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Abstract 

Background:  Osteoarthritis (OA) is a slowly developing and debilitating disease, and there are no validated specific 
biomarkers for its early detection. To improve therapeutic approaches, identification of specific molecules/biomarkers 
enabling early determination of this disease is needed. This study aimed at identifying, with the use of proteomics/
mass spectrometry, novel OA-specific serum biomarkers. As obesity is a major risk factor for OA, we discriminated 
obesity-regulated proteins to target only OA-specific proteins as biomarkers.

Methods:  Serum from the Osteoarthritis Initiative cohort was used and divided into 3 groups: controls (n=8), 
OA-obese (n=10) and OA-non-obese (n=10). Proteins were identified and quantified from the liquid chromatogra‑
phy–tandem mass spectrometry analyses using MaxQuant software. Statistical analysis used the Limma test followed 
by the Benjamini-Hochberg method. To compare the proteomic profiles, the multivariate unsupervised principal 
component analysis (PCA) followed by the pairwise comparison was used. To select the most predictive/discrimina‑
tive features, the supervised linear classification model sparse partial least squares regression discriminant analysis 
(sPLS-DA) was employed. Validation of three differential proteins was performed with protein-specific assays using 
plasma from a cohort derived from the Newfoundland Osteoarthritis.

Results:  In total, 509 proteins were identified, and 279 proteins were quantified. PCA-pairwise differential compari‑
sons between the 3 groups revealed that 8 proteins were differentially regulated between the OA-obese and/or OA-
non-obese with controls. Further experiments using the sPLS-DA revealed two components discriminating OA from 
controls (component 1, 9 proteins), and OA-obese from OA-non-obese (component 2, 23 proteins). Proteins from 
component 2 were considered related to obesity. In component 1, compared to controls, 7 proteins were significantly 
upregulated by both OA groups and 2 by the OA-obese. Among upregulated proteins from both OA groups, some 
of them alone would not be a suitable choice as specific OA biomarkers due to their rather non-specific role or their 
strong link to other pathological conditions. Altogether, data revealed that the protein CRTAC1 appears to be a strong 
OA biomarker candidate. Other potential new biomarker candidates are the proteins FBN1, VDBP, and possibly SER‑
PINF1. Validation experiments revealed statistical differences between controls and OA for FBN1 (p=0.044) and VDPB 
(p=0.022), and a trend for SERPINF1 (p=0.064).

Conclusion:  Our study suggests that 4 proteins, CRTAC1, FBN1, VDBP, and possibly SERPINF1, warrant further investi‑
gation as potential new biomarker candidates for the whole OA population.
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Introduction
Osteoarthritis (OA), the most common musculoskeletal 
disorder, is a multifactorial disease irreversibly affecting 
several joint tissues, the knee being the most prevalent 
[1]. OA is a major cause of pain, disability, and comor-
bidities, and about 30% of the worldwide population aged 
50 years and older suffer from this disease [2, 3]. OA pro-
gression is influenced by numerous factors including age, 
gender, obesity (major risk factors), and inflammatory 
mediators, to name a few.

At present, there are no treatments to cure this disease; 
the current ones only target symptomatic relief. This is 
related, in part, to the inability to diagnose OA at an early 
stage, as the existing methods are not sensitive enough. 
Early and specific OA diagnosis would allow early and 
targeted treatments/interventions to prevent or delay not 
only the progression of the disease but also surgery such 
as joint replacement. This would result in less pain and a 
better quality of life for patients, in addition to reducing 
the substantial societal economic burden [4–6].

Because the alteration of the articular tissues develops 
over a few years, the identification of specific molecules/
biomarkers that would enable OA early determina-
tion is proving to be a challenging task. To date, there 
are no regulatory agency-approved biomarkers, as none 
has yet reached the required specificity, sensitivity, and 
reliability.

Over the years, several approaches, such as genomics, 
antibody signature, and metabolomics, have been used 
to identify biochemical and physiological aspects of OA 
[7–10]. Another interesting avenue in the search for bio-
markers is proteomics. Compared to metabolomics and 
genomics, the proteomic approach has the advantage of 
reflecting the patient’s condition at a specific time as well 
as being more stable than metabolites.

Proteomics using liquid chromatography–tandem 
mass spectrometry (LC-MS/MS) can identify and quan-
tify thousands of proteins in a single analysis using a 
relatively small sample amount, which is ideal for the 
high throughput analysis of a high dynamic range sam-
ple such as serum [11]. Such a proteomic approach has 
been used to identify specific diagnostic markers of many 
pathologies such as cancer, cardiovascular, liver, and kid-
ney diseases [12–16], as well as some arthritic diseases 
[8, 17–24], to name a few. LC-MS/MS has been used to 
monitor the individual proteomes of healthy or OA joint 
tissues (cartilage, meniscus, synovial membrane), cells 
(chondrocyte, synoviocyte), and fluids (serum/plasma, 
synovial fluid, urine) [19, 25–29]. Several proteins that 

may relate to OA pathological mechanisms have been 
found but, as mentioned above no molecule has been 
validated as a specific marker for OA patients, not to 
mention the early stages of this disease. This could be due 
in part to the non-specificity of the molecules, which is 
related more to pathological conditions other than OA, 
including obesity [30–34].

Therefore, there is an urgent need to identify novel and 
specific biomarkers that will prove to be both efficient 
and sensitive enough to be used for OA early diagnosis. 
The objective of this study was to identify, with the use of 
LC-MS/MS, novel OA-specific serum biomarkers.

Material and methods
Study participants
Participants were selected from the control and pro-
gressor subcohorts of the Osteoarthritis Initiative (OAI) 
database. The individuals in the progressor cohort had 
symptomatic radiographic OA as described (https://​
oai.​nih.​gov). Serum samples were from 8 controls and 
20 OA, the latter equally divided into OA-obese (n=10; 
body mass index ≥30 kg/m2) and OA-non-obese (n=10; 
BMI <30 kg/m2).

For validation purposes, fasting plasma samples were 
derived from the Newfoundland and Labrador cohort 
in which the controls were from the Complex Diseases 
in Newfoundland population: Environment and Genet-
ics (CODING) [35] and the OA samples from the New-
foundland Osteoarthritis Study (NFOAS; https://​www.​
med.​mun.​ca/​NFOAS/​Home.​aspx) [36]. Plasma sam-
ples were from 20 controls and 20 OA, the latter equally 
divided into OA-obese (n=10) and OA-non-obese 
(n=10).

The characteristics of the selected individuals are 
listed in Table  1 (OAI) and Table  2 (CODING and 
NFOAS). For the OAI, the demographic, clinical, and 
radiographic data were obtained from the OAI database 
(https://​oai.​nih.​gov).

All participants had provided written informed consent 
for their participation. For the OAI cohort, the ethics 
approval was obtained by each of the OAI clinical sites 
(University of Maryland Baltimore Institutional Review 
Board, Ohio State University’s Biomedical Sciences Insti-
tutional Review Board, University of Pittsburgh Institu-
tional Review Board, and Memorial Hospital of Rhode 
Island Institutional Review Board) and the OAI coordi-
nating center (Committee on Human Research at the 
University of California, San Francisco, CA, USA). For 
the CODING and NFOAS cohorts, the ethics approval 
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was obtained from the Health Research Ethics Board of 
Newfoundland and Labrador.

The Institutional Ethics Committee Board of the Uni-
versity of Montreal Hospital Research Centre approved 
the use of the human serum/plasma.

Serum/plasma samples
Serum/plasma samples were obtained from the OAI 
(refer to the OAI operations manual detailing specimen 
collection and processing methods [https://​oai.​nih.​gov]) 
and the CODING/NFOAS, as previously described [36, 
37]. The specimens were collected after an overnight fast 
using a uniform protocol. For the plasma, blood was col-
lected and plasma separated from the red cells immedi-
ately after collection by centrifugation (20,000 rpm for 
10 min). Upon reception, samples for both cohorts were 
aliquoted, stored frozen at −80°C, and thawed at 4°C just 
before use.

Mass spectrometry
Preparation of serum samples
Data for the samples (non-depleted and depleted) were 
both acquired in Data Dependent Acquisition mode and 
analyzed with MaxQuant software, version 1.6.7 [38], as 
previously described [39].

The non-depleted samples were randomized before 
analysis. One microliter of each serum sample was 
diluted in 24 μl of sodium deoxycholate (SDC) buffer 
consisting of 1% deoxycholate/10 mM Tris (2-carboxy-
ethyl)phosphine/40 mM chloroacetamide/100 mM Tris 
pH 8.5, heated for 10 min at 95°C, followed by treatment 
with a mixture of trypsin and Lys-C (Promega, Madison, 
WI, USA) (0.66 μg of each enzyme) for 1 h at 37°C. The 
digestion was stopped with 5 μl 50% formic acid causing 

Table 1  Osteoarthritis Initiative (OAI) participant characteristics

Data are presented as mean ± standard deviation (SD) or as indicated. Continuous variables were compared using the Mann-Whitney test. Fisher’s exact test was used 
for gender, and chi-square test for Kellgren-Lawrence

p-values in bold indicate statistical significance. Comparison were p‡, to control group; p§, OA-obese and OA-non-obese groups

BMI, body mass index; OA, osteoarthritis; WOMAC, Western Ontario and McMaster Universities Osteoarthritis Index

*One missing value in the control group

Control (n=8) OA (n=20) p‡ OA-obese (n=10) p‡ OA-non-obese (n=10) p‡ p§

Age, years 56 ± 3 65 ± 9 0.037 62 ± 9 0.182 67 ± 9 0.023 0.441

Gender, male, % (n) 25% (2) 60% (12) 0.121 60% (6) 0.188 60% (6) 0.188 1.000

BMI, kg/m2 24.7 ± 4.1 30.8 ± 5.4 0.011 35.0 ± 4.1 0.0002 26.6 ± 2.0 0.286 0.047
WOMAC

  Pain (0–20) 0 3.2 ± 2.5 <0.0001 2.8 ± 2.8 0.0003 3.5 ± 2.3 0.0003 0.577

  Function (0–68) 0 12.3 ± 9.4 0.0003 10.7 ± 10.6 0.001 14.0 ± 8.2 0.0004 0.644

  Stiffness (0–8) 0 2.5 ± 1.2 <0.0001 2.2 ± 1.0 0.0003 2.7 ± 1.3 0.0003 0.487

  Total (0–96) 0 17.9 ± 12.0 <0.0001 15.7 ± 13.2 0.0003 20.2 ± 10.9 0.0003 0.552

Kellgren-Lawrence grade, % (n) <0.0001 <0.0001 <0.0001 0.160

  0–1 100% (7)* 0% (0) 0% (0) 0% (0)

  2 0% (0) 0% (0) 0% (0) 0% (0)

  3 0% (0) 35% (7) 50% (5) 20% (2)

  4 0% (0) 65% (13) 50% (5) 80% (8)

Medial joint space width, mm 3.9 ± 0.4 * 1.0 ± 0.8 <0.0001 1.2 ± 0.9 0.001 0.9 ± 0.8 0.001 0.739

Table 2  Complex Diseases in Newfoundland population: 
Environment and Genetics (CODING) (control) and the 
Newfoundland Osteoarthritis Study (NFOAS) (OA)  participant 
characteristics

Data are presented as mean ± standard deviation (SD) or as indicated. 
Continuous variables were compared using the Mann-Whitney test. Fisher’s 
exact test was used for gender

p-values in bold indicate statistical significance. Comparison were p‡, to control 
group

The Kellgren-Lawrence and the joint space width were not done before the 
surgery

BMI, body mass index; NA, not available; OA, osteoarthritis; WOMAC, Western 
Ontario and McMaster Universities Osteoarthritis Index

Control (n=20) OA (n=20) p‡

Age, years 63.7 ± 3.6 63.7 ± 3.3 0.903

Gender, male, % (n) 50% (10) 50% (10) 1.000

BMI, kg/m2 31.1 ± 4.4 30.6 ± 3.8 0.579

WOMAC

  Pain (0–20) NA 14.6 ± 4.1 -

  Function (0–68) NA 46.9 ± 8.2 -

  Stiffness (0–8) NA 6.1 ± 1.3 -

  Total (0–96) NA 67.5 ± 12.1 -

https://oai.nih.gov
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the precipitation of deoxycholate. The samples were then 
centrifuged at 16,000g for 15 min at 4°C.

The peptides contained in the supernatant were puri-
fied on StageTips C18 Empore (3M, St-Paul, MN, USA) 
according to Rappsilber et  al. [40]. Finally, the peptides 
were vacuum dried and stored at −20°C prior to mass 
spectrometry analysis.

High‑abundance protein depletion for building a matching 
library
To improve the number of peptides/protein identifica-
tion, in the final analysis, a matching library was prepared 
for its use with the MaxQuant software, as described by 
Geyer et al. [41]. This used a depleted serum. By adding 
a library of depleted serum in the analysis, this strategy 
took advantage of the “match between runs” function 
of the MaxQuant software, where peptides identified 
by MS/MS in the library can be matched to the non-
depleted samples to recover their quantification even 
without MS/MS. This library was obtained by pool-
ing 2 μl of each patient’s serum sample, which was then 
depleted for high abundance proteins using the Seppro 
IgY14 Spin Column kit according to the manufacturer 
protocol (Sigma-Aldrich, St Louis, MO, USA). The flow-
through was collected, and the proteins were precipi-
tated with the addition of 5 volumes of ice-cold acetone 
and incubated overnight at −20°C. After centrifugation 
at 10,000g for 10 min, the pellet was resuspended by 120 
μl of SDC buffer and heated at 95°C for 10 min. After 
cool down, the pooled samples were digested with 1:100 
Trypsin:proteins and 1:100 Lys-C:proteins ratios accord-
ing to a Bradford protein assay. The resulting peptides 
were purified on Oasis HLB Cartridge (Waters) accord-
ing to the manufacturer’s procedure. The peptides were 
then fractionated on a high pH reversed-phase pep-
tide chromatography according to Yang et  al. [42]. The 
12 resulting fractions were vacuum dried and stored at 
−20°C prior to mass spectrometry analysis.

Liquid chromatography (LC)‑MSMS analysis
Both non-depleted samples and fractions of the depleted 
pool were analyzed, as previously described [43]. In brief, 
samples or fractions were resuspended with 30 μl 2% ace-
tonitrile/0.05% trifluoroacetic acid. Protein concentration 
was determined at 205 nm using a NanoDrop 2000 spec-
trophotometer (Thermo Scientific, Waltham, MA, USA); 
the protein concentration was adjusted to 0.2 μg/μl. Five 
microliters of the resuspended peptide digestion (equiva-
lent to 1 μg peptides) was injected on a nanoflow liquid 
chromatography/MSMS (nanoflow LC-tandem MS). The 
experiments were performed with a Dionex UltiMate 
3000 nanoRSLC chromatography system (Thermo Fisher 
Scientific/Dionex Softron GmbH, Germering, Germany) 

connected to an Orbitrap Fusion Tribrid ETD mass spec-
trometer (Thermo Fisher Scientific, San Jose, CA, USA) 
equipped with a nano electrospray ion source. Peptides 
were trapped at 20 μl/min in a loading solvent (2% ace-
tonitrile, 0.05% trifluoroacetic acid [44]) on a 5-mm 
length 300 μm Internal Diameter (I.D.), 5 μm particles 
Acclaim™ PepMap™ 100 pre-column cartridge (Thermo 
Fisher Scientific/Dionex Softron GmbH) for 5 minutes. 
Then, the pre-column was switched online with 500-mm 
length, 75 μm I.D., 3 μm particles, Acclaim™ PepMap™ 
100 C18 analytical column (Thermo Fisher Scientific/
Dionex Softron GmbH), and the peptides were eluted 
with a linear gradient from 5 to 40% (A: 0,1% formic 
acid, B: 80% acetonitrile, 0.1% formic acid) for 90 min, 
at 300 nl/min. Mass spectra were acquired using a Data 
Dependent Acquisition mode (Thermo XCalibur soft-
ware, version 4.3). Full scan mass spectra (350 to 1800 
m/z) were acquired in the orbitrap using an automatic 
gain control (AGC) target of 4e5, a maximum injection 
time of 50 ms, and a resolution of 120,000. Internal cali-
bration using lock mass on the m/z 445.12003 siloxane 
ion was used. Each MS scan was followed by the acquisi-
tion of fragmentation MSMS spectra of the most intense 
ions for a total cycle time of 3 s (highest speed mode). The 
selected ions were isolated using the quadrupole analyzer 
in a window of 1.6 m/z and fragmented by higher energy 
collision-induced dissociation (HCD) with 35% of colli-
sion energy. The resulting fragments were detected by the 
linear ion trap at a rapid scan rate with an AGC target of 
1e4 and a maximum injection time of 50 MS. Dynamic 
exclusion of previously fragmented peptides was set for a 
period of 20 s and a tolerance of 10 ppm.

Database searching and label‑free quantification
Spectra were searched against a human proteins data-
base (Uniprot Homo sapiens Reference Proteome – 
UP000005640 – 74435 entries - 21.04.2019) using the 
Andromeda module of the MaxQuant software [39]. In 
brief, the trypsin/P enzyme parameter was selected with 
two possible missed cleavages. Carbamidomethylation 
of cysteines was set as a fixed modification, methionine 
oxidation, and deamidation of glutamine and asparagine 
as variable modifications. Mass search tolerances were 
5 ppm and 0.5 Dalton for MS and MS/MS, respectively. 
For protein validation, a maximum false discovery rate 
of 1% at peptide and protein levels was used based on a 
target/decoy search. MaxQuant was also used for label-
free quantification with a minimum ratio count of 1. The 
“match between runs” algorithm was used with 20 min 
as alignment time window and 0.7 min as match time 
window values to enable a peptide MS1 signal match 
between the matching library consistent with fractions of 
depleted samples and the non-depleted serum samples. 



Page 5 of 16Tardif et al. Arthritis Research & Therapy          (2022) 24:120 	

Only unique and razor peptides were used for quantifica-
tion. All other parameters were set at default values.

Protein assays
Proteins tested were the fibrillin-1 (FBN1), Vitamin 
D-binding protein (VDBP), and SERPINF1. They were 
determined with specific assays according to manufactur-
er’s specifications. FBN1 was quantitated by ELISA (dilu-
tion 1:5; #MBS3804755, MyBiosource, San Diego, CA, 
USA), VDBP with a Multiplex assay (dilution 1:10000; 
#HCCBP2MAG-58K, EMD Millipore Corporation, Bill-
erica, MA, USA), and SERPINF1, by Luminex assay (dilu-
tion 1:4000; #LXSAHM-01, R&D systems, Minneapolis, 
MN, USA). Protein quantification was performed using 
the LiquiChip 200 apparatus, and the data analysis per-
formed with ht LiquiChip Analyzer software (Qiagen, 
Toronto, ON, Canada). For each biomarker, an 8-point 
standard curve and appropriate controls were included, 
and samples were done in duplicate. The minimum 
detectable doses were for FBN1, 0.312 ng/ml; VDBP, 0.58 
ng/ml; and SERPINF1, 3.66 pg/ml.

Data treatment and statistical analysis
The proteinGroups.txt file generated by MaxQuant was 
used in R software, version 3.4 [45]. The intensity values 
of each peptide in each non-depleted serum sample were 
normalized using the median of all intensity values in 
each sample (normalization by column). For each com-
parison, only peptides having at least 60% of non-missing 
values across all the non-depleted samples were consid-
ered as quantifiable. Missing values remaining after this 
filtering were imputed using a noise value calculated as 
the first centile of all intensity values per sample (calcula-
tion per column), as previously described [46]. Only pro-
teins with at least two quantified peptides were kept for 
further analysis.

For the analysis of differential expression between two 
groups, a protein ratio was calculated using the average 
of protein intensities in all samples of the same group. 
These ratios were then converted into z-score (z = (x-μ)/σ 
where x =log2(ratio); μ = average of all log2(ratios); σ 
=standard deviation of all log2(ratios)) for data centering. 
Statistical analysis was performed using the Limma Bio-
conductor package [47] to define the probability of vari-
ation (p-value) of each protein between two groups. This 
method has been preferred to the usual Student t-test as 
it has been shown to be less sensitive to the number of 
biological replicates. This was followed by the Benjamini-
Hochberg method to adjust for multiple comparison 
(q-value). Proteins with a q-value < 0.050 and absolute 
value of z-score > 1.96 were considered significantly 
different.

Further, two multivariate methods were used through 
the MixOmics R package [48]. First, to compare the pro-
teomic profiles, the multivariate unsupervised principal 
component analysis (PCA) [49] followed by the pairwise 
comparison were used. PCA method enables to cluster 
the samples by reducing the dimension of expression data 
with minimum information loss and visualize the similar-
ities between the proteins. It is a logistic regression that 
provide a relative weighting of the protein importance. 
Second, to select the most predictive/discriminative fea-
tures, the supervised classification model sparse partial 
least squares regression discriminant analysis (sPLS-DA) 
[50] was used. This method is a linear classification model 
enabling discriminative variable selection that could pre-
dict the outcome. It allows to seek for components that 
best separate the samples. Moreover, this method pre-
sented a graphical representation of the components and 
proteins assisting for the interpretation of the results. The 
number of components and variables was defined after a 
tuning step to optimize the distinction between the three 
groups (control, OA-obese, OA-non-obese).

For the validation experiments, the differences between 
groups were assessed using the Student t-test. A value of 
p≤0.050 was considered statistically significant. Statisti-
cal analysis was performed using the GraphPad Prism 8 
(San Diego, CA, USA).

Results
Subject characteristics
Table 1 shows the characteristics of the participants from 
the OAI cohort comparing control, OA, OA-obese, and 
OA-non-obese individuals. The obese/non-obese divi-
sion was performed in an attempt to discriminate pro-
teins not specific to OA but to obesity. Compared to 
controls, OA patients were older (p=0.037) and had 
higher BMI (p=0.011), Western Ontario and McMas-
ter Universities Osteoarthritis Index (WOMAC) scores 
(p≤0.0003), Kellgren-Lawrence grades (p<0.0001), and 
smaller medial joint space width (p<0.0001). Comparison 
between OA-obese with OA-non-obese showed only, and 
as expected, that the former had a higher BMI (p=0.047). 
When each two OA subgroups were compared to con-
trol, data were comparable to the total OA group, but 
OA-non-obese were slightly older (p=0.023) and had a 
similar BMI.

Table  2 shows that none of the participant charac-
teristics differed between the CODING (controls) and 
NFOAS (OA) cohorts. Compared to the OAI controls, 
the CODING participants were older (p<0.0001) and 
had a higher BMI (p=0.002), and OA participants from 
the NFOAS had higher WOMAC scores (p<0.0001) than 
those from the OAI.
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Quantitative proteomic analysis
Principal component analysis (PCA)
A shotgun proteomic analysis was performed on the 
non-depleted individual serum samples. Five hundred 
and nine (509) proteins could be identified in at least 
one individual sample. As mentioned above, in addition 
to the non-depleted, we added a depleted serum library 
for the database searching and quantification. Such an 
addition boosted the protein identification by 28%. Two 
hundred and seventy-nine (279) proteins (Table S1) were 
quantified after filtering for proteins having at least 60% 
of non-missing values in at least one of the two compared 
conditions and having two quantified peptides or more to 
retain only high-quality protein measurements. This data 
was used to explore the global proteomic profile of each 
sample and group through a PCA analysis. This unsu-
pervised multivariate method (Fig. 1) generates principal 
component axes that best explain the variability in the 
data without knowing the group of the sample. The data 
showed that the three groups (control, OA-obese, OA-
non-obese) could not be clearly distinguished based on 
their global proteomic profile suggesting that the differ-
ences between the groups might be from low variations 
in protein expression and/or variations on a small num-
ber of protein species.

Pairwise differential expression analysis
To unveil the small differences between the groups, 
pairwise differential analyses were performed using the 

protein quantitative value. Comparisons were made 
between control with OA-non-obese and OA-obese as 
well as between OA-obese with OA-non-obese. For each 
comparison, protein ratios were calculated between the 
two groups and converted into z-score for data center-
ing. Statistical analysis was performed with the Limma 
method. Table S2 lists the normalized intensity values, 
means, ratios, and z-scores for the 12 proteins that were 
found significantly differentially expressed in at least one 
of the three pairwise comparisons, and Table  3 sum-
marizes the data. Of note, differential expressions could 
not be performed for FBN1, comparing OA-obese with 
controls, and for lysine-specific demethylase4C/4E/4B 
(KDM4C/4B/4E), comparing OA-non-obese with 
controls, as these proteins could not be quantitated 
accurately due to missing values in OA-obese and OA-
non-obese groups, respectively (Tables S2 and Table 3).

For these 12 proteins, pairwise comparison revealed 
that 8 were differentially regulated between OA-obese 
with controls, and also 8 between OA-non-obese with 
controls; some proteins being common to both compari-
sons (Table 3, Fig. 2A, B). No protein was found differen-
tially regulated between the two OA subgroups (Fig. 2C). 
One may also note that, in Fig. 2A, B, the ratio distribu-
tion is not centered when OA obese and OA non-obese 
are compared to control. In the latter, there are slightly 
less quantified proteins; however, the overall intensity is 
somewhat strong. Although this cannot be explained at 
present, to overcome this issue, we centered the data by 

Fig. 1  Principal component analysis (PCA) (unsupervised). Serum samples were from controls (n=8; + [gray]), osteoarthritis (OA)-obese (n=10; ○ 
[blue]), and OA-non obese (n=10; Δ [orange]) and analyzed by PCA. PCA represents the maximum variability that exists between different samples 
and unsupervised means regardless of the group to which they belong. The closer the points are in the PCA, the closer the proteomic profiles of the 
corresponding samples. In each axis, the percentage represents the total variability between all points. PC, principal component
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calculating a z-score and considered proteins as regu-
lated or not between two conditions based on both their 
q-value and z-score.

Compared to controls, data revealed that in the OA-
obese group (Fig.  2A, Table  3), CRP, CRTAC1, LYZ, 
PTGDS, IGHD, and KDM4C/4B/4E were all upregulated, 
whereas ACTA1/ACTC1/ACTG2/ACTA2 and ADIPOQ 
were downregulated. In the OA-non-obese/control com-
parison (Fig.  2B), CRP, CRTAC1, LYZ, PTGDS, FBN1, 
IGHV3-35, KHSRP, and S100A9 were all upregulated in 
the OA-non-obese; PTGDS was included in the upregu-
lated proteins as the q-value (q=0.054) showed a strong 
trend towards significance.

Sparse partial least squares regression discriminant analysis 
(sPLS‑DA)
The pairwise comparison between the two OA subgroups 
did not reveal proteins that were significantly different 
and that could be related to the obesity condition. To 
mine deeper into the data and unveil proteins related to 

obesity, not specific necessarily  to OA, we performed 
another multivariate analysis, the sPLS-DA. This super-
vised analysis enabled the selection of the most discrimi-
native proteins in the data to classify the samples [50].

Data revealed that a very good classification (area 
under the curve [AUC] >95%) was obtained with two 
components. Component 1 (9 proteins; Fig. 3) comprised 
proteins discriminating the two OA groups from the 
controls, and component 2 (23 proteins; Fig. 4) discrimi-
nated the OA-non-obese from the OA-obese. In a given 
component, each protein does contribute in combination 
but not equally to the discrimination process, i.e., when 
a protein is removed from a component, the discrimina-
tory strength of the component is altered.

Figure  3A illustrates a clear separation of the control 
group from the two OA subgroups, which is particularly 
visible in component 1. Figure  3B shows the contribu-
tion of each of the 9 proteins comprised in component 
1 listed by order of importance—CRTAC1, GC, C1R, 
SERPINF1, PROS1, SEPP1, C1QC, ITIH4, and APCS. 

Table 3  Principal component analysis-pairwise differential expression

Serum samples were obtained from control (n=8), osteoarthritis (OA)-obese (n=10), and OA-non-obese (n=10) individuals, prepared for mass spectrometry (MS) 
and analyzed by principal component analysis (PCA). The intensity values for each protein and for each sample were obtained from the MS analysis output, and the 
mean of the intensity values was calculated for each protein (for the protein, refer to Table S2). The ratio of the means intensity values was used to calculate the z-score 
and Limma q-value for each protein. A protein was considered upregulated if the z-score was >1.96, the log2(ratio) >0 and the Limma q-value <0.05; inversely, a 
protein was considered downregulated with a z-score <1.96, a log2(ratio) <0 and a Limma q-value <0.05. The values of statistically differentially regulated proteins are 
indicated in bold and the value in italic indicates a strong trend towards statistical difference. Of note, all the proteins reported in this table have MS/MS sequences in 
addition to being in the library

- indicates proteins with no differential regulation; NA (not applicable) refers to proteins for which there were too many missing values to assign a final score

OA-obese/control OA-non-obese/control

Protein (gene designation) z-score/log2(ratio)/q-value Regulation z-score/log2(ratio)/q-value Regulation

C-reactive protein (CRP) 4.21/3.47/ 0.05 ↑ 3.35/ 2.72/ 0.04 ↑
Lysozyme C (LYZ) 3.94/3.29/0.0002 ↑ 4.45/ 3.40/ 0.03 ↑
Cartilage acidic protein 1 (CRTAC1) 2.47/ 2.27/ 0.01 ↑ 3.19/ 2.62/ 0.003 ↑
Prostaglandin-H2 D-isomerase (PTGDS) 2.57/ 2.34/0.0002 ↑ 2.57/ 2.23/0.054 ↑
Immunoglobulin delta chain C region (IGHD) 5.91/ 4.65/0.04 ↑ 1.28/ 1.43/ 0.74 -
Lysine-specific demethylase4C/4E/4B (KDM4C/4B/4E) 2.01/ 1.96/ 0.01 ↑ NA

KH-Type Splicing Regulatory Protein (KHSRP) 2.07/ 2.00/ 0.10 - 2.80/2.37/0.04 ↑
Immunoglobulin heavy variable 3-35 (IGHV3-35) 1.71/ 1.75/0.34 - 3.15/ 2.59/ 0.02 ↑
Protein S100A9 (S100A9) 1.13/ 1.34/ 0.17 - 2.05/ 1.91/ 0.02 ↑
Fibrillin-1 (FBN1) NA 2.99/ 2.49/ 0.02 ↑
Adiponectin (ADIPOQ) -3.57/ -1.91/ 0.04 ↓ -2.73/-1.06/ 0.17 -
Actins (ACTA1/ACTC1/ACTG2/ACTA2) -3.83/ -2.08/0.04 ↓ -2.00/ -0.61/ 0.16 -

Fig. 2  Principal component analysis (PCA)-pairwise differential expression. Volcano and box plots of statistically differently regulated proteins (for 
the volcano plot, red when osteoarthritis (OA) was lower than controls and blue when OA was higher than controls between A OA-obese (n=10, 
OA-ob. [hatched]) and controls (n=8, CTL [white]), B OA-non obese (n=10, OA-non ob. [hatched]) and controls (n=8, CTL [white]) and C OA-obese 
(n=10) and OA-non obese (n=10)). The intensity values for each protein and sample were obtained from the mass spectrometry analysis (refer to 
Table S2) and transformed as Log2. Statistical analysis used the Limma method, and q<0.050 was considered statistically significant; a strong trend 
toward statistical difference is indicated in italic. ACT, actins; ADIPOQ, adiponectin; CRP, C-reactive protein; CRTAC1, cartilage acidic protein 1; FBN, 
fibrillin 1; IGHV3-35, Ig heavy variable 3-35; KDM4C/4B/4E, lysine-specific demethylase4C/4E/4B; KHSRP, KH-Type Splicing Regulatory Protein; LYZ, 
lysozyme; PTGDS, prostaglandin-H2 D-isomerase; S100A9: S100 Calcium Binding Protein A9

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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Fig. 3  Sparse partial least squares discriminant analysis (sPLS-DA) contribution to component 1. Serum samples were from controls (n=8), 
osteoarthritis (OA)-obese (n=10) and OA-non obese n=10) and analyzed by sPLS-DA. A The dot plot component 1 vs. component 2 allowed 
for the identification of component 1 discriminating both the OA-obese (o [blue]) and OA-non obese (Δ [orange]) groups from controls (+ 
[gray]). B Contribution of the 9 proteins in component 1; the plots display the loading weight and indicate the class (OA-obese [blue]; OA-non 
obese,[orange]) for which the selected protein has a maximal mean value; the negative value indicates contributions higher in the OA compared 
to the control group. C Box plots of each protein comprised in component 1. The intensity values for each protein and each sample were 
obtained from the mass spectrometry analysis, and the mean of the intensity values was calculated for each protein and transformed as Log2. 
Statistical analysis used the Limma method, and q<0.050 was considered statistically different. OA-obese (OA-ob. [hatched left]), OA-non obese 
(OA-non ob. [hatched right], and control (CTL [white]). CRTAC1, cartilage acidic protein 1; GC, vitamin D binding protein; C1R, complement C1r 
subcomponent; Serpin F1, pigment epithelium-derived factor; PROS1, vitamin K-dependent protein S; SEPP1, selenoprotein P; C1QC, complement 
C1q subcomponent subunit C; ITIH4, inter-alpha-trypsin inhibitor heavy chain 4; APCS, serum amyloid P
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Of note, CRTAC1, which was found to contribute the 
most, was also identified previously in the pairwise analy-
sis as upregulated in both OA-obese and OA-non-obese 
compared to controls (Fig. 2, Table 3). Figure 3C shows 
the intensities of the 9 proteins contributing to compo-
nent 1 for each group and their comparisons between 
the groups. Compared to controls, both OA groups were 
upregulated for all 9 proteins and statistical difference 
was reached for all in the OA-non-obese. Although val-
ues of both OA-obese and OA-non-obese were relatively 
similar for all the 9 proteins, comparison between the 
OA-obese with controls showed that the proteins PROS1 
and SEPP1 did not reach statistical difference.

Component 2 is a group of 23 proteins that discrimi-
nates OA-obese from OA-non-obese. Figure  4 shows 
the contribution value of each of these proteins. Impor-
tantly, none of the 23 proteins found in component 1, 

which discriminates OA from controls, and only the 
protein ADIPOQ (with a very low contribution) were 
previously identified in pairwise comparison as down-
regulated in OA-obese compared to controls (Fig.  2A, 
Table 3 and Table S2).

Some of the proteins of component 2 were involved 
in the coagulation/fibrinolysis pathways or lipid metab-
olism. Also listed are some immunoglobulins, mostly 
light chains (lambda and kappa variable). Regarding the 
contribution of each protein to component 2, ApoC1 
and SERPINC1 were the proteins with the strongest 
contribution in the OA-non-obese group, while HPR, 
IGKV3-15, and APOL1 led in the OA-obese group.

Protein validation
To complement this work, comparison of three pro-
teins (FBN1, VDPB and SERPINF1) using plasma from 

Fig. 4  Sparse partial least squares discriminant analysis (sPLS-DA) contribution to component 2. Serum samples were obtained from osteoarthritis 
(OA)-obese (n=10) and OA-non obese (n=10) individuals and analyzed by sPLS-DA. Contribution of the 23 proteins in component 2; the plots 
display the loading weight and indicate the class (OA-obese, [blue]; OA-non obese, [orange]; control, [gray]) for which the selected protein has 
a maximal mean value. The negative value indicates contributions higher in the OA-obese compared to the OA-non obese group, and positive 
number higher values in the OA-non obese. ADIPOQ, adiponectin; APOA1, apolipoprotein A-I; APOC1, apolipoprotein C-I; APOL1, apolipoprotein 
L1; DBH, dopamine beta hydroxylase; F12, coagulation factor XII; GP1BA, platelet glycoprotein Ib alpha chain; GPX3, glutathione peroxidase 3; HPR, 
haptoglobin-related protein; IGHD, Ig delta chain C region; IGFALS, insulin-like growth factor-binding protein complex acid labile subunit; IGLV2-14, 
Ig lambda chain V-II region TOG; IGLV4-69, Ig lambda variable 4-69; IGKV2-24, Ig kappa variable 2-24; IGLV2-23, Ig lambda chain V-II region NEI; 
IGKV3-15, Ig kappa chain V-III region POM; IGLV3-21, Ig lambda chain V-III region LOI; IGHV3OR16-12, Ig Heavy Variable 3/OR16-12 (Non-Functional); 
PON1, serum paraoxonase/arylesterase 1; PROC, vitamin K-dependent protein C; SERPINA6, corticosteroid-binding globulin; SERPINA3, 
alpha-1-antichymotrypsin; SERPINC1, antithrombin-III
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another cohort (CODING and NFOAS) was performed 
between controls and OA. Data showed that statistical 
difference was reached when OA was compared to con-
trols for FBN1 (p=0.044), and VDPB (p=0.022), and a 
trend toward significance for SERPINF1 (p=0.064)  (Fig.
S1). Of note, no difference was obtained when OA-obese 
and OA-non-obese were compared for all the three pro-
teins studied (p=0.656, p=0.104, and p=0.315, respec-
tively)  (Fig. S1), suggesting that these proteins are not 
likely obesity-regulated.

Discussion
The search for a reliable biomarker in OA is an active 
field of investigation. Our study identified the proteins 
CRTAC1, FBN-1, VDBP, and possibly SERPINF1 as 
potential new and OA-specific serum biomarkers.

To gather the most information about the proteomic 
analysis performed on our serum samples, we first 
assessed their proteomic profile through an unsuper-
vised PCA analysis, then two methodologies were used 
to recover the most discriminative proteins involved 
in each group: a pairwise differential analysis based 
on the Limma (Student derived) statistical test and a 
supervised sPLS-DA analysis. The latter enabled us to 
find proteins discriminating OA-obese from OA-non-
obese groups, which was not possible with the pairwise 
comparisons.

The PCA data revealed that controls can be partially 
discriminated from OA patients based on their global 
proteomic profile, while OA-obese and OA-non-obese 
patients cannot be differentiated. This was confirmed by 
pairwise differential expression analyses, which revealed 
that CRP, LYZ, CRTAC1, and PTGDS were all upregu-
lated in OA individuals compared to controls. These 
proteins are not likely obesity-regulated as they were sig-
nificantly higher than the controls in both OA-obese and 
OA-non-obese in addition to not being found differently 
regulated in the sPLS-DA component 2, which evaluates 
proteins between the two OA groups.

CRTAC1 appears to be a strong OA biomarker candi-
date as it is the only protein identified in both pairwise 
(increased intensity levels in OA compared to controls) 
and sPLS-DA (highest contribution in component 1) 
analyses. However, very little is known about this protein 
and its role, not only in OA but also in normal human 
physiology. Two splice variants of this gene have been 
reported and, in regard to articular tissues, the CRTAC1-
A being the predominant form in cartilage [51]. In OA 
knees, studies have reported that it is a glycosylated extra-
cellular molecule found in the inter-territorial matrix of 
the deep zone of the cartilage as well as in synovial fluid 
and serum [21, 26, 51]. It is upregulated in late-stage 
OA cartilage compared to healthy or early OA cartilage 

[52, 53]. While preparing the present work, a proteomic 
study done on an Icelandic population (n=39,155 includ-
ing 12,178 OA) corroborates our finding that CRTAC1 
was the most strongly associated (among 4792 pro-
teins studied) to OA diagnosis and progression to joint 
replacement [54]. It asserts that CRTAC1 is a strong and 
promising biomarker candidate for OA.

FBN1 is an extracellular matrix protein that assembles 
into microfibrils to form the template for elastic fiber for-
mation. In the pairwise analysis, data showed its upregu-
lation in OA-non-obese compared to controls. In this 
analysis, unfortunately this protein could not be assessed 
in the OA-obese as it had too many missing values to 
assign a final score. However, in the sPLS-DA compo-
nent 2, this protein did not discriminate OA-non-obese 
and OA-obese. Complementary experiments confirm 
the statistical difference of this protein between OA with 
controls, in addition no difference was found between 
OA-non-obese and OA-obese, thus not likely regulated 
by obesity factors. FBN1 was previously identified in the 
synovial fluids of OA patients, but no comparison with 
controls was done [55]. There are three isoforms of FBN, 
FBN1 being the most abundant in adult tissues [56]. 
Related to OA, FBN1 has been reported to sequester a 
key factor involved in the disease’s cartilage and bone, 
the latent TGF-β1 complex, regulating its bioavailability 
[57–59]. In addition, FBN1 was found associated with 
two other musculoskeletal diseases, systemic sclerosis 
and Marfan syndrome [60–63]. FBN1 would be an inter-
esting molecule for further analysis as a potential OA 
biomarker.

Other proteins were found upregulated in OA com-
pared to controls, CRP, LYZ, and PTGDS. However, 
they alone would not be suitable choices as specific OA 
biomarkers due to their rather non-specific role (CRP, a 
general marker of inflammation [64, 65]; LYZ, an anti-
bacterial role or their strong link to other pathological 
conditions (PTGDS) [66–70]. Nonetheless, it is worth 
mentioning that a ratio of serum CRP with another mol-
ecule (monocyte chemoattractant protein-1 [MCP-1]) 
was suggested as an OA biomarker. This ratio has been 
found associated with OA symptoms and predicted, in 
combination with other factors, OA individuals with 
knee structural degenerative progression [37, 71]. Fur-
thermore, CRP is also known to activate the classical 
complement pathway by binding to C1q [72]. Although 
we did not identify C1q in the PCA-pairwise analysis, it 
was found as a contributor to component 1 in the sPLS-
DA analysis.

Several other proteins showed differential regula-
tion in pairwise analysis, but are likely obesity-related, 
and thus not specific to all OA population. These 
included IGHD and KDM4C, which were upregulated 
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in OA-obese, and KHSRP, S100A9, and IGHV3-35 were 
so in OA-non obese, whereas ADIPOQ and ACT were 
downregulated only in OA-obese.

The sPLS-DA complemented the differential expres-
sion findings and further identified proteins that dis-
criminated both OA-obese and OA-non-obese from 
controls (component 1), as well as OA-obese from 
OA-non-obese individuals (component 2). This analy-
sis offers an insight into which proteins contribute and 
how important the contribution of each is towards the 
discrimination of given groups.

Several proteins comprising component 1 (OA vs. 
controls) are molecules for which there are few or no 
reports as to their association with OA, as such offer-
ing novel potential candidates for OA biomarker 
research. The sPLS-DA revealed that the abovemen-
tioned CRTAC1 protein contributed the most towards 
the discrimination of OA and controls. The second 
contributor being VDBP and validation experiments 
demonstrated a significant difference between OA and 
controls and, as for FBN1, not between the OA sub-
groups. This is a multifunctional protein that not only 
binds to vitamin D but also has several other different 
physiological functions such as actin scavenging, bind-
ing of fatty acids, and chemotaxis [73]. There has been 
only one OA study showing increased levels of VDBP 
and vitamin D receptors in muscles from patients with 
end-stage knee OA compared to controls [74]. As 
knee muscles are gaining great interest regarding their 
impact on OA progression, this protein should be stud-
ied further as an OA biomarker.

Two other proteins in component 1, C1R and C1QC, 
are directly involved in the first step of the classical com-
plement cascade. Of note, the contribution of C1QC is 
from the OA-obese individuals, thus probably related to 
obesity. C1 proteases can also cleave non-complement 
proteins including the LDL receptor-related protein 6, 
IGFBP5, and nucleolin [75]. The presence of complement 
proteins in this list was not unexpected, as previous stud-
ies reported the activation of the complement cascade in 
OA [37, 76, 77]. As complement proteins are activated in 
various diseases as well as in general inflammation pro-
cesses, the abovementioned proteins would therefore not 
be very useful as specific OA markers. It has previously 
been reported that one of the complement proteins, as 
for the CRP, when employed in ratio with another mol-
ecule could be of use as a biomarker for OA cartilage 
degradation in OA-obese individuals. Hence, the adi-
pokine adipsin, a component of the alternative comple-
ment pathway, when combined as a ratio with MCP-1 
was found strongly associated with knee cartilage volume 
loss in OA-obese individuals [37].

SERPINF1, as its name indicates, belongs to the serpin 
family, but does not display the serine protease inhibi-
tory activity shown by many of its family members. 
The SERPINF1 gene codes for the pigment epithelium-
derived factor (PEDF), which was found to exacerbate 
mice joint cartilage damage in an in  vivo inflammatory 
joint destruction model (monosodium iodoacetate) [78]. 
However, PEDF production in the joint is somewhat 
controversial as it was found upregulated in human OA 
cartilage in two studies [78, 79], while another showed 
no expression in articular chondrocytes but an up-reg-
ulation in osteophytic chondrocytes [80]. In regard to a 
musculoskeletal disease, the heritable disorder osteogen-
esis imperfecta, characterized by bone fragility and low 
bone mass, is caused by mutations in the SERPINF1 gene 
[81, 82]. Validation experiments showed that there was a 
numerical trend toward significance when OA was com-
pared to controls. However, this protein needs more sup-
port as a potential OA biomarker and further analysis is 
suggested.

The other less-contributing proteins in the sPLS-DA 
component 1 included PROS, a vitamin K-dependent 
plasma protein that functions as a cofactor for the antico-
agulant protease (activated protein C) in the degradation 
of coagulation factors Va and VIIIa; SEPP1, a selenopro-
tein implicated as an extracellular antioxidant, and in the 
transport of selenium to extra-hepatic tissues; ITIH4, 
a member of the serine protease inhibitor family with 
diverse functions such as a matrix-stabilizing molecule 
[83]; and APCS (amyloid P component serum), a glyco-
protein capable of binding to apoptotic cells at an early 
stage and associated with the innate immune system. As 
for the C1QC, the contribution of APCS in component 1 
is from the OA-obese individuals, thus probably related 
to obesity. Although all these proteins were not specifi-
cally studied with respect to their role in OA, some have 
been associated with other arthritis pathologies includ-
ing rheumatoid arthritis [84, 85], lupus [86], Kashin-Beck 
[87], and ankylosing spondylitis [88].

Data from sPLS-DA’s component 2 offered impor-
tant information related to differentially regulated pro-
teins between OA-obese and OA-non-obese, which are 
potentially related to obesity. Obesity is a well-known 
and major risk factor for OA, but not all OA patients are 
obese. Thus, in the search for a specific OA biomarker, 
it is important to focus on molecules that are regulated 
in the general OA population, avoiding other patho-
logical condition-related (obesity) proteins. Among the 
23 proteins identified in component 2, none were found 
in component 1 (discriminating OA from controls), and 
thus are mostly related to conditions other than OA. 
Several of these proteins are involved in lipid metabo-
lism: apolipoproteins A1, C1, and L1, paraoxonase 1 
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(PON1), which binds to HDL, HPR, which is known to 
associate with APOL1-containing HDL, and ADIPOQ, 
an adipokine involved in the control of fat metabolism 
and insulin sensitivity, which is also listed in the PCA 
analysis. Notably, a number of apolipoproteins and ser-
pins identified as part of component 2 are among the 
highest contributors, and a number of those proteins 
have been studied as to their presence/levels in OA [19, 
89–94]. Some others, such as SERPINC1, coagulation 
factor XII (involved in contact activation pathways), 
and protein C (PROC), are involved in the coagulation/
fibrinolysis pathways, which are known to be activated 
in OA, as well as in obesity [95–100]. However, it can-
not be ascertained that these pathways are specific of 
OA or rather of obesity. It is our opinion that the use of 
those proteins in the search for specific OA biomarkers 
should not be pursued. Nevertheless, in the OA-obese 
subgroup, some of these proteins including APOA1 
and SERPINC1 would be worthwhile studying, as they 
may amplify/accelerate the OA process in these people 
and thus be used as therapeutic targets.

Although our study has identified potential biomark-
ers, it has limitations. First, the cohort used (proteomic, 
OAI; validation CODING and NFOAS) included individ-
uals from the USA and Canada, respectively. A validation 
of our results from other countries would be required 
to determine whether those proteins could indeed be 
further studied as biomarkers. Second, gender discrimi-
nation could also be performed as it is well known that 
there are sex-specific differences in OA [101–103]. In this 
study, we could not perform such a discrimination as we 
had a relatively modest sample size, which was limited by 
the methodology used. A technique allowing a greater 
sample size should permit it. Third, despite a data filter-
ing, some of the proteins (for example CRP, KDM4C, 
FBN1, and actin) across the whole dataset showed a high 
number of imputed noise values (Table S1), which might 
have created a bias in the reported fold changes. How-
ever, as some of the targeted proteins selected as new 
potential biomarkers for the entire OA population were 
further validated using samples from an external cohort, 
including FBN1, this reduces the risk to report wrong 
biomarkers. Moreover, the use of a larger cohort com-
bined with other proteomic analysis strategies could con-
firm our findings.

Conclusion
In OA, current diagnoses are not sensitive enough to 
identify the disease in the early stages. To improve ther-
apeutic approaches for the prevention or delay of the 
progression of this disease, the identification of specific 
molecules/biomarkers enabling early determination of 

this disease is needed. At present, there are no such val-
idated specific serum biochemical markers. As a novel 
contribution, we identified, by using proteomics/mass 
spectrometry and targeted disease-specific proteins, 
four OA serum potential new biomarker candidates for 
the entire OA population: CRTAC1, FBN1, VDBP, and 
possibly SERPINF1.
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