic group with aliskiren for 
1 month resulted in a significant reduction of TG and C 

Table 1  Effect of one month treatment with aliskiren on plasma glucose, oxidative stress markers, and antioxidant enzymes in STZ-
induced diabetes in mice

Each value represents mean of 8 mice ± SEM. Statistical analysis was carried out using one way analysis of variance (ANOVA) followed by Tukey Kramer multiple 
comparisons test
a Significantly different from Normal control at P < 0.05
b Significantly different from Diabetic control at P < 0.05

Parameter
Group

Blood glucose (mg/dl) Insulin (μIU/ml) GSH (mg/dl) SOD (U/ml) MDA (nmol/ml) NO (µmol/µl)

Normal control 105.83 ± 4 67.67 ± 1.5 9.4 ± 0.67 96.17 ± 1.38 25.15 ± 0.27 87.16 ± 2.41

Diabetic control 448.17 ± 66.24a 26.17 ± 0.7a 4.85 ± 0.06a 61.1 ± 0.7a 40.97 ± 0.39a 240 ± 2.11a

Aliskiren 161 ± 15.4a,b 64.17 ± 1.1b 6.59 ± 0.11a,b 100.17 ± 0.57a,b 27.34 ± 0.32 140.67 ± 0.88a,b

Fig. 1  Effect of one month treatment with aliskiren on Albumin level 
in STZ-induced diabetes in mice. Each value represents mean of 8 
mice. Statistical analysis was carried out using one way analysis of 
variance (ANOVA) followed by Tukey Kramer multiple comparisons 
test. *Significantly different from Normal control at P < 0.05. 
#Significantly different from Diabetic control at P < 0.05

Fig. 2  Effect of one month treatment with aliskiren on Cholesterol 
level in STZ-induced diabetes in mice. Each value represents mean of 
8 mice. Statistical analysis was carried out using one way analysis of 
variance (ANOVA) followed by Tukey Kramer multiple comparisons 
test. *Significantly different from Normal control at P < 0.05. 
#Significantly different from Diabetic control at P < 0.05
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and liver function tests (AST, ALT, ALP, CPK-total). In 
addition to, a significant increase in plasma albumin con-
tent, P < 0.05 (Figs. 1, 2, 3, Table 2).

Adiponectin level
A significant reduction in serum adiponectin was 
observed in the diabetic group. However, a significant 
increase in serum adiponectin was observed in aliskiren 
treated group (Fig. 4).

Tumor necrosis factor‑α (TNF‑α)
The diabetic control group showed a significant elevation 
in serum TNF-α. Aliskiren treatment leads to a signifi-
cant reduction in TNF-α in comparison to STZ diabetic 
mice (Fig. 5).

Histological examination
Microscopic examination of different hepatic tissue sec-
tions showed; normal controls demonstrated normal mor-
phological features of hepatic parenchyma with many 
apparent intact hepatocytes having large vesicular nuclei, 

and intact hepatic vasculatures were observed with 
minimal degenerative changes. Diabetic model samples 
showed significant periportal and perivascular inflam-
matory cell infiltrates with mild vacuolar degenerative 
changes of hepatocytes with many nucleocytomegaly 
records with prominent nucleoli. Aliskiren treated group 
showed minimal inflammatory cell infiltrates records 
with more apparent intact hepatocytes with occasional 
nucleocytomegaly and or binucleation alternated with 
fewer degenerated cells accompanied with activated 
kupffer cells (Fig. 6).

Discussion
Diabetes Mellitus (DM) is a common endocrine and met-
abolic disorder. It is considered a major health care threat 
worldwide due to its severe complications. Streptozo-
tocin (STZ); a pancreatic cytotoxic induces irreversible 
necrosis of cells. It is used in the induction of diabetes 
experimentally as it mimics the endogenous chronic 

Fig. 3  Effect of one month treatment with aliskiren on Triglyceride in 
STZ-induced diabetes in mice. Each value represents mean of 8 mice. 
Statistical analysis was carried out using one way analysis of variance 
(ANOVA) followed by Tukey Kramer multiple comparisons test. 
*Significantly different from Normal control at P < 0.05. #Significantly 
different from Diabetic control at P < 0.05

Table 2  Effect of one month treatment with aliskiren on liver function markers in STZ-induced diabetes in mice

Each value represents mean of 8 mice ± SEM. Statistical analysis was carried out using one way analysis of variance (ANOVA) followed by Tukey Kramer multiple 
comparisons test
a Significantly different from Normal control at P < 0.05
b Significantly different from Diabetic control at P < 0.05

Parameter
Group

AST (IU/L) ALT(IU/L) ALP(IU/L) CPK-total

Normal control 35.33 ± 1.48 40.33 ± 0.76 87.16 ± 1.96 150 ± 1.15

Diabetic control 316.5 ± 1.38a 433.33 ± 14.15a 350 ± 1.81a 849.83 ± 270.31a

Aliskiren 42.72 ± 0.52a,b 56.83 ± 1.45b 90.03 ± 0.58b 188.33 ± 0.88b

Fig. 4  Effect of one month treatment with aliskiren on adiponectin 
level in STZ-induced diabetes in mice. Each value represents mean of 
8 mice. Statistical analysis was carried out using one way analysis of 
variance (ANOVA) followed by Tukey Kramer multiple comparisons 
test. *Significantly different from Normal control at P < 0.05. 
#Significantly different from Diabetic control at P < 0.05
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tissue damage and oxidative stress as a result of hyper-
glycemia [34–36]. The liver is the major organ of glucose 
metabolism in response to insulin. Liver is responsible 
for detoxification, clearance of oxidative stress bioprod-
ucts, regulating glycolysis, and gluconeogenesis [37, 38]. 
Long term hyperglycemia in poorly controlled DM may 
lead to liver disease. Moreover, liver impairment can pre-
dispose prediabetes or type 2 DM [7].

Diabetic mice, in the current study, had demonstrated 
significant hyperglycemia associated with a decrease 
in insulin level. Aliskiren treatment interrupted the 
observed increase in glucose level and decrease in insu-
lin when compared to the diabetic group. This result 
is supported by previous studies demonstrating that 
aliskiren stimulates insulin secretion in-vitro from iso-
lated β-cells and decreases insulin resistance in-vivo [16]. 
The decreased plasma glucose after aliskiren treatment 
can be explained by its ability to increase insulin secre-
tion or enhance insulin sensitivity [39]. Aliskiren also 
upregulates glucose transporters expression levels in the 
liver (GLUT 2) and muscle (GLUT 4), these confirm the 
improvement of insulin resistance by aliskiren [40, 41].

Furthermore, aliskiren increases the plasma level of 
adiponectin. Adiponectin is a novel adipocytokine pro-
duced mainly in adipose tissue and is involved in regu-
lating glucose levels, fatty acid breakdown, and insulin 
metabolism. It plays a role in the suppression of meta-
bolic abnormalities that may result in type 2 diabetes. 
Adiponectin therapy has been shown to induce beneficial 
metabolic effects in animals by decreasing both hepatic 
gluconeogenesis and plasma triglyceride levels and 
has also antiatherogenic and anti-inflammatory effects 
[42]. Adiponectin enhances insulin sensitivity primarily 

through upregulation of fatty acid oxidation and suppres-
sion of hepatic glucose production [43, 44]. So adiponec-
tin stimulation by aliskiren leads to increasing insulin 
sensitivity. In addition to, its insulin stimulation and 
hypoglycemic properties.

In line, high oxidative stress is involved in the bad prog-
nosis of DM and worsens its complications on the liver 
[45, 46]. A possible explanation may be that reactive oxy-
gen species (ROS) could interact with proteins, lipids, 
and DNA, resulting in the dysfunction of these important 
macromolecules [47]. ROS generates oxidative stress, 
which accelerates the damage and destruction of many 
organs [48, 49]. So, antioxidant enzymes including GSH, 
and SOD have potential protective impacts against tis-
sue damage by their ability to decompose ROS and block 
lipid peroxidation [49, 50].

Lipid peroxidation is induced by the interaction of 
ROSand polyunsaturated fatty acids and results in the 
formation of MDA, which represents cellular damage and 
cytotoxicity [50]. Evidence has reported that high lipid 
peroxidation leads to the progression of DM by altering 
the normal functions of membrane-bound enzymes and 
receptors. Oxidative stress leads to the development of 
microvascular and cardiovascular diabetic complications. 
Hyperglycemia causes mitochondrial superoxide over-
production in endothelial cells of both large and small 
vessels. This increased superoxide production causes the 
activation of five major pathways involved in the patho-
genesis of diabetes complications: polyol pathway flux, 
increased formation of advanced glycation end-products 
(AGEs), increased expression of the receptor for AGEs 
and its activating ligands, activation of protein kinase C 
isoforms, and overactivity of the hexosamine pathway. It 
also directly inactivates two critical antiatherosclerotic 
enzymes, eNOS and prostacyclin synthase [51].

In the current study, we observed a significant reduc-
tion in the activities of SOD, and GSH and an increase 
in MDA, and NO serum levels in STZ-induced diabetic 
mice. However, a significant elevation in antioxidants 
and a remarkable lowering in lipid peroxidation were 
observed in the aliskiren treated group. This was indi-
cated by the elevation of SOD, GSH, and the reduction 
in MDA, NO. The antioxidant potential of aliskiren was 
in line with previous studies. Ang II may possess a role 
in phosphorylation and rise of ROS in the liver [52] and 
contributed to the bad prognosis of non-alcoholic fatty 
liver disease by elevating hepatic ROS [53]. Oxidative 
stress also triggers the development of steatohepatitis by 
stimulating inflammatory response [54]. So, the blockade 
of Ang II by aliskiren resulted in its antioxidant potential 
which also contributes to its potency to decrease insulin 
resistance and protects hepatocytes from high oxidative 
stress induced by DM.

Fig. 5  Effect of one month treatment with aliskiren on Tumor 
necrosis factor—alpha in STZ-induced diabetes in mice. Each value 
represents mean of 8 mice. Statistical analysis was carried out using 
one way analysis of variance (ANOVA) followed by Tukey Kramer 
multiple comparisons test. *Significantly different from Normal 
control at P < 0.05. #Significantly different from Diabetic control at 
P < 0.05
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In addition, hepatic ROS, as well as proinflammatory 
cytokines (TNF-α, IL-1β, and IL-6) are reduced with 
Ang-II inhibition [55]. As observed in the current study 
that aliskiren ameliorated the STZ-induced elevation in 
TNF-α. Aliskiren possesses anti-inflammatory properties 
leads to the preservation of liver function markers.

Increased activities of serum aminotransferases are 
also diagnostic markers of liver disorder and are occurred 
more frequently in diabetic patients [56, 57]. The present 

study demonstrated that serum ALT and AST levels were 
significantly elevated in STZ-treated animals, these were 
following previous studies [58–60] and indicated hepato-
cellular necrosis [61]. It has also been reported that high 
serum ALT and AST are involved in increasing insulin 
resistance and defective utilization of glucose by the liver 
[62]. Insulin deficiency leads to the breakdown of pro-
tein and enhances amino acid catabolism to provide sub-
strates for gluconeogenesis [63].

Fig. 6  Effect of one month treatment with aliskiren on Microscopic examination of different hepatic tissue sections in STZ-induced diabetes 
in mice (H and E-stained) (× 400). a: normal control, b: diabetic control and c: aliskiren treated group. a Normal controls demonstrated normal 
morphological features of hepatic parenchyma with many apparent intact hepatocytes having large vesicular nuclei, intact hepatic vasculatures 
were observed with minimal degenerative changes. b Diabetic model samples showed significant periportal and perivascular inflammatory cells 
infiltrates with mild vacuolar degenerative changes of hepatocytes with many nucleocytomegaly records with prominent nucleoli. c Aliskiren 
treated group showed minimal inflammatory cells infiltrates records with more apparent intact hepatocytes with occasional nucleocytomegaly and 
or binucleation alternated with fewer degenerated cells accompanied with activated kupffer cells
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Administration of aliskiren significantly lowered 
AST and ALT activities, indicating that it had poten-
tial effects on improving liver function. These results 
agreed with those of Hsieh et  al. [17] who demon-
strated that there is a beneficial effect of aliskiren on 
portal pressure and intrahepatic resistance through 
reduction of Ang II production in the cirrhotic liver. 
These authors concluded that direct renin inhibi-
tion may serve as a potential and effective therapeutic 
strategy for the management of portal hypertension.

A high level of ALP was demonstrated in the STZ 
diabetic group. Increased ALP has been reported in 
pathological conditions which involve the kidney and 
liver [64, 65]. In addition, diabetic mice showed seri-
ous lipid dysfunction, which was experimentally vali-
dated by the increased levels of TG and TC similar to 
the clinical properties of human DM [66]. TC and TG 
are important parameters for evaluating blood viscos-
ity, and the risk of atherosclerosis. The administra-
tion of aliskiren significantly decreased TG and TC, 
this indicated its potential impacts on improving lipid 
metabolism and was in accordance with a previous 
study that demonstrated increased hepatic turnover of 
triglycerides with an upregulation in fatty acid trans-
port and breakdown after aliskiren treatment [9]. So, 
the RAAS influences hepatic fatty acid metabolism.

Finally, the microscopic examination of liver tissue 
from STZ-treated mice revealed loss of hepatic archi-
tecture, hepatomegaly, dilatation of hepatic sinusoid 
capillaries close to the central vein, apoptotic hepato-
cytes, and hepatocytes with lipid droplets in their 
cytoplasm indicating increased adipogenesis and cell 
death as well as signs of inflammation, which were all 
mitigated by aliskiren treatment [58, 67].

From the shown data, liver fibrosis and its serious 
complications such as portal hypertension and hepa-
tocellular carcinoma are evidenced to be related to the 
bad prognosis of diabetes [68, 69]. Plasma renin activ-
ity and angiotensins were reported to be increased 
in advanced liver disease [70–72] which indicates 
the role of RAAS in diabetes-induced liver impair-
ment. So, inhibition of Ang II synthesis by aliskiren 
may attenuate hepatic fibrosis as observed in the cur-
rent and previous studies [73, 74]. Aliskiren has been 
proven as an effective way to block renin activity and 
restrain liver fibrosis in experimental models. In addi-
tion to its explained hepatoprotective mechanisms by 
lowering the induced high blood glucose, lipid pro-
file, liver enzymes, oxidative stress, and inflammatory 
biomarkers.

Conclusion
Aliskiren is a direct renin inhibitor, that prevents the for-
mation of Ang II by blocking renin from converting to Ang 
I. Our study is the first to demonstrate the hepatoprotective 
impacts and mechanisms of aliskiren in a model of STZ-
induced diabetes in mice. The evidenced hepatoprotective 
effect was a result of improvement of RAAS by inhibition of 
Ang II production, Ang II action, glycemic control, reduc-
tion of insulin resistance, changes in lipid metabolism, anti-
inflammatory and antioxidant effects elicited by aliskiren 
treatment. Aliskiren is considered a promising treatment 
for the underlying conditions associated with hypertension, 
hypercholesterolemia, and diabetes. Clinical studies are 
essential to ensure its impact on the management of hyper-
tensive or diabetic patients with liver diseases.
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