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Abstract

Background We sought to identify features that distinguish osteoarthritis (OA) and rheumatoid arthritis (RA) hema-
toxylin and eosin (H&E)-stained synovial tissue samples.

Methods We compared fourteen pathologist-scored histology features and computer vision-quantified cell density
(147 OA and 60 RA patients) in H&E-stained synovial tissue samples from total knee replacement (TKR) explants. A
random forest model was trained using disease state (OA vs RA) as a classifier and histology features and/or computer
vision-quantified cell density as inputs.

Results Synovium from OA patients had increased mast cells and fibrosis (p < 0.001), while synovium from RA
patients exhibited increased lymphocytic inflammation, lining hyperplasia, neutrophils, detritus, plasma cells, binu-
cleate plasma cells, sub-lining giant cells, fibrin (all p < 0.001), Russell bodies (p = 0.019), and synovial lining giant

cells (p = 0.003). Fourteen pathologist-scored features allowed for discrimination between OA and RA, producing a
micro-averaged area under the receiver operating curve (micro-AUC) of 0.854-0.06. This discriminatory ability was
comparable to that of computer vision cell density alone (micro-AUC = 0.87+0.04). Combining the pathologist scores
with the cell density metric improved the discriminatory power of the model (micro-AUC = 0.924-0.06). The optimal
cell density threshold to distinguish OA from RA synovium was 3400 cells/mm?, which yielded a sensitivity of 0.82 and
specificity of 0.82.

Conclusions H&E-stained images of TKR explant synovium can be correctly classified as OA or RA in 82% of samples.
Cell density greater than 3400 cells/mm? and the presence of mast cells and fibrosis are the most important features
for making this distinction.
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Background

Joint damage in the knee can be severe in both osteo-
arthritis (OA) and rheumatoid arthritis (RA) such that
total knee replacement (TKR) is often the only manage-
ment option [1]. More than 700,000 TKRs are performed
annually in the USA, and explanted tissue is often stained
with hematoxylin and eosin (H&E) and evaluated by a
pathologist as the standard of care. The physical exam of
the knees of patients with OA can be similar to that of
patients with RA, that is, both conditions can be charac-
terized by joint swelling, warmth, and effusion. Pathology
reports regarding the extent of synovial inflammation can
be another useful piece of information for the manag-
ing clinician to discriminate ongoing RA-related disease
activity from coincident primary OA in patients with
longstanding RA. Therefore, establishing a precise level
of synovial tissue inflammation for future investigators
could provide a fast, inexpensive, and clinically meaning-
ful benchmark for patient assessment.

Several investigators have sought to optimize methods
to score synovial inflammation using H&E-stained syno-
vial tissue samples to distinguish OA from RA. For exam-
ple, Krenn et al. [2—4] developed a widely cited scoring
algorithm that includes semi-quantitative assessments of
three synovial features identifiable on H&E-stained syn-
ovium: inflammatory infiltrates, lining hyperplasia, and
stromal activation, a measure of cellularity that encom-
passes fibroblasts, endothelial cells, and giant cells. It is
challenging to distinguish macrophages from fibroblasts
in H&E-stained images, and as a result, some groups
have modified the Krenn scoring system, adopting
assessments of inflammatory infiltrates and lining hyper-
plasia, but not stromal activation, to score synovitis [5].
In an effort to further improve sensitivity and specificity,
assessments of five immunohistochemistry-stained fea-
tures (CD31, CD3, CD68, CD20, and Ki67) were recently
added to the Krenn score [6]. Since immunohistochem-
istry is not as widely available and is more expensive
than H&E, our group has been studying whether assess-
ing additional histological features in H&E-stained sec-
tions, such as plasma cells, Russell bodies, binucleate
plasma cells, neutrophils, mast cells, and lining and sub-
lining giant cells as well as extracellular features such as
fibrin, detritus, fibrosis, and mucoid degeneration, might
be useful for discriminating various types of synovial
inflammation. We previously reported that plasma cells,
binucleate plasma cells, Russell bodies, fibrin, neutro-
phils, and synovial lining giant cells were predictive of
high inflammatory gene expression subsets in RA [7].

Another challenge in using semi-quantitative assess-
ments of synovitis is the disagreement between human
pathologist scores of the same sample due to the sub-
jective grading of synovial features. Since synovial
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inflammation tends to be patchy, it is likely that one
source of inter- and intra-rater variability is that human
pathologists make a subjective choice to assess certain
high-power fields in any given whole slide image. Auto-
mated computer vision quantification of cell density on
whole slide images removes the requirement for subjec-
tive selection of a certain field of interest, is reproducible,
is scalable as it does not require the technical exper-
tise of a pathologist, and captures granular information
about the number of cells in a synovial sample, which
is very onerous to manually count by a pathologist. We
previously developed and validated a computer vision
algorithm to automatically count each cell nucleus in
an H&E-stained synovial whole slide image in 170 RA
patient synovial samples [8]. This algorithm uses classi-
cal computer vision techniques to identify synovial tissue
and nuclei and yields a value of cell density, as identified
by mean stained nuclei count per mm? of tissue. Using
this approach, we found that mean whole slide image
synovial cell density in RA is strongly correlated with
human pathologist scores and bulk tissue RNA-seq gene
expression inflammatory subset. We hypothesized that
the computer vision quantification of cell density in addi-
tion to human pathologist scores would be useful in dis-
criminating OA from RA. Here, we employed machine
learning to calculate optimal thresholds to discriminate
OA from RA-related synovial inflammation using human
pathologist scores of fourteen histology features as well
as computer vision quantification of mean cell density in
a cohort of 147 OA patients and 60 RA patients undergo-
ing knee arthroplasty.

Methods
Study design and cohort
We compared knee synovial histologic features from two
different cohorts of patients undergoing TKR for OA or
RA at a high-volume, tertiary care hospital. This was a
secondary analysis of OA and RA patients that were iden-
tified via electronic medical records or physician referral
and enrolled during their preoperative screening visit.
The OA patients were enrolled in the OA subtypes
cohort from November 2018 through October 2019.
Patients over the age of 45 that met ACR Clinical/Radi-
ographic Criteria, ACR Clinical/Laboratory Criteria
[9], or Kellgren-Lawrence (KL) Radiographic Criteria
(grades 2—4) for knee OA [9, 10] were included in the
study. Patients who had a fracture in the operative knee,
a diagnosis of a systemic rheumatic disease such as RA,
or any disease other than OA as an indication for TKR
were excluded from the study. In addition, three patients
were excluded from the study sample after TKR because
the pathologist assessment of the arthroplasty explant
revealed a rheumatic disease diagnosis masked as OA.
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As previously described, RA patients were enrolled in
the RA Perioperative FLARE Study from October 2013 to
October 2021 [7, 11, 12]. Inclusion criteria for this cohort
were patients above the age of 18 who met the Ameri-
can College of Rheumatology (ACR)/European League
Against Rheumatism 2010 classification criteria for RA
[13] and/or the ACR 1987 criteria for RA [14]. Patients
who had any other systemic rheumatic disease or crystal-
line arthropathy were excluded.

Written informed consent was obtained for all par-
ticipants. Patients meeting the inclusion/exclusion crite-
ria were enrolled in the respective OA and RA cohorts.
Demographic characteristics such as patient age, race,
sex, and body mass index (BMI) were collected. Erythro-
cyte sedimentation rate (ESR), C-reactive protein (CRP),
rheumatoid factor (RF), and cyclic citrullinated peptide
(CCP) were measured on all OA and RA patients. RF and
CCP were measured as part of the standard of care in
RA patients, or if unavailable, were performed by serum
ELISA as in OA patients.

As per institutional policy, ethical approval for this
study was provided by the Institutional Review Board at
the Hospital for Special Surgery (IRB #2018-0895 and
#2014-233), and the research was performed in accord-
ance with the relevant guidelines and regulations. The
study methods and results are described in accordance
with the Strengthening of Reporting in Observational
studies in Epidemiology (STROBE) guidelines for cohort
studies [15].

Tissue processing and histologic scoring

Synovial samples were obtained intra-operatively from
147 OA patients and 60 RA patients. As per the study
protocol, orthopedic surgeons were requested to prefer-
entially obtain a research sample from grossly abnormal-
looking synovium. Tissue for histological examination
was chosen by a pathologist on the basis of gross features
including the smoothness and granularity of the synovial
surface, red or brown discoloration, and the clarity, dull-
ness, or opacity of the synovial layer, preferentially avoid-
ing regions of electro-cautery effect.

Synovial samples were preferentially obtained from
the most grossly inflamed (dull and opaque) area of the
synovium. If there was no obviously inflamed synovium,
samples were obtained from standard locations: the
femoral aspects of the medial and lateral gutters and the
central supratrochlear region of the suprapatellar pouch.
OA synovial tissue samples were formalin-fixed and par-
affin-embedded, and the RA tissues were fresh-frozen
in optimal cutting temperature compound. Each tis-
sue biopsy was sectioned at 5-um thickness and stained
with Harris-modified hematoxylin solution and eosin Y
(H&E) manufactured by Epredia in Kalamazoo, MI. An
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expert musculoskeletal pathologist (ED) scored four-
teen synovial histologic features in a single section for
each patient: lymphocytic inflammation, mucoid change,
fibrosis, fibrin, germinal centers, lining hyperplasia, neu-
trophils, detritus, plasma cells, binucleated plasma cells,
Russell bodies, sub-lining giant cells, synovial lining giant
cells, and mast cells. Detailed methods for scoring these
features are included in the Appendix, some of which are
described in prior studies [8] and available at www.hss.
edu/pathology-synovitis.

Computer vision analysis of cell density

Pathology slides were digitized using an Aperio AT Turbo
Scanner manufactured by Leica Biosystems in Deer
Park, IL, USA, with a 20x resolution of the whole slide
image. As previously described [8], we applied computer
vision techniques on the whole slide images to count the
cell nuclei and quantify the amount of tissue present.
The whole slide images were deconstructed into smaller
image tiles, each covering an area of approximately 0.25
mm?. These tiles were transformed into grayscale, ana-
lyzed for different intensity levels, and assigned a metric
based on the proportion of the tile determined to contain
tissue. Using a combination of techniques—including
Otsu’s method [16], the watershed algorithm, and local
adaptive thresholding—the cell nuclei were isolated from
the tissue within the image. Final nuclei counts were
refined using shape filtering and nuclei density was calcu-
lated by normalizing the total count of individual nuclei
by the tissue area. This method yields a continuous value
of mean cell count per mm? of tissue. Pre-processing the
whole slide image into tiles takes an average of 40 min,
which enables the computation of nuclei density in under
a minute. The open-access code can be downloaded
here: https://github.com/sgmitre/ai-histology. See Fig. 1
for representative histological images of varying nuclei
densities.

Data analysis

Demographic characteristics of the OA and RA patients
are reported as frequencies, means, standard deviations
(SD), medians, and interquartile ranges (IQR). Chi-
square tests were used to compare fourteen pathologist-
graded histology scores between OA and RA patients.
Logistic regression models were performed to distinguish
OA vs RA as the outcome and adjusting for fibrosis and
mast cell scores with lymphocytic infiltrates.

Supervised machine learning analysis

A supervised machine learning model was built to clas-
sify OA vs RA samples using Random forests (Fig. 2).
The model inputs were either all fourteen pathologist
scores, the computer vision score alone, or both sets of
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Mean cell density = 1378 cells/mm?
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Fig. 2 Overview of the analysis pipeline. OA osteoarthritis, RA rheumatoid arthritis, AUC area under receiver operating characteristic curves. Created

with BioRender.com

scores combined. The model is selected according to
the area under the receiver operating curve (AUC). The
hyperparameters of the random forest model we tuned
include the number of trees and the depth of each tree,
which were optimized with a nested 5-fold cross-vali-
dation process (5-fold for the outer loop and 5-fold for
the inner loop) [17] from candidate values [10, 20, 30, 40,
50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170,
180, 190, 200] and [5, 6, 8, 10, 12, 14, 16, 18, 20], respec-
tively. The outer loop separates the data into 5 equal folds
with stratified partition. For each iteration, one specific
fold will be used as a testing and the rest 4 folds as train-
ing. Then another 5-fold cross-validation procedure will
be performed on the training set to estimate the optimal
model hyperparameters. The final results were reported
using macro-AUC and micro-AUC on the testing data.
For micro-AUC, we computed the AUC of each fold and
reported the average AUC and standard deviation (SD).
For macro-AUC, we concatenated the AUC from all folds
of the testing data [18]. Such a nested cross-validation

process can help obtain a robust estimation on the mod-
el’s generalization performance [17].

Additionally, to determine the discriminative power of
each individual pathology feature in distinguishing OA vs
RA, we treated the feature values themselves as predic-
tion scores for generating the receiver operating charac-
teristic (ROC) curve, based on which the AUC value was
calculated. Then, to determine the optimal threshold for
a given feature to distinguish OA vs RA, Youden’s J sta-
tistic was calculated to obtain the optimal point on the
ROC curve, the optimal threshold, sensitivity, and speci-
ficity [19]. Finally, feature importance was calculated for
the model combining all fourteen pathologist scores and
computer vision-generated cell density.

A p-value less than 0.05 was considered statistically sig-
nificant. Python 3.6 Scikit-Learn 0.24.2 was used for the
machine learning analysis, Python Scikit-image 0.17.2 to
was used for the computer vision analysis, and Stata ver-
sion 14.0 was used for descriptive statistics and logistic
regression models [20].
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Table 1 Patient characteristics

Feature OA RA p-value
N=147 N=60

Age, mean (SD) 65.2 (6.6) 64.0 (9.1) 0.32
Sex: female 90 (61.2%) 50 (83.3%) 0.002
BMI, median (IQR) 30.0(27.1,3) 28.1(23.7,33.2) 0.006
Race 0.95

White 117 (79.6%) 46 (76.7%)

Asian 8 (5.4%) 3(5.0%)

Black 15(10.2%) 6 (10.0%)

Other’ 42.7%) 2 (33%)

Missing 3(2.0%) 3 (5.0%)
History of cigarette use 55 (37.4%) 36 (60.0%) 0.003
ESR (mm/hr), median (IQR) 14 (6.5, 25.5) 14.5(7.5,25.5) 0.50
CRP, median (IQR) 0.16 (0.08,0.36) 1.05 (0.0, 2.4) <0.001
RF positive 1(0.7%) 30 (50.0%)

Missing 3 (5.0%)
Anti-CCP interpretation

Negative 147 (100.0%) 12 (20.0%)

Positive: 1-3x ULN 13(21.7%)

High positive: >3x ULN 34 (56.7%)

Missing 1(1.7%)
DAS28-ESR, mean (SD) n/a 39(1.2) n/a
DAS28-CRP. mean (SD) n/a 3.8(1.3) n/a
Duration since diagnosis, median (IQR) 7.2 (3.2,15.0) 12.1(3.7,194) 0.032
Duration since symptom onset, median (IQR) 10.6 (5.7, 19.6) 149 (4.7,22.5) 0.34
Currently using NSAIDs 85 (57.8%) 32 (53.3%)

Missing 3 (5.0%)
Currently using oral steroids 2 (1.4%) 23 (38.3%)

Missing 1(1.7%)
Currently using methotrexate 31 (51.7%)

Missing 147 (100.0%) 1(1.7%)
Currently taking any other DMARD 17 (28.3%)

Missing 147 (100.0%) 2(3.3%)
Currently taking a biologic 33 (55.0%)

Missing® 147 (100.0%) 2 (3.3%)
Which biologic

Abatacept (Orencia) 4(6.7%)

Adalimumab (Humira) 6 (10.0%)

Certolizumab (Cimzia) 1(1.7%)

Etanercept (Enbrel) 15 (25.0%)

Infliximab (Remicade) 1(1.7%)

Tocilizumab (Actemra) 3 (5.0%)

Tofacitinib (Xeljanz) 3 (5.0%)

Missing® 147 (100.0%) 27 (45.0%)

Data represents N (%) unless stated otherwise. “Missing” lines indicate the number (and %) of patients for whom data is not available for a given feature. °Data on
biologic usage was not collected in OA patients. OA osteoarthritis, RA rheumatoid arthritis, SD standard deviation, IQR interquartile range, DAS28 Disease Activity
Score-28, ESR erythrocyte sedimentation rate, mm/hr millimeters/hour, CRP C-reactive protein, RF rheumatoid factor, CCP cyclic citrullinated peptide, ULN upper limit
of normal, NSAIDs non-steroidal anti-inflammatory drugs, DMARD disease-modifying antirheumatic drug. A chi-squared test was performed to assess statistically
significant differences between RA and OA patients. Bold represents p < 0.05. “Other category of race includes American Indian, Alaskan Native, Native Hawaiian,
Pacific Islander, and other race. Duration since diagnosis and duration since symptom onset represent number of years.
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Results

Patient characteristics

A total of 147 OA patients and 60 RA patients were
included in the analysis (Table 1). A greater proportion
of RA patients were female (83.3%) compared to OA
patients (61.2%) (p = 0.002). OA patients had a higher
median BMI than RA patients (p = 0.006). More RA
patients reported a history of cigarette use (60.0%) than
OA patients (37.4%) (p = 0.003). RA patients had elevated
CRP values compared to OA (p < 0.001). The median
duration since diagnosis was lower in OA patients com-
pared to RA patients (p = 0.032). We measured serum RF
and CCP by ELISAs on all OA patients and found that no
OA patients in our cohort harbored CCP antibodies and
only one had RF positivity (2.5 times upper limit of nor-
mal) without any signs and symptoms of RA. A total of
50.0% of the RA patients had positive RF, and 78.4% had
positive anti-CCP.

Comparison of OA and RA synovial histologic features
Fibrosis (p < 0.001) and mast cell presence (p < 0.001)
were significantly more common in OA (Table 2). In fact,
these two features were almost universally present in OA
(95.2% and 99.3%, respectively). There was no statistically
significant difference in mucoid change (which was com-
mon in both diseases) and germinal centers (which were
very rare in both diseases) between patients with OA and
RA. To test the hypothesis that fibrosis and mast cells
were more commonly observed in OA because there are
fewer lymphocytic infiltrates in OA than RA and these
features are thus more easily observed, we ran adjusted
logistic regression models. Fibrosis (all grades) and mast
cells remained statistically significantly associated with
the outcome after adjusting for lymphocytic infiltrates
in these models. Histologic features of the synovium that
were increased in RA compared to OA included lym-
phocytic inflammation (p < 0.001), lining hyperplasia
(p < 0.001), neutrophils (p < 0.001), detritus (p < 0.001),
plasma cells (p < 0.001), Russell bodies (p = 0.019), binu-
cleate plasma cells (p < 0.001), sub-lining giant cells (p <
0.001), synovial lining giant cells (p = 0.003), and fibrin
(p < 0.001) (Table 2). Computer vision quantification
of mean cell density per mm? of tissue was significantly
lower in patients with OA (2900) compared to those with
RA (4196) (p < 0.001).

Supervised machine learning to distinguish OA vs RA

Using disease state OA versus RA as classifiers and his-
tology scores as inputs, we calculated thresholds to opti-
mally distinguish the two disease states for the fourteen
pathologist-scored histology features and the computer
vision quantification of cell density, and we evaluated the
discriminative power of the features according to the area
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under the curve (AUC) generated from tuning the cutoff
threshold (Fig. 3).

Together, the 14 pathologist-scored features yielded
a micro-AUC of 0.85+0.06 and macro-AUC of 0.85 for
distinguishing OA and RA. By comparison, using com-
puter vision-generated cell density scores alone yielded
a similar micro-AUC 0.87 (macro-AUC: 0.88). Finally,
combining the computer vision score of cell density with
the 14 pathologist scores further improved the micro-
AUC to 0.92 £+ 0.06 (macro-AUC 0.91). Micro- and
macro-precision, recall, and F1 scores, along with the
out-of-bag error for each model, are provided in Supple-
mental Table 1. Feature importance scores for the com-
bined model were calculated and are shown in Table 3:
the four most important features that distinguished OA
from RA were mast cells followed by cell density, fibrosis,
and lining hyperplasia.

Thresholds to distinguish OA vs RA

The top four features with the highest individual discrim-
inative power were the computer vision score of cell den-
sity (macro-AUC = 0.88), fibrosis (macro-AUC = 0.84),
mast cells (macro-AUC = 0.80), and lining hyperplasia
(macro-AUC = 0.78) (Table 3). With Youden’s J statis-
tic, we discovered that the threshold of cell density lower
than 3400 cells per mm? distinguished OA from RA syn-
ovium with a sensitivity of 0.82 and specificity of 0.82.
The thresholds for the pathologist-scored features for
distinguishing OA from RA synovium were the follow-
ing: focal and widespread fibrosis (vs absence), presence
of mast cells (vs absence), and normal or up to 2-3 cells
of lining hyperplasia (vs 3—4 or >4 cells) (Fig. 3). Opti-
mal thresholds for the full list of features are provided in
Table 3.

Discussion

Using two well-characterized cohorts of OA and RA
patients, we found that H&E-stained images from OA
and RA synovial biopsies were distinguishable using 14
pathologist-scored features, computer vision-quantified
cell density, or their combination, with AUCs of 0.85,
0.88, and 0.91, respectively. Mast cells and the presence
of fibrosis were much more common in OA than in RA
synovial biopsies. On the other hand, synovium from
patients with RA had increased lining hyperplasia, lym-
phocytic inflammation, neutrophils, detritus, plasma
cells, Russell bodies, binucleate plasma cells, sub-lining
giant cells, synovial lining giant cells, and fibrin. The
top four features that distinguished OA and RA patients
were mast cells, mean cell density, fibrosis, and lining
hyperplasia. Finally, we discovered that a threshold of
greater than 3400 cells per mm? distinguishes OA from
RA synovium with a sensitivity of 0.82 and specificity of
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Table 2 Synovial histologic features of osteoarthritis vs rheumatoid arthritis
Feature OA RA p-value
N=147 N=60
Higher in RA
Lymphocytic inflammation <0.001
None 43(29.3%) 7 (11.7%)
Mild (0-1 perivascular aggregates per low power field) 64 (43.5%) 20 (33.3%)
Moderate (>1 perivascular aggregate + focal interstitial infiltration) 30 (20.4%) 14 (23.3%)
Marked (both perivascular and widespread interstitial aggregates) 9 (6.1%) 15 (25.0%)
Band-like 1(0.7%) 4 (6.7%)
Lining hyperplasia <0.001
Normal lining 10 (6.8%) 0 (0.09%)
2-3 cells thick 97 (66.0%) 16 (26.7%)
3-4 cells thick 38 (25.9%) 26 (43.3%)
> 4 cells thick 2 (1.4%) 18 (30.0%)
Neutrophils 1(0.7%) 13(21.7%) <0.001
Plasma cells (x25 mag) <0.001
< 10% plasma cells within lymphocytic aggregates 125 (85.0%) 33 (55.0%)
< 50% plasma cells 18 (12.2%) 17 (28.3%)
>50% plasma cells 4(2.7%) 10 (16.7%)
Binucleate plasma cells 16 (10.9%) 19 (31.7%) <0.001
Russell bodies 13 (8.8%) 13 (21.7%) 0.019
Sub-lining giant cells 2 (1.4%) 9 (15.0%) <0.001
Synovial giant cells 25 (17.0%) 22 (36.7%) 0.003
Missing 0(0.0%) 2 (3.3%)
Fibrin 13 (8.8%) 27 (45.0%) <0.001
Detritus 62 (42.2%) 42 (70.0%) <0.001
Computer vision quantification of cell density, mean 2900 4196 <0.001
Higher in OA
Fibrosis <0.001
None 7 (4.8%) 40 (66.7%)
Focal 85 (57.8%) 16 (26.7%)
Widespread or band-like 55 (37.4%) 4 (6.6%)
Mast cells 146 (99.3%) 22 (36.7%) <0.001
Missing 0(0.0%) 1(1.7%)
No difference
Synovial mucoid change 0.73
None 6 (4.1%) 5 (8.3%)
Slight (perivascular or focal interstitial) 63 (42.9%) 22 (36.7%)
Moderate (perivascular or focal interstitial) 50 (34.0%) 22 (36.7%)
Marked (perivascular or focal interstitial) 17 (11.6%) 6 (10.0%)
Myxomatous 11 (7.5%) 4 (6.7%)
Missing 0 (0.0%) 1(1.7%)
Germinal centers 1(0.7%) 2 (3.3%) 0.20

Data represents N (%). A chi-squared test was performed to assess statistically significant differences between RA and OA patients. Bold represents p-value < 0.05

0.82. Thus, automated whole slide cell density can poten-
tially be used as a screening tool in research and clinical
settings.

The careful annotations of specific cellular and extra-
cellular features in OA and RA yielded some interesting

insights into the two diseases. Lymphocytic inflamma-
tion was not uncommon in samples from patients with
OA. A total of 27.2% of OA patients had moderate or
greater than moderate synovial lymphocytic inflamma-
tion, defined as >1 perivascular aggregate per high-power
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C. Optimal Threshold to
Discriminate OA and RA

D. Data Distribution Using
Optimal Thresholds
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Fig. 3 Discovery of optimal thresholds for the top four most predictive histology features to discriminate synovial tissue samples from patients with
OA from those with RA. A Raw histology feature scores in patients with OA and RA. B AUC curves extracted from Random Forest machine learning
model. C Distribution of raw OA and RA histology feature scores and optimal threshold values extracted from Random Forest machine learning
model. D Percent of OA and RA samples above or below optimal thresholds identified in C. OA osteoarthritis, RA rheumatoid arthritis, AUC area

under the receiver operating characteristic curves

field [7]. In studies of RA, aggregates of lymphocytes
have consistently been shown to be associated with
increased levels of cytokines, chemokines [21-23], and
RA-specific autoantibodies [24, 25] and to be predictive
of response to TNF inhibitor [24] and rituximab [26].
However, lymphocyte aggregates are not specific to RA
[21]. In this cohort, one-third of patients with OA harbor
at least moderate lymphocytic aggregates, underscoring
the lack of specificity in our definitions of aggregates. It is
possible that lymphocytic infiltrates in our patients with
OA may have been caused by undiagnosed concomi-
tant crystalline diseases such as calcium pyrophosphate
deposition disease or gout. However, this finding is also
in agreement with others who have found that there may
be a distinct inflammatory OA subtype [27, 28] that may
benefit from different treatment approaches.

Fibrosis and mast cells have previously been reported
in OA synovium by other investigators [29-34]. Our
study adds to the literature by demonstrating that fibro-
sis and mast cells are almost always observed in OA (95%
and 99%, respectively) and that they are key features that
help distinguish RA versus OA. There are two important
limitations of this observation. Firstly, these two features

were scored as binary, not continuous, and, as can be
seen by the angular ROC, this may bias the search for
their role and the thresholds in the classification task.
Secondly, RA synovial tissue samples were fresh-frozen
in optimal cutting temperature compound, and the OA
tissues were formalin-fixed and paraffin-embedded.
Since paraffin-embedding better preserves morphologi-
cal details, it is possible and even likely that mast cells
were more readily detectable in OA samples, and this
difference in sample processing could have contributed
to the importance ascribed to mast cells in our analysis.
It is less likely, but not impossible, that this difference in
sample processing would affect the assessment of fibro-
sis. Mast cells and fibrosis were inversely associated with
other inflammatory features, such as lymphocytes and
plasma cells, consistent with prior studies [29, 30].

The finding of increased detritus—small fragments
of cartilage or bone—in RA compared to OA was not
anticipated, since cartilage damage is a hallmark of OA.
One possible explanation is that detritus is increased in
RA because intense inflammation is more destructive
and may yield larger and therefore more visually obvious
debris particles, whereas the cartilage debris generated in



Mehta et al. Arthritis Research & Therapy (2023) 25:31

Page 9 of 13

Table 3 Feature importance, macro area under receiver operating characteristic curves (macro-AUC), and optimal thresholds of the

synovial features in distinguishing OA and RA patients

Feature Feature macro-AUC Optimal threshold
importance? OA vs RAP

Mast cells 034 0.80 Present vs none

Automated cell density 0.25 0.88 <3400¢ cells/mm?

Fibrosis 0.1 0.84 Focal and widespread vs none

Lining hyperplasia 0.10 0.78 Normal lining or 2-3 cells thick vs >3-4 cells thick or > 4 cells thick

Fibrin 0.05 0.68 None vs present

Sub-lining giant cells 0.05 0.57 None vs present

Lymphocytic inflammation 0.04 0.69 None and mild (0-1 perivascular aggregates per low power field) vs
marked (both perivascular and widespread interstitial aggregates) and
band-like

Neutrophils 0.02 0.60 None vs present

Detritus 0.01 0.64 Absent vs present (small or large particles)

Plasma cells 0.01 0.66 <50% plasma cells

Binucleate plasma cells 0.01 0.60 None vs present

Synovial giant cells 0.01 0.58 None vs present

Germinal centers 0.01 0.51 None vs present

Mucoid change 0.00 0.50 No optimal threshold

Russell bodies 0.00 0.56 None vs present

macro-AUC macro area under the receiver operating curve

2 Feature importance scores represent scores for the supervised machine learning model including all fourteen pathology scores and the computer vision-generated

cell density
b See the Appendix for a full list of categorical variables

¢ Computer vision-quantified cell density measured in mean cells per mm? of tissue

response to OA-related damage is smaller and invisible
by 10-40x imaging. However, this may also reflect the
more advanced damage in the RA joints in patients at the
time of arthroplasty.

Several inflammatory features that are typically asso-
ciated with inflammatory RA such as binucleate plasma
cells, Russell bodies, and plasma cells were observed in
11%, 9%, and 15% of OA patients, respectively. This was
not anticipated, as plasma cell infiltration of RA syn-
ovium has been thought to be related to the fact that
patients with RA tend to harbor autoantibodies, such
as RF and CCP. Since none of the OA patients in this
cohort harbored CCP and only one (0.7%) harbored RF,
this finding suggests the non-autoantibody functions of
plasma cells in synovial tissue inflammation warrant fur-
ther exploration.

Neutrophils, which were observed in 22% of RA cases,
were very rare (<1%) in OA. We previously observed an
association of synovial neutrophils and fibrin, the final
product of the clotting cascade, with prolonged morning
stiffness in patients with RA [35]. Morning stiffness that
lasts for more than 1 h is rare in OA. Thus, our observa-
tion that neutrophils are exceedingly rare in OA under-
scores the possibility that neutrophils together enmeshed
in fibrin clots may indeed play a role in the prolonged

duration of RA-related morning stiffness. Furthermore,
OA stiffness, which is classically either unchanged or
worse with activity, likely has a different etiology. Given
the well-established contribution of fibrosis to stiffness in
other organs [36], it is possible that synovial fibrosis con-
tributes to stiffness in patients with knee OA, as previ-
ously proposed [37].

In addition to the above-mentioned sample processing
limitation, our study has some other noteworthy limita-
tions. For one, the study population is a convenience
sample of OA and RA patients seeking knee arthroplasty
at a high-volume, tertiary care hospital in the USA, and
thus, the findings may not be applicable to early-stage
patients or to joints other than knees. Future studies will
compare these histology assessments in other joints and
stages of disease. Our sample size is also relatively small,
and we did not conduct external validations due to data
availability. Further efforts on the evaluation of our model
on other independent data sets are needed for justifying
its generalizability. We also limited our study to patients
who met the classification criteria for OA and RA. While
the classification criteria for OA include criteria to help
exclude RA, such as less than 30 min of morning stiffness,
negative rheumatoid factor, and erythrocyte sedimenta-
tion rate less than 40 mm/h, the classification criteria for
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RA do not include features to help exclude OA and it is
likely that many patients with RA also have OA. Though
many of the RA patients in our study may have had coin-
cident OA, their synovium was distinguishable from
those with OA. We also do not know if these features are
distinguishing other causes or types of synovitis, such as
psoriatic arthritis and lupus, or if they are better consid-
ered methods for distinguishing inflammatory from non-
inflammatory pathology. In addition, we only used cell
density as an automated computer vision-based feature
in our analysis. Identification of additional informative
computer vision features for distinguishing OA and RA
would warrant further exploration in the future. Finally,
55.0% of the RA patients in this study reported taking a
biologic, which would be expected to hinder the ability
of the pathologist or our models to discriminate OA from
RA since they attenuate inflammation. However, despite
the high prevalence of biologic use, we found that the
vast majority of samples from patients with RA could be
discriminated from those with OA.

Strengths of this study include well-characterized
cohorts of OA and RA and an expert musculoskeletal
pathologist who has scored and graded the slides for both
cohorts. We also demonstrate the utility of cell density,
an automated measure by computer vision which can be
universally used without an expert pathologist and offers
scalability, a quick turn-around, and minimal cost. Pre-
vious application of machine learning in rheumatic dis-
eases has involved identifying patients with RA from
clinical data, billing codes, and natural language process-
ing-derived concepts in electronic health records [38—
40]. Our group has used machine learning to develop
algorithms to use synovial histology features to predict
gene expression subsets in RA [7] and computer vision
algorithms to quantify RA synovial inflammation as
measured by cell density [8]. The results presented here
extend these studies and indicate that computer vision
analysis of standard-of-care pathology slides scanned
within electronic health records might also be useful to
discriminate patients with RA from those with OA. This
has the potential to help clinicians distinguish previously
unrecognized or undiagnosed RA who undergo TKR in
the future. Presently, we hope this algorithm can help
other translational researchers generate more accurate
and precise quantification of synovial inflammation for
their study comparisons.

In summary, pathologist-scored mast cells, fibrosis, and
lining hyperplasia were the most important pathologist-
scored features for discriminating OA and RA synovium.
A threshold synovial cell density of >3400 yields a sen-
sitivity of 0.82 and a specificity of 0.82 for distinguish-
ing OA from RA. Future efforts will attempt to identify
additional informative computer vision features as well
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as comparisons of their performance on other clinical
cohorts.

Appendix

Human pathologist-scoring system of fourteen features
applied to all samples. A portion of these features are
illustrated at https://www.hss.edu/pathology-synovitis.
asp.

1. Lymphocytic inflammation: inflammation consist-
ing of any combination of lymphocytes and plasma cells
around blood vessels (perivascular aggregates) or in the
interstitium

0: None

1: Mild (0-1 perivascular aggregates per low power
field)

2: Moderate (>1 perivascular aggregate + focal intersti-
tial infiltration)

3: Marked (both perivascular and widespread intersti-
tial aggregates)

4: Band-like

2. Lining hyperplasia: The number of cells that com-
prise the thickness of the synovial lining layer. These
cells assist in modifying the content of the synovial fluid
(make lubricin).

0: Normal lining

1: 2-3 cells thick

2: 3—4 cells thick

3: > 4 cells thick

3. Neutrophils: Polymorphonuclear leukocytes. Of
note, marginating neutrophils are more likely due to
acute stress of surgery than part of a disease phenotype.
Therefore, only neutrophils that are present in the inter-
stitium or synovial lining are scored positively.

0: None

1: Present (granulation tissue, interstitial, or marked)

4. Plasma cells (x25 mag): Percentage of lymphocytic
infiltration, regardless of distribution, that consists of
morphologically recognizable plasma cells. Average the
percent of all plasma cells over all the inflammation in all
fields.

0: < 10% plasma cells within lymphocytic aggregates

1: < 50% plasma cells

2: >50% plasma cells

5. Binucleated plasma cells: plasma cells with two or
more nuclei

0: None

1: Present

6. Russell bodies: plasma cells engorged with bright
red substance (antibodies/immunoglobulin)

0: None

1: Present
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7. Sub-lining giant cells: multinucleated giant cells
below the synovial lining layer

0: None

1: Present

8. Synovial lining giant cells: multinucleated giant cells
in the synovial lining layer

0: None

1: Present

9. Fibrin: deposits of fibrinous material or reddish-
pink disorganized material on the surface of the synovial
membrane

0: None

1: Present

10. Fibrosis: Collagen exudate that looks like extremely
pink extracellular material

0: None

1: Focal

2: Widespread or band-like

11. Mast cells: cells with round or slightly oval cyto-
plasm with blue granules, and a nucleus that is round and
dark, but occasionally oval, centrally placed

0: None

1: Present

12. Mucoid change: bluish extracellular material that
may appear as something missing from the slide or nega-
tive space. Mucin lends the synovial matrix a gelatinous
character. It represents sulfated proteoglycans and or
non-collagenous proteins

0: None

1: Slight (perivascular or focal interstitial)

2: Moderate (perivascular or focal interstitial)

3: Marked (perivascular or focal interstitial)

4: Myxomatous

13. Germinal centers: well-defined collections of
enlarged lymphoid cells. These are immunoblasts (small
cleaved, small noncleaved, large cleaved, etc.) with prom-
inent nucleoli, tingible body macrophages that contain
nuclear material eating nuclear dust, karyorrhexis

0: None

1: Present

14. Detritus: bits of bone or cartilage embedded in
the synovium

0: Absent

1: Present (small or large particles)

Abbreviations

OA Osteoarthritis

RA Rheumatoid arthritis

H&E Hematoxylin and eosin

TKR Total knee replacement

KL Kellgren-Lawrence

ACR American College of Rheumatology
BMI Body mass index

ESR Erythrocyte sedimentation rate

CRP C-reactive protein
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RF Rheumatoid factor

Cccp Cyclic citrullinated peptide

STROBE  Strength of Reporting in Observational Studies in Epidemiology
SD Standard deviation

IQR Interquartile range

AUC Area under the receiver operating curve

ROC Receiver operating characteristic
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